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Abstract. In this lecture note we develop the theory of Bernoulli and Euler poly-
nomials in an elementary way so that middle school students can understand most

part of the theory.

1. Basic properties of Bernoulli and Euler polynomials

Definition 1.1. The Bernoulli numbers B0, B1, B2, · · · are given by B0 = 1 and the

recursion

n∑
k=0

(
n + 1

k

)
Bk = 0, i.e. Bn = − 1

n + 1

n−1∑
k=0

(
n + 1

k

)
Bk (n = 1, 2, 3, · · · ). (1.1)

The Euler numbers E0, E1, E2, · · · are defined by E0 = 1 and the recursion

n∑
k=0

2|n−k

(
n

k

)
Ek = 0, i.e. En = −

n−1∑
k=0

2|n−k

(
n

k

)
Ek (n = 1, 2, 3, · · · ). (1.2)

By induction, all the Bernoulli numbers are rationals and all the Euler numbers

are integers. Below we list values of Bn and En with n ≤ 10.

n 0 1 2 3 4 5 6 7 8 9 10

Bn 1 −1/2 1/6 0 −1/30 0 1/42 0 −1/30 0 5/66

En 1 0 −1 0 5 0 −61 0 1385 0 −50521

1
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Definition 1.2. For n ∈ N = {0, 1, 2, · · · }, the nth Bernoulli polynomial Bn(x) and

the nth Euler polynomial En(x) are defined as follows:

Bn(x) =
n∑

k=0

(
n

k

)
Bkxn−k and En(x) =

n∑
k=0

(
n

k

)
Ek

2k

(
x− 1

2

)n−k

. (1.3)

Clearly both Bn(x) and En(x) are monic polynomials with rational coefficients.

Note that Bn(0) = Bn and En(1/2) = En/2n.

Here we list Bn(x) and En(x) for n ≤ 5.

n 0 1 2 3 4 5

Bn(x) 1 x− 1
2 x2 − x + 1

6 x3 − 3
2x2 + x

2 x4 − 2x3 + x2 − 1
30 x5 − 5

2x4 + 5
3x3 − x

6

En(x) 1 x− 1
2 x2 − x x3 − 3

2x2 + 1
6 x4 − 2x3 + 2

3x x5 − 5
2x4 + 5

3x2 − 1
2

Lemma 1.1. Let k, l ∈ N and k ≥ l. Then(
x

k

)(
k

l

)
=

(
x

l

)(
x− l

k − l

)
.

Proof. Clearly(
x

l

)(
x− l

k − l

)
=

∏
0≤i<l(x− i)

l!
·
∏

0≤j<k−l(x− l − j)
(k − l)!

=

∏
0≤r<k(x− r)

k!
· k!
l!(k − l)!

=
(

x

k

)(
k

l

)
.

This ends the proof. �

Lemma 2.2. Let n ∈ N, and δn,m be 1 or 0 according as m = n or not. Then

Bn(1)−Bn(0) = δn,1 and En(1) + En(0) = 2δn,0. (1.3)

Proof. By Definition 1.2,

Bn(1)−Bn(0) =
n∑

k=0

(
n

k

)
Bk −Bn =

∑
0≤k<n

(
n

k

)
Bk = δn,1
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and

En(1) + En(0) =
n∑

k=0

(
n

k

)
Ek

2k

( (
1− 1

2

)n−k

+
(

0− 1
2

)n−k )

=
1

2n−1

n∑
k=0

2|n−k

(
n

k

)
Ek = 2δn,0.

We are done. �

Theorem 1.1. Let n ∈ N. Then we have

Bn(x + y) =
n∑

k=0

(
n

k

)
Bk(x)yn−k, and En(x + y) =

n∑
k=0

(
n

k

)
Ek(x)yn−k. (1.4)

Also,

Bn(x + 1)−Bn(x) = nxn−1 and En(x + 1) + En(x) = 2xn. (1.5)

Proof. By the binomial theorem and Lemma 1.1,

Bn(x + y) =
n∑

l=0

(
n

l

)
Bl(x + y)n−l =

n∑
l=0

(
n

l

)
Bl

n∑
k=l

(
n− l

k − l

)
xk−lyn−k

=
∑

0≤l≤k≤n

(
n

l

)(
n− l

k − l

)
Blx

k−lyn−k =
∑

0≤l≤k≤n

(
n

k

)(
k

l

)
Blx

k−lyn−k

=
n∑

k=0

(
n

k

) k∑
l=0

(
k

l

)
Blx

k−lyn−k =
n∑

k=0

(
n

k

)
Bk(x)yn−k.

