A lecture given in Taiwan on June 6, 2002.

## INTRODUCTION TO BERNOULLI AND EULER POLYNOMIALS

Zhi-Wei Sun<br>Department of Mathematics<br>Nanjing University<br>Nanjing 210093<br>The People's Republic of China<br>E-mail: zwsun@nju.edu.cn

Homepage: http://pweb.nju.edu.cn/zwsun

Abstract. In this lecture note we develop the theory of Bernoulli and Euler polynomials in an elementary way so that middle school students can understand most part of the theory.

## 1. Basic properties of Bernoulli and Euler polynomials

Definition 1.1. The Bernoulli numbers $B_{0}, B_{1}, B_{2}, \cdots$ are given by $B_{0}=1$ and the recursion

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n+1}{k} B_{k}=0, \text { i.e. } B_{n}=-\frac{1}{n+1} \sum_{k=0}^{n-1}\binom{n+1}{k} B_{k} \quad(n=1,2,3, \cdots) \tag{1.1}
\end{equation*}
$$

The Euler numbers $E_{0}, E_{1}, E_{2}, \cdots$ are defined by $E_{0}=1$ and the recursion

$$
\begin{equation*}
\sum_{\substack{k=0 \\ 2 \mid n-k}}^{n}\binom{n}{k} E_{k}=0, \text { i.e. } E_{n}=-\sum_{\substack{k=0 \\ 2 \mid n-k}}^{n-1}\binom{n}{k} E_{k} \quad(n=1,2,3, \cdots) \tag{1.2}
\end{equation*}
$$

By induction, all the Bernoulli numbers are rationals and all the Euler numbers are integers. Below we list values of $B_{n}$ and $E_{n}$ with $n \leq 10$.

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $B_{n}$ | 1 | $-1 / 2$ | $1 / 6$ | 0 | $-1 / 30$ | 0 | $1 / 42$ | 0 | $-1 / 30$ | 0 | $5 / 66$ |
| $E_{n}$ | 1 | 0 | -1 | 0 | 5 | 0 | -61 | 0 | 1385 | 0 | -50521 |

Definition 1.2. For $n \in \mathbb{N}=\{0,1,2, \cdots\}$, the $n$th Bernoulli polynomial $B_{n}(x)$ and the $n$th Euler polynomial $E_{n}(x)$ are defined as follows:

$$
\begin{equation*}
B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} B_{k} x^{n-k} \text { and } E_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} \frac{E_{k}}{2^{k}}\left(x-\frac{1}{2}\right)^{n-k} . \tag{1.3}
\end{equation*}
$$

Clearly both $B_{n}(x)$ and $E_{n}(x)$ are monic polynomials with rational coefficients.
Note that $B_{n}(0)=B_{n}$ and $E_{n}(1 / 2)=E_{n} / 2^{n}$.
Here we list $B_{n}(x)$ and $E_{n}(x)$ for $n \leq 5$.

| $n$ | 0 | 1 | 2 | 3 | 4 | 5 |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: |
| $B_{n}(x)$ | 1 | $x-\frac{1}{2}$ | $x^{2}-x+\frac{1}{6}$ | $x^{3}-\frac{3}{2} x^{2}+\frac{x}{2}$ | $x^{4}-2 x^{3}+x^{2}-\frac{1}{30}$ | $x^{5}-\frac{5}{2} x^{4}+\frac{5}{3} x^{3}-\frac{x}{6}$ |
| $E_{n}(x)$ | 1 | $x-\frac{1}{2}$ | $x^{2}-x$ | $x^{3}-\frac{3}{2} x^{2}+\frac{1}{6}$ | $x^{4}-2 x^{3}+\frac{2}{3} x$ | $x^{5}-\frac{5}{2} x^{4}+\frac{5}{3} x^{2}-\frac{1}{2}$ |

Lemma 1.1. Let $k, l \in \mathbb{N}$ and $k \geq l$. Then

$$
\binom{x}{k}\binom{k}{l}=\binom{x}{l}\binom{x-l}{k-l} .
$$

Proof. Clearly

$$
\begin{aligned}
\binom{x}{l}\binom{x-l}{k-l} & =\frac{\prod_{0 \leq i<l}(x-i)}{l!} \cdot \frac{\prod_{0 \leq j<k-l}(x-l-j)}{(k-l)!} \\
& =\frac{\prod_{0 \leq r<k}(x-r)}{k!} \cdot \frac{k!}{l!(k-l)!}=\binom{x}{k}\binom{k}{l} .
\end{aligned}
$$

