1. Hall’s Theorem and Snevily’s Conjecture

Let $n \in \mathbb{Z}^+ = \{1, 2, 3, \ldots \}$. Any cyclic group of order n is isomorphic to the additive group $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ of residue classes modulo n. If n is odd, then

$$1 + 1, 2 + 2, \ldots, n + n$$

are pairwise incongruent modulo n and hence they form a complete system of residues modulo n.

Let $a_1, \ldots, a_n \in \mathbb{Z}$. If $a_1 + 1, \ldots, a_n + n$ form a complete system of residues modulo n, then

$$\sum_{i=1}^{n} (a_i + i) \equiv 1 + \cdots + n \pmod{n}$$

and hence $\sum_{i=1}^{n} a_i \equiv 0 \pmod{n}$.

1
Cramer’s Conjecture. Let \(a_1, \ldots, a_n \) be integers with
\[
a_1 + \cdots + a_n \equiv 0 \pmod{n}.
\]
Then there is a permutation \(\sigma \in S_n \) such that \(a_{\sigma(1)} + 1, \ldots, a_{\sigma(n)} + n \) form
a complete system of residues modulo \(n \).

In 1952 M. Hall [Proc. Amer. Math. Soc.] obtained an extension of
Cramer’s conjecture.

M. Hall’s theorem. Let \(G = \{b_1, \ldots, b_n\} \) be an additive abelian group,
and let \(a_1, \ldots, a_n \) be elements of \(G \) with \(a_1 + \cdots + a_n = 0 \). Then there
exists a permutation \(\sigma \in S_n \) such that \(\{a_{\sigma(1)} + b_1, \ldots, a_{\sigma(n)} + b_n\} = G \).

Observation. If \(a_1, \ldots, a_n \in \mathbb{Z} \) are incongruent modulo \(n \) with \(a_1 + \cdots + a_n \equiv 0 \pmod{n} \), then \(n \) divides \(0 + 1 + \cdots + (n - 1) = n(n - 1)/2 \) and
hence \(n \) is odd.

Motivated by M. Hall’s theorem and the above observation, in 1999 H.
Snevily [Amer. Math. Monthly] raised the following nice conjecture.

Snevily’s Conjecture. Let \(G \) be an additive abelian group with \(|G| \) odd.
Let \(A \) and \(B \) be subsets of \(G \) with cardinality \(n \in \mathbb{Z}^+ \). Then there is a
numbering \(\{a_i\}_{i=1}^n \) of the elements of \(A \) and a numbering \(\{b_i\}_{i=1}^n \) of the
elements of \(B \) such that the sums \(a_1 + b_1, \ldots, a_n + b_n \) are distinct.

Note that an abelian group of even order has an element \(g \) of order 2
and hence we don’t have the described result for \(A = B = \{0, g\} \).

In our opinion, Snevily’s conjecture belongs to the central part of com-
brinatorial number theory due to its simplicity and beauty.
After your serious attempt to prove Snevily’s conjecture, you will realize that the conjecture is very sophisticated and challenging.

Let M be an $n \times n$ matrix. A line of M is a row or a column of M. M is called a Latin square over a set S of cardinality n if all its entries come from the set S and no line of which contains an element more than once. A transversal of the matrix M is a collection of n cells no two of which lie in the same line. A Latin transversal of M is a transversal whose cells contain no repeated element.

If $G = \{a_1, \ldots, a_n\}$ is an additive group, then the matrix $M = (a_i + a_j)_{1 \leq i, j \leq n}$ formed by the Cayley addition table is a Latin square over G.

Another Form of Snevily’s Conjecture. Let $G = \{a_1, \ldots, a_N\}$ be an additive abelian group with $|G| = N$ odd, and let M be the Latin square $(a_i + a_j)_{1 \leq i, j \leq N}$ formed by the Cayley addition table. Then any $n \times n$ submatrix of M contains a Latin transversal.

In 1967 H. J. Ryser conjectured that every Latin square of odd order has a Latin transversal. Another conjecture of Brualdi states that every Latin square of order n has a partial Latin transversal of size $n - 1$. These conjectures remain open.
2. Snevily’s Conjecture for \mathbb{Z}_p

In 2000 N. Alon [Israel J. Math.] was able to prove Snevily’s conjecture for \mathbb{Z}_p with p an odd prime, via the following powerful tool.