Similarly,

En(x + y) =
n∑

l=0

(
n

l

)
El

2l

(
x + y − 1

2

)n−l

=
n∑

l=0

(
n

l

)
El

2l

n∑
k=l

(
n− l

k − l

) (
x− 1

2

)k−l

yn−k

=
n∑

k=0

k∑
l=0

(
n

k

)(
k

l

)
El

2l

(
x− 1

2

)k−l

yn−k =
n∑

k=0

(
n

k

)
Ek(x)yn−k.

In view of the above and Lemma 1.2,

Bn(x + 1)−Bn(x) =
n∑

k=0

(
n

k

)
(Bk(1)−Bk(0))xn−k = nxn−1
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and

En(x + 1) + En(x) =
n∑

k=0

(
n

k

)
(Ek(1) + Ek(0))xn−k = 2xn.

This concludes the proof. �

Theorem 1.2. Let n ∈ N. Then we have the recursion
n∑

k=0

(
n + 1

k

)
Bk(x) = (n + 1)xk and

n∑
k=0

(
n

k

)
Ek(x) + En(x) = 2xn. (1.6)

Also,

Bn(1− x) = (−1)nBn(x) and En(1− x) = (−1)nEn(x). (1.7)

Proof. By Theorem 1.1,
n∑

k=0

(
n + 1

k

)
Bk(x) =

n+1∑
k=0

(
n + 1

k

)
Bk(x)1n+1−k −Bn+1(x)

=Bn+1(x + 1)−Bn(x) = (n + 1)xn

and
n∑

k=0

(
n

k

)
Ek(x)+En(x) =

n∑
k=0

(
n

k

)
Ek(x)1n−k +En(x) = En(x+1)+En(x) = 2xn.

In view of the above and Theorem 1.1,
n∑

k=0

(
n + 1

k

) (
Bk(1− x)− (−1)kBk(x)

)
=

n∑
k=0

(
n + 1

k

)
Bk(1− x) + (−1)n

n∑
k=0

(
n + 1

k

)
Bk(x)(−1)n+1−k

=(n + 1)(1− x)n + (−1)n (Bn+1(x− 1)−Bn+1(x))

=(−1)n ((n + 1)(x− 1)n − (Bn+1((x− 1) + 1)−Bn+1(x− 1))) = 0.

Similarly,
n∑

k=0

(
n

k

) (
Ek(1− x)− (−1)kEk(x)

)
+ En(1− x)− (−1)nEn(x)

=
n∑

k=0

(
n

k

)
Ek(1− x) + En(1− x)− (−1)n

( n∑
k=0

(
n

k

)
Ek(x)(−1)n−k + En(x)

)
=2(1− x)n − (−1)n (En(x− 1) + En(x− 1 + 1)) = 0.

On the basis of these two recursions, (1.7) follows by induction. �
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Corollary 1.1. Let n > 1 be an integer.

(i) When n is odd, we have Bn(1/2) = En = 0, and Bn = 0 if n > 1.

(ii) If n is even, then En(0) = 0.

Proof. When n is odd, taking x = 1/2 in (1.7) we find that Bn(1/2) = En(1/2) = 0.

Recall that En = 2nEn(1/2).

By (1.7), Bn(1) = (−1)nBn(0) and En(1) = (−1)nEn(0). This, together with

(1.3), shows that Bn = 0 if n > 1 and 2 - n, and that En(0) = 0 if 2 | n. �

2. On the sums
∑n−1

r=0 rk and
∑n−1

r=0 (−1)rrk

For k ∈ N = {0, 12, · · · } and n ∈ Z+ = {1, 2, 3, · · · }, we set

Sk(n) =
n−1∑
r=0

rk and Tk(n) =
n−1∑
r=0

(−1)rrk. (2.1)

It is well known that

S0(n) = n, S1(n) =
n(n− 1)

2
and S2(n) =

n(n− 1)(2n− 1)
6

.

In 1713 J. Bernoulli introduced the Bernoulli numbers, and used them to express

Sk(n) as a polynomial in n with degree k + 1. Later Euler introduced the Euler

numbers to study the sum Tk(n).

Theorem 2.1. Let k and n be positive integers. Then

Sk(n) =
Bk+1(n)−Bk+1

k + 1
=

nk+1

k + 1
− nk

2
+

∑
1<l≤k

2|l

(
k

l − 1

)
Bl

l
nk−l+1 (2.2)

and

Tk(n) =
Ek(0)− (−1)nEk(n)

2
= 2k+1Sk

([
n + 1

2

])
− Sk(n). (2.3)
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Proof. By Theorem 2.1, Bk+1(x + 1)−Bk+1(x) = (k + 1)xk. Therefore

(k + 1)Sk(n) =
n−1∑
r=0

(Bk+1(r + 1)−Bk+1(r))

=Bk+1(n)−Bk+1 =
k∑

l=0

(
k + 1

l

)
Bln

k+1−l

=nk+1 − (k + 1)
nk

2
+ (k + 1)

∑
1<l≤k

(
k

l − 1

)
Bl

l
nk−l+1.

By Corollary 1.1 Bl = 0 for l = 3, 5, · · · , so (2.2) follows.

In view of Theorem 2.1, Ek(x + 1) + Ek(x) = 2xk. Thus

2Tk(n) =
n−1∑
r=0

(−1)r(Ek(r) + Ek(r + 1))

=
n−1∑
r=0

(
(−1)rEk(r)− (−1)r+1Ek(r + 1)

)
= Ek(0)− (−1)nEk(n).

We also have

Tk(n) = 2
n−1∑
r=0
2|r

rk −
n−1∑
r=0

rk = 2k+1

[(n−1)/2]∑
j=0

jk −Sk(n) = 2k+1Sk

([
n + 1

2

])
−Sk(n).

This ends our proof. �

Example 2.1 As B4(x) = x4 − 2x3 + x2 − 1/30, we have

S3(n) =
B4(n)−B4

4
=

n4 − 2n3 + n2

4
=

n2(n− 1)2

4
= S1(n)2.

Similarly,

S4(n) =
B5(n)−B5

5
=

B5(n)
5

=
n5

5
− n4

2
+

n3

3
− n

30
.

Since E3(x) = x3 − (3/2)x2 + 1/6 and E4(x) = x4 − 2x3 + (2/3)x, we have

T3(n) =
E3(0)− (−1)nE3(n)

2
=

1
12

− (−1)n

2

(
n3 − 3

2
n2 +

1
6

)
=

1− (−1)n

12
− (−1)n n2

4
(2n− 3)

and

T4(n) =
E4(0)− (−1)nE4(n)

2
= (−1)n−1

(
n4 − 2n3 +

2
3
n

)
.
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Corollary 2.1. For any k ∈ N we have

Ek(x) =
2k+1

k + 1

(
Bk+1

(
x + 1

2

)
−Bk+1

(x

2

) )
. (2.4)

Proof. Whenever n ∈ {2, 4, 6, · · · } we have

Ek(0)− Ek(n)
2

=Tk(n) =
2k+1Sk(n/2)− Sk(n)

k + 1

=
2k+1Bk+1(n/2)−Bk+1(n) + (1− 2k+1)Bk+1

k + 1
.

Since both sides are polynomials in n, it follows that

Ek(0)− Ek(x)
2

=
2k+1Bk+1(x/2)−Bk+1(x) + (1− 2k+1)Bk+1

k + 1
. (∗)

If n ∈ {1, 3, 5, · · · }, then

Ek(0) + Ek(n)
2

=Tk(n) =
2k+1Sk((n + 1)/2)− Sk(n)

k + 1

=
2k+1Bk+1((n + 1)/2)−Bk+1(n) + (1− 2k+1)Bk+1

k + 1
.

So

Ek(0) + Ek(x)
2

=
2k+1Bk+1((x + 1)/2)−Bk+1(x) + (1− 2k+1)Bk+1

k + 1
. (?)

(?) minus (∗) yields (2.4) immediately. �

3. Raabe’s theorem and its applications

The following theorem of Raabe plays important roles in the theory of Bernoulli

polynomials.

Theorem 3.1. Let m > 0 and n ≥ 0 be integers. Then

m−1∑
r=0

Bn

(
x + r

m

)
= m1−nBn(x). (3.1)
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Proof. For any k = 0, 1, 2, · · · we have

(k + 1)
m−1∑
r=0

(x + r)k =
m−1∑
r=0

(Bk+1(x + r + 1)−Bk+1(x + r))

=Bk+1(x + m)−Bk+1(x) =
k∑

l=0

(
k + l

l

)
Bl(x)mk+1−l.