Combinatorial Nullstellensatz (Alon, 1999). Let A_1, \ldots, A_n be finite subsets of a field F with $|A_i| > k_i \geq 0$ for $i = 1, \ldots, n$. If the total degree of $f(x_1, \ldots, x_n) \in F[x_1, \ldots, x_n]$ is $k_1 + \cdots + k_n$ and the coefficient of the monomial $x_1^{k_1} \cdots x_n^{k_n}$ in $f(x_1, \ldots, x_n)$ is nonzero, then $f(a_1, \ldots, a_n) \neq 0$ for some $a_1 \in A_1, \ldots, a_n \in A_n$.

Alon made use of the fact that \mathbb{Z}_p is a field when p is an odd prime.

Theorem 1 (N. Alon, 2000). Let p be an odd prime and let $b_1, \ldots, b_n \in \mathbb{Z}_p$ with $n < p$. If $a_1, \ldots, a_n \in \mathbb{Z}_p$ are distinct, then there is $\sigma \in S_n$ such that $a_\sigma(1) + b_1, \ldots, a_\sigma(n) + b_n$ are distinct.

Proof. Let A_1, \ldots, A_n be the set $A = \{a_1, \ldots, a_n\}$ of cardinality n. We want to find distinct $x_1 \in A_1, \ldots, x_n \in A_n$ such that $x_1 + b_1, \ldots, x_n + b_n$ are distinct. In view of the Combinatorial Nullstellensatz, it suffices to
note that

\[
[x_1^{n-1} \ldots x_n^{n-1}] \prod_{1 \leq i < j \leq n} (x_j - x_i)(x_j + b_j - x_i - b_i)
\]

\[= [x_1^{n-1} \ldots x_n^{n-1}] \prod_{1 \leq i < j \leq n} (x_j - x_i)^2
\]

\[= [x_1^{n-1} \ldots x_n^{n-1}] (-1)^\binom{n}{2} |x_i^{n-j}| \sum_{1 \leq i,j \leq n} |x_i^{j-1}| (1 \leq i,j \leq n)
\]

\[= [x_1^{n-1} \ldots x_n^{n-1}] (-1)^\binom{n}{2} \sum_{\sigma \in S_n} \epsilon(\sigma) \prod_{i=1}^{n} x_i^{n-\sigma(i)} \sum_{\tau \in S_n} \epsilon(\tau) \prod_{i=1}^{n} x_i^{\tau(i)-1}
\]

\[= (-1)^\binom{n}{2} \sum_{\sigma \in S_n} \epsilon(\sigma)^2 e = (-1)^\binom{n}{2} n! e \neq 0 \text{ (since } n < p),
\]

where \(\epsilon(\sigma) \) denotes the sign of \(\sigma \in S_n \) which is 1 or \(-1\) according as \(\sigma \) is even or odd, and \(e \) stands for the multiplicative identity of the field \(F = \mathbb{Z}_p \).

\textbf{Remark 1.} (a) For an odd composite number \(n > 0 \), we cannot use Alon’s idea to prove Snevily’s conjecture for the additive cyclic group \(\mathbb{Z}_n \) since \(\mathbb{Z}_n \) is not a field. (b) In Alon’s proof of Theorem 1, it does not matter whether \(b_1, \ldots, b_n \) are distinct or not.
3. Snevily’s Conjecture for \mathbb{Z}_n with n odd

In 2001 Dasgupta, Károlyi, Serra and Szegedy [Israel J. Math.] succeeded in proving Snevily’s conjecture for cyclic groups of odd order. Their first important observation is that a cyclic group of odd order n can be viewed as a subgroup of the multiplicative group of a field of characteristic 2.

Theorem 2 (Dasgupta, Károlyi, Serra and Szegedy, 2001). Let G be a cyclic group of odd order m. If $A = \{a_1, \ldots, a_n\}$ and $B = \{b_1, \ldots, b_n\}$ are two subsets of G with cardinality n. Then, for some $\sigma \in S_n$, the sums $a_{\sigma(1)} + b_1, \ldots, a_{\sigma(n)} + b_n$ are distinct.

Proof. As $2^{\varphi(m)} \equiv 1 \mod m$, the multiplicative group of the finite field F with order $2^{\varphi(m)}$ has a cyclic subgroup of order m which is isomorphic to G. Thus, we may simply view G as a subgroup of the multiplicative group $F^* = F \setminus \{0\}$.

In light of the Combinatorial Nullstellensatz, it suffices to show that

$$c := \left[x_1^{n-1} \cdots x_n^{n-1} \right] \prod_{1 \leq i < j \leq n} (x_j - x_i)(b_jx_j - b_ix_i) \neq 0.$$

c depends on b_1, \ldots, b_n so that the condition $\prod_{1 \leq i < j \leq n} (b_j - b_i) \neq 0$ might be helpful.