This, together with Lemma 1.1 and the recursion for Bernoulli numbers, yields that

m−1∑
r=0

Bn

(
x + r

m

)
=

m−1∑
r=0

n∑
k=0

(
n

k

)
Bn−k

mk
(x + r)k

=
n∑

k=0

(
n

k

)
Bn−k

k + 1

k∑
l=0

(
k + 1

l

)
Bl(x)m1−l

=
1

n + 1

n∑
k=0

(
n + 1
k + 1

)
Bn−k

k∑
l=0

(
k + 1

l

)
Bl(x)m1−l

=
1

n + 1

∑
0≤l≤k≤n

(
n + 1

l

)(
n + 1− l

k + 1− l

)
m1−lBl(x)Bn−k

=
1

n + 1

n∑
l=0

(
n + 1

l

)
m1−lBl(x)

n∑
k=l

(
n + 1− l

n− k

)
Bn−k

=
1

n + 1

n∑
l=0

(
n + 1

l

)
m1−lBl(x)δl,n = m1−nBn(x).

This completes the proof. �

Corollary 3.1. For n ∈ N we have

En(x) =
2

n + 1

(
Bn+1(x)− 2n+1Bn+1

(x

2

) )
. (3.2)

Proof. Applying Theorem 3.1 with m = 2, we obtain that

Bn+1

(x

2

)
+ Bn+1

(
x + 1

2

)
=

Bn+1(x)
2n

.

On the other hand, by Corollary 2.1,

Bn+1

(
x + 1

2

)
−Bn+1

(x

2

)
=

n + 1
2n+1

En(x).



INTRODUCTION TO BERNOULLI AND EULER POLYNOMIALS 9

The first equation minus the second one yields that

2Bn+1

(x

2

)
=

2Bn+1(x)− (n + 1)En(x)
2n+1

.

which is equivalent to (3.2). �

From Theorem 3.1 we can deduce the following result.

Theorem 3.2. Let n ∈ N. Then

Bn

(
1
2

)
=

(
21−n − 1

)
Bn. (3.3)

When 2 | n, we have

Bn

(
1
3

)
= Bn

(
2
3

)
= (31−n − 1)

Bn

2
, (3.4)

Bn

(
1
4

)
= Bn

(
3
4

)
= 2−n(21−n − 1)Bn, (3.5)

Bn

(
1
6

)
= Bn

(
5
6

)
= (21−n − 1)(31−n − 1)

Bn

2
. (3.6)

Proof. Taking x = 0 and m = 2 in (3.1), we find that

Bn

(
0
2

)
+ Bn

(
1
2

)
= 21−nBn(0), i.e. Bn

(
1
2

)
= (21−n − 1)Bn.

Now we let n be even. Note that Bn(1 − x) = (−1)nBn(x) = Bn(x). (3.1) in

the case x = 0 and m = 3, yields that

Bn(0) + Bn

(
1
3

)
+ Bn

(
2
3

)
= 31−nBn,

which is equivalent to (3.4). Taking x = 1/2 and m = 2 in (3.1), we get that

Bn

(
1/2 + 0

2

)
+ Bn

(
1/2 + 1

2

)
= 21−nBn

(
1
2

)
.

So

Bn

(
1
4

)
= Bn

(
3
4

)
= 2−nBn

(
1
2

)
= 2−n(21−n − 1)Bn.
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(3.1) in the case x = 1/3 and m = 2, gives that

Bn

(
1/3 + 0

2

)
+ Bn

(
1/3 + 1

2

)
= 21−nBn

(
1
3

)
;

therefore

Bn

(
5
6

)
= Bn

(
1
6

)
= 21−nBn

(
1
3

)
−Bn

(
1
3

)
= (21−n − 1)(31−n − 1)

Bn

2
.

This completes the proof. �

Corollary 3.2. Let n ∈ N. Then

En(0) = 2(1− 2n+1)
Bn+1

n + 1
. (3.7)

If n is odd, then

En

(
1
3

)
= −En

(
2
3

)
= (2n+1 − 1)(3−n − 1)

Bn+1

n + 1
. (3.8)

Proof. Taking x = 0 in (3.2) we obtain (3.7).

Now let n be odd. Then En(2/3) = (−1)nEn(1/3) = −En(1/3). By Corollary

3.1 and Theorem 3.2, we have

En

(
1
3

)
=

2
n + 1

(
Bn+1

(
1
3

)
− 2n+1Bn+1

(
1
6

) )
=

2
n + 1

(
3−n − 1

2
Bn+1 − 2n+1(2−n − 1)(3−n − 1)

Bn+1

2

)
=(2n+1 − 1)(3−n − 1)

Bn+1

n + 1
.

Theorem 3.3. Let m ∈ Z+ and n ∈ N. If 2 | m then

m−1∑
r=0

(−1)rBn+1

(
x + r

m

)
= −n + 1

2mn
En(x); (3.9)

if 2 - m then
m−1∑
r=0

(−1)rEn

(
x + r

m

)
=

En(x)
mn

. (3.10)
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Proof. We use Corollary 2.1 and Theorem 3.1. When m is even, we have
m−1∑
r=0

(−1)rBn+1

(
x + r

m

)

=
m/2−1∑

s=0

Bn+1

(
x + 2s

m

)
−

m/2−1∑
s=0

Bn+1

(
x + 1 + 2s

m

)

=
m/2−1∑

s=0

Bn+1

(
x/2 + s

m/2

)
−

m/2−1∑
s=0

Bn+1

(
(x + 1)/2 + s

m/2

)
=

(m

2

)−n

Bn+1

(x

2

)
−

(m

2

)−n

Bn+1

(
x + 1

2

)
=

(
2
m

)n (
Bn+1

(x

2

)
−Bn+1

(
x + 1

2

) )
= −n + 1

2mn
En(x).

If m is odd, then

n + 1
2n+1

m−1∑
r=0

(−1)rEn

(
x + r

m

)

=
m−1∑
r=0

(−1)r

(
Bn+1

(
(x + r)/m + 1

2

)
−Bn+1

(
(x + r)/m

2

) )

=−
m−1∑
r=0

(
(−1)rBn+1

(
x + r

2m

)
+ (−1)r+mBn+1

(
x + r + m

2m

) )

=−
2m−1∑
r=0

(−1)rBn+1

(
x + r

2m

)
=

n + 1
2(2m)n

En(x).

So (3.10) also holds. �

4. Number-theoretic properties of Bernoulli

numbers and Bernoulli polynomials

Let p be a prime. A rational a/b with a, b ∈ Z and (b, p) = 1, will be called a

p-integer. We let Zp denote the set of all p-integers. For x, y ∈ Zp and n ∈ N, by

x ≡ y (mod pn) we mean that x− y ∈ pnZp.

Lemma 4.1. Let k be a positive integer and p be a prime. Then pBk ∈ Zp and

Sk(p)− pBk

k
≡ p

2
pBk−1 (mod p). (4.1)
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Furthermore, if p > 3 then

Sk(p)− pBk

k
≡ p

2
pBk−1 (mod p2). (4.2)

Proof. By Theorem 2.1,

Sk(p) =
Bk+1(p)−Bk+1

k + 1
=

1
k + 1

k+1∑
j=1

(
k + 1

j

)
pjBk+1−j

=
1

k + 1

k∑
l=0

(
k + 1
l + 1

)
pl+1Bk−l = pBk +

k∑
l=1

(
k

l

)
pl

l + 1
pBk−l.

Clearly pl ≥ (1 + 1)l ≥ l + 1 and hence pl/(l + 1) ∈ Zp. So pBk ∈ Zp by induction

on k.

Observe that

Sk(p)− pBk

k
=

1
k

k∑
l=1

(
k

l

)
pl

l + 1
pBk−l =

k∑
l=1

(
k − 1
l − 1

)
pl

l(l + 1)
pBk−l

=
p

2
pBk−1 + p

∑
1<l≤k

(
k − 1
l − 1

)
pl−1

l(l + 1)
pBk−l.

Obviously p2−1/(2 · 3) = p/6 ∈ Zp, and p/6 ∈ pZp if p > 3. When l ∈ {3, 4, · · · },

we have pl−1 ≥ (1 + 1)l−1 ≥ 1 + (l − 1) + 1 = l + 1, and

pl−2 ≥ (1 + 4)l−2 ≥ 1 + 4(l − 2) ≥ l + 1

providing p ≥ 5. Thus, if l ∈ {3, 4, · · · }, then pl−1/(l(l+1)) = pl−1/(l+1)−pl−1/l ∈

Zp, moreover pl−1/(l(l + 1)) ∈ pZp providing p > 3. In view of the above, (4.1)

holds, and (4.2) is also valid if p > 3. �

Theorem 4.1 (von Staudt-Clausen). We have

Bk +
∑

p−1|k

1
p
∈ Z for k = 2, 4, 6, · · · . (4.3)
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Proof. Let k > 0 be an even integer. Recall that Bk−1 = 0 if k > 2. So, by Lemma

4.1, we have

Sk(p)− pBk ≡ δk,2p
2B1 ≡ 0 (mod p).