Observe that

$$\prod_{1 \leq i < j \leq n} (x_j - x_i)(b_jx_j - b_ix_i) = (-1)^{\binom{n}{2}} \prod_{i=1}^{n} x_i^{n-j} |_{1 \leq i < j \leq n} b_j^{j-i} x_j^{j-1} |_{1 \leq i < j \leq n}$$

$$= (-1)^{\binom{n}{2}} \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^{n} x_i^{n-\sigma(i)} \sum_{\tau \in S_n} \varepsilon(\tau) \prod_{i=1}^{n} b_i^{\tau(i)-1} x_i^{\tau(i)-1}.$$
Therefore
\[
(-1)^{\binom{n}{2}} c = \sum_{\sigma \in S_n} \varepsilon(\sigma)^2 \prod_{i=1}^{n} b_i^{\sigma(i)-1} = \text{per}((b_i^{j-1})_{1 \leq i,j \leq n}) \\
= \sum_{\sigma \in S_n} \varepsilon(\sigma) \prod_{i=1}^{n} b_i^{\sigma(i)-1} \quad \text{(because \(\text{ch}(F) = 2\))} \\
= |b_j^{i-1}|_{1 \leq i,j \leq n} = \prod_{1 \leq i < j \leq n} (b_j - b_i) \neq 0 \quad \text{(Vandermonde)}.
\]

In 2003 Sun [J. Combin. Theory Ser. A] obtained some further extensions of the Dasgupta-Károlyi-Serra-Szegedy result via restricted sums in a field. Here are two basic observations of Sun:

1. Any finitely generated abelian group with the torsion subgroup

\[\text{Tor}(G) = \{ g \in G : g \text{ has a finite order} \} \]

cyclic is isomorphic to a subgroup of the multiplicative group of nonzero complex numbers.

2. In Theorem 2, instead of the condition that \(|G| \) is odd, we may just require that all elements of \(B\) have odd order.

In 2004 W. D. Gao and D. J. Wang [Israel J. Math.] studied Snevily's conjecture for abelian \(p\)-groups by using the DKSS method and group rings.

Snevily's conjecture for elementarily abelian groups \(\mathbb{Z}_p^k\) remains open.
4. The speaker’s New Discovery

Let b_1, \ldots, b_n be elements of a field F. In Section 3, we noted that

$$[x_1^{n-1} \cdots x_n^{n-1}] (b_i x_i)^{j-1} |_{1 \leq i, j \leq n} \prod_{1 \leq i < j \leq n} (x_j - x_i) = (-1)^{\binom{n}{2}} \text{per}((b_i^{j-1})_{1 \leq i, j \leq n}).$$

Similarly,

$$[x_1^{n-1} \cdots x_n^{n-1}] \text{per}((b_i x_i)^{j-1})_{1 \leq i, j \leq n} \prod_{1 \leq i < j \leq n} (x_j - x_i) = (-1)^{\binom{n}{2}} \text{det}((b_i^{j-1})_{1 \leq i, j \leq n}) = (-1)^{\binom{n}{2}} \prod_{1 \leq i < j \leq n} (b_j - b_i).$$

Theorem 3 (Sun, 2006). Let A, B and $C = \{c_1, \ldots, c_n\}$ be three subsets of a field F with cardinality n. Then there is a numbering $\{a_i\}_{i=1}^n$ of the elements of A and a numbering $\{b_i\}_{i=1}^n$ of the elements of B such that $a_1 b_1 c_1, \ldots, a_n b_n c_n$ are distinct.

Proof. Since

$$[x_1^{n-1} \cdots x_n^{n-1}] \text{per}((c_i x_i)^{j-1})_{1 \leq i, j \leq n} \prod_{1 \leq i < j \leq n} (x_j - x_i) = (-1)^{\binom{n}{2}} \prod_{1 \leq i < j \leq n} (c_j - c_i) \neq 0,$$

by the Combinatorial Nullstellensatz there are distinct $b_1, \ldots, b_n \in B$ such that $\text{per}(((b_i c_i)^{j-1})_{1 \leq i, j \leq n}) \neq 0$. As

$$[x_1^{n-1} \cdots x_n^{n-1}] (b_i c_i x_i)^{j-1} |_{1 \leq i, j \leq n} \prod_{1 \leq i < j \leq n} (x_j - x_i) = (-1)^{\binom{n}{2}} \text{per}(((b_i c_i)^{j-1})_{1 \leq i, j \leq n}) \neq 0,$$
by the Combinatorial Nullstellensatz there are distinct $a_1, \ldots, a_n \in A$ such that

$$|(a_ib_ic_i)^{-1}|_{1 \leq i,j \leq n} = \prod_{1 \leq i < j \leq n} (a_jb_jc_j - a_ib_ic_i) \neq 0.$$

We can restate Theorem 3 in the following form.

Theorem 4. Let G be any additive abelian group with cyclic torsion subgroup, and let A_1, \ldots, A_m be arbitrary subsets of G with cardinality $n \in \mathbb{Z}^+$, where m is odd. Then the elements of A_i ($1 \leq i \leq m$) can be listed in a suitable order a_{i1}, \ldots, a_{in}, so that all the sums $\sum_{i=1}^{m} a_{ij}$ ($1 \leq j \leq n$) are distinct. In other words, for a certain subset A_{m+1} of G with $|A_{m+1}| = n$, there is a matrix $(a_{ij})_{1 \leq i \leq m+1, 1 \leq j \leq n}$ such that \{a_{i1}, \ldots, a_{in}\} = A_i for all $i = 1, \ldots, m+1$ and the column sum $\sum_{i=1}^{m+1} a_{ij}$ vanishes for every $j = 1, \ldots, n$.

Remark 2. (1) In Theorem 4 we don’t assume that $|G|$ is odd.

(2) Theorem 4 in the case $m = 3$ is essential; the result for $m = 5, 7, \ldots$ can be obtained by repeated use of the case $m = 3$.

Example 1. The group G in Theorem 4 cannot be replaced by an arbitrary abelian group. To illustrate this, we look at the Klein quaternion group

$$\mathbb{Z}_2 \oplus \mathbb{Z}_2 = \{(0, 0), (0, 1), (1, 0), (1, 1)\}$$

and its subsets

$$A_1 = \{(0, 0), (0, 1)\}, \quad A_2 = \{(0, 0), (1, 0)\}, \quad A_3 = \cdots = A_m = \{(0, 0), (1, 1)\},$$
where $m \geq 3$ is odd. For $i = 1, \ldots, m$ let a_i, a'_i be a list of the two elements of A_i, then

$$
\sum_{i=1}^{m} (a_i + a'_i) = (0, 1) + (1, 0) + (m - 2)(1, 1) = (0, 0)
$$

and hence $\sum_{i=1}^{m} a_i = -\sum_{i=1}^{m} a'_i = \sum_{i=1}^{m} a'_i$.

Recall that a line of an $n \times n$ matrix is a row or column of the matrix. We define a line of an $n \times n \times n$ cube in a similar way. A Latin cube over a set S of cardinality n is an $n \times n \times n$ cube whose entries come from the set S and no line of which contains a repeated element. A transversal of an $n \times n \times n$ cube is a collection of n cells no two of which lie in the same line. A Latin transversal of a cube is a transversal whose cells contain no repeated element.

Corollary 1. Let N be any positive integer. For the $N \times N \times N$ Latin cube over $\mathbb{Z}/N\mathbb{Z}$ formed by the Cayley addition table, each $n \times n \times n$ subcube with $n \leq N$ contains a Latin transversal.

Conjecture 1 (Sun, 2006). Every $n \times n \times n$ Latin cube contains a Latin transversal.

Note that Conjecture 1 does not imply Theorem 3 since an $n \times n \times n$ subcube of a Latin cube might have more than n distinct entries.

In Theorem 4 the condition $2 \nmid m$ is indispensable. Let G be an additive cyclic group of even order n. Then G has a unique element g of order 2 and hence $a \neq -a$ for all $a \in G \setminus \{0, g\}$. Thus $\sum_{a \in G} a = 0 + g = g$. For
each $i = 1, \ldots, m$ let a_{i1}, \ldots, a_{in} be a list of the n elements of G. If those
\[\sum_{i=1}^{m} a_{ij} \text{ with } 1 \leq j \leq n \text{ are distinct, then} \]
\[\sum_{a \in G} a = \sum_{j=1}^{n} \sum_{i=1}^{m} a_{ij} = m \sum_{a \in G} a, \]
hence $(m - 1)g = (m - 1) \sum_{a \in G} a = 0$ and therefore m is odd.

Combining Theorem 4 with [Su03, Theorem 1.1(ii)], we obtain the following consequence.

Corollary 2. Let G be any additive abelian group with cyclic torsion subgroup, and let A_1, \ldots, A_m be subsets of G with cardinality $n \in \mathbb{Z}^+$, where m is even. Suppose that all the elements of A_m have odd order. Then the elements of A_i ($1 \leq i \leq m$) can be listed in a suitable order a_{i1}, \ldots, a_{in}, so that all the sums $\sum_{i=1}^{m} a_{ij}$ ($1 \leq j \leq n$) are distinct.