If p− 1 | k, then by Fermat’s little theorem

Sk(p) =
p−1∑
r=1

rk ≡
p−1∑
r=1

1 ≡ −1 (mod p)

and hence Bk+1/p ∈ Zp. If p−1 - k, then there is a g ∈ Z such that gk 6≡ 1 (mod p),

as (gk − 1)Sk(p) =
∑p−1

r=1(gr)k −
∑p−1

r=1 rk ≡ 0 (mod p) we have p | Sk(p) and hence

Bk ∈ Zp.

By the above, Bk +
∑

p−1|k p−1 ∈ Zq for any prime q. So Bk +
∑

p−1|k p−1 ∈ Z.

We are done. �

Theorem 4.2 (Beeger, 1913). Let p > 3 be a prime. Then

(p− 1)! ≡ pBp−1 − p (mod p2). (4.4)

Proof. Wilson’s theorem asserts that wp = ((p − 1)! + 1)/p ∈ Z. For any integer

a 6≡ 0 (mod p) let qp(a) denote the Fermat quotient (ap−1 − 1)/p. Then

(pwp − 1)p−1 =
p−1∏
r=1

rp−1 =
p−1∏
r=1

(1 + pqp(r)) ≡ 1 + p

p−1∑
r=1

qp(r) (mod p2)

and hence

1− (p− 1)pwp ≡ (pwp − 1)p−1 ≡ 1 +
p−1∑
r=1

(rp−1 − 1) = Sp−1(p)− p + 2.

By Theorem 4.2, Sp−1(p) ≡ pBp−1 (mod p2). So (p − 1)! = pwp − 1 ≡ pBp−1 −

p (mod p2). �

Theorem 4.3. Let p be a prime and n > 0 be an even integer.

(i) (E. Kummer) If p−1 - n, then Bn/n ∈ Zp, moreover Bm/m ≡ Bn/n (mod p)

whenever m ≡ n (mod p− 1).

(ii) (L. Carlitz) If p 6= 2 and p− 1 | n then (Bn + p−1 − 1)/n ∈ Zp.
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Theorem 4.4 (Voronoi, 1889). Let n > 0 be even, p ∈ Z+, m ∈ Z and (p, m) = 1.

Then

(mn − 1) Bn ≡ nmn−1

p−1∑
j=1

jn−1

[
jm

p

]
(mod p). (4.5)

Theorem 4.5 (L. Euler). We have

tanx =
∞∑

m=1

(−1)m−1 22m(22m − 1)B2m

(2m)!
x2m−1 for x ∈

(
−π

2
,
π

2

)
,

and
∞∑

n=1

1
n2m

= (−1)m−1 (2π)2m

2(2m)!
B2m for m = 1, 2, 3, · · · .

Theorem 4.6 (Kummer, 1847). Let p > 3 be a prime such that p does not divide

the numerator of B2, B4, · · · , Bp−3. Then xp + yp = zp has no integer solutions

with p - xyz.

Theorem 4.7 (A. Granville and Z. W. Sun, 1996). Let p be an odd prime relatively

prime to a fixed q ∈ {5, 8, 10, 12}. Then we can determine Bp−1(a/q) − Bp−1 mod

p (with 1 ≤ a ≤ q and (a, q) = 1) as follows:

Bp−1

(a

5

)
−Bp−1 ≡

5
4

( (ap

5

) 1
p
Fp−( 5

p ) +
5p−1 − 1

p

)
(mod p);

Bp−1

(a

8

)
−Bp−1 ≡

(
2
ap

)
2
p
Pp−( 2

p ) + 4 · 2p−1 − 1
p

(mod p);

Bp−1

( a

10

)
−Bp−1 ≡

15
4

(ap

5

) 1
p
Fp−( 5

p ) +
5
4
· 5p−1 − 1

p
+

2(2p−1 − 1)
p

(mod p);

Bp−1

( a

12

)
−Bp−1 ≡

(
3
a

)
3
p
Sp−( 3

p ) +
3(2p−1 − 1)

p
+

3
2
· 3p−1 − 1

p
(mod p);

where (−) is the Jacobi symbol, and we define the following second-order linear

recurrence sequences:

F0 = 0, F1 = 1, and Fn+2 = Fn+1 + Fn for all n ≥ 0

P0 = 0, P1 = 1, and Pn+2 = 2Pn+1 + Pn for all n ≥ 0

S0 = 0, S1 = 1, and Sn+2 = 4Sn+1 − Sn for all n ≥ 0.