As an essential result, Theorem 3 or 4 might have various potential applications in additive number theory and combinatorial designs.

A direct proof of Theorem 4 involves the following lemma.

Lemma 1. Let R be a commutative ring with identity, and let $a_{ij} \in R$ for $i = 1, \ldots, m$ and $j = 1, \ldots, n$, where $m \in \{3, 5, \ldots\}$. The we have the identity
\[\sum_{\sigma_1, \ldots, \sigma_{m-1} \in S_n} \varepsilon(\sigma_1 \cdots \sigma_{m-1}) \prod_{1 \leq i < j \leq n} \left(a_{mj} \prod_{s=1}^{m-1} a_{s \sigma_s(j)} - a_{mi} \prod_{s=1}^{m-1} a_{s \sigma_s(i)} \right) \]
\[= \prod_{1 \leq i < j \leq n} (a_{1j} - a_{1i}) \cdots (a_{mj} - a_{mi}). \]

We can extend Theorem 4 via restricted sumsets in a field. The additive order of the multiplicative identity of a field F is either infinite or a prime;
we call it the characteristic of F and denote it by $\text{ch}(F)$. There are various results on restricted sumsets of the type

$$\{a_1 + \cdots + a_n : a_i \in A_1, \ldots, a_n \in A_n \text{ and } P(a_1, \ldots, a_n) \neq 0\},$$

where $A_1, \ldots, A_n \subseteq F$ and $P(x_1, \ldots, x_n) \in F[x_1, \ldots, x_n]$. See, e.g., Alon-Nathanson-Ruzsa [J. Number Theory, 1996], Qing-Hu Hou and Z. W. Sun [Acta Arith. 2002], Z. W. Sun [J. Combin. Theory, 2003], H. Pan and Z.W. Sun [Israel J. Math. 2006].

Theorem 5. Let k, m, n be positive integers with $k - 1 \geq m(n - 1)$, and let F be a field with $\text{ch}(F) > \max\{mn, (k - 1 - m(n - 1))n\}$. Assume that $c_1, \ldots, c_n \in F$ are distinct, and $A_1, \ldots, A_n, B_1, \ldots, B_n$ are subsets of F with $|A_1| = \cdots = |A_n| = k$ and $|B_1| = \cdots = |B_n| = n$. Let $S_{ij} \subseteq F$ with $|S_{ij}| < 2m$ for all $1 \leq i < j \leq n$. Then there are distinct $b_1 \in B_1, \ldots, b_n \in B_n$ such that the restricted sumset

$$S = \{a_1 + \cdots + a_n : a_i \in A_i, a_i - a_j \notin S_{ij} \text{ and } a_ib_ic_i \neq a_jb_jc_j \text{ if } i < j\}$$

has at least $(k - 1 - m(n - 1))n + 1$ elements.

When $k = n$, $m = 1$ and $S_{ij} = \{0\}$, Theorem 5 yields Theorem 3 or 4.
Now we state another extension of Theorem 4.

Theorem 6. Let G be an additive abelian group with cyclic torsion subgroup. Let h, k, l, m, n be positive integers with $k - 1 \geq m(n - 1)$ and $l - 1 \geq h(n - 1)$. Assume that $c_1, \ldots, c_n \in G$ are distinct, and A_1, \ldots, A_n and B_1, \ldots, B_n are subsets of G with $|A_1| = \cdots = |A_n| = k$ and $|B_1| = \cdots = |B_n| = l$. Then, for any sets S and T with $|S| \leq (k-1)n - (m+1)\binom{n}{2}$ and $|T| \leq (l-1)n - (h+1)\binom{n}{2}$, there are $a_1 \in A_1, \ldots, a_n \in A_n, b_1 \in B_1, \ldots, b_n \in B_n$ such that $\{a_1, \ldots, a_n\} \not\subseteq S$, $\{b_1, \ldots, b_n\} \not\subseteq T$, and also

$$a_i + b_i + c_i \neq a_j + b_j + c_j, \quad ma_i \neq ma_j, \quad hb_i \neq hb_j \quad \text{if } 1 \leq i < j \leq n.$$

Theorem 3 follows from Theorem 6 in the case $k = l = n$, $h = m = 1$ and $S = T = \emptyset$.

The speaker’s results in this talk are contained in a paper available from http://arxiv.org/abs/math.CO/0610981 or the speaker’s homepage http://math.nju.edu.cn/~zwsun.

The topic here involves combinatorics as well as number theory and algebra. I do like such problems which are not of pure combinatorial interest.