This ends the proof.
Lemma 2.2. Let $n \in \mathbb{N}$, and $\delta_{n, m}$ be 1 or 0 according as $m=n$ or not. Then

$$
\begin{equation*}
B_{n}(1)-B_{n}(0)=\delta_{n, 1} \quad \text { and } \quad E_{n}(1)+E_{n}(0)=2 \delta_{n, 0} \tag{1.3}
\end{equation*}
$$

Proof. By Definition 1.2,

$$
B_{n}(1)-B_{n}(0)=\sum_{k=0}^{n}\binom{n}{k} B_{k}-B_{n}=\sum_{0 \leq k<n}\binom{n}{k} B_{k}=\delta_{n, 1}
$$

and

$$
\begin{aligned}
E_{n}(1)+E_{n}(0) & =\sum_{k=0}^{n}\binom{n}{k} \frac{E_{k}}{2^{k}}\left(\left(1-\frac{1}{2}\right)^{n-k}+\left(0-\frac{1}{2}\right)^{n-k}\right) \\
& =\frac{1}{2^{n-1}} \sum_{\substack{k=0 \\
2 \mid n-k}}^{n}\binom{n}{k} E_{k}=2 \delta_{n, 0} .
\end{aligned}
$$

We are done.

Theorem 1.1. Let $n \in \mathbb{N}$. Then we have

$$
\begin{equation*}
B_{n}(x+y)=\sum_{k=0}^{n}\binom{n}{k} B_{k}(x) y^{n-k}, \text { and } E_{n}(x+y)=\sum_{k=0}^{n}\binom{n}{k} E_{k}(x) y^{n-k} \tag{1.4}
\end{equation*}
$$

Also,

$$
\begin{equation*}
B_{n}(x+1)-B_{n}(x)=n x^{n-1} \text { and } E_{n}(x+1)+E_{n}(x)=2 x^{n} . \tag{1.5}
\end{equation*}
$$

Proof. By the binomial theorem and Lemma 1.1,

$$
\begin{aligned}
B_{n}(x+y) & =\sum_{l=0}^{n}\binom{n}{l} B_{l}(x+y)^{n-l}=\sum_{l=0}^{n}\binom{n}{l} B_{l} \sum_{k=l}^{n}\binom{n-l}{k-l} x^{k-l} y^{n-k} \\
& =\sum_{0 \leq l \leq k \leq n}\binom{n}{l}\binom{n-l}{k-l} B_{l} x^{k-l} y^{n-k}=\sum_{0 \leq l \leq k \leq n}\binom{n}{k}\binom{k}{l} B_{l} x^{k-l} y^{n-k} \\
& =\sum_{k=0}^{n}\binom{n}{k} \sum_{l=0}^{k}\binom{k}{l} B_{l} x^{k-l} y^{n-k}=\sum_{k=0}^{n}\binom{n}{k} B_{k}(x) y^{n-k} .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
E_{n}(x+y) & =\sum_{l=0}^{n}\binom{n}{l} \frac{E_{l}}{2^{l}}\left(x+y-\frac{1}{2}\right)^{n-l} \\
& =\sum_{l=0}^{n}\binom{n}{l} \frac{E_{l}}{2^{l}} \sum_{k=l}^{n}\binom{n-l}{k-l}\left(x-\frac{1}{2}\right)^{k-l} y^{n-k} \\
& =\sum_{k=0}^{n} \sum_{l=0}^{k}\binom{n}{k}\binom{k}{l} \frac{E_{l}}{2^{l}}\left(x-\frac{1}{2}\right)^{k-l} y^{n-k}=\sum_{k=0}^{n}\binom{n}{k} E_{k}(x) y^{n-k} .
\end{aligned}
$$

In view of the above and Lemma 1.2,

$$
B_{n}(x+1)-B_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}\left(B_{k}(1)-B_{k}(0)\right) x^{n-k}=n x^{n-1}
$$

and

$$
E_{n}(x+1)+E_{n}(x)=\sum_{k=0}^{n}\binom{n}{k}\left(E_{k}(1)+E_{k}(0)\right) x^{n-k}=2 x^{n} .
$$

This concludes the proof.
Theorem 1.2. Let $n \in \mathbb{N}$. Then we have the recursion

$$
\begin{equation*}
\sum_{k=0}^{n}\binom{n+1}{k} B_{k}(x)=(n+1) x^{k} \text { and } \sum_{k=0}^{n}\binom{n}{k} E_{k}(x)+E_{n}(x)=2 x^{n} . \tag{1.6}
\end{equation*}
$$

Also,

$$
\begin{equation*}
B_{n}(1-x)=(-1)^{n} B_{n}(x) \text { and } E_{n}(1-x)=(-1)^{n} E_{n}(x) \tag{1.7}
\end{equation*}
$$

Proof. By Theorem 1.1,

$$
\begin{aligned}
\sum_{k=0}^{n}\binom{n+1}{k} B_{k}(x) & =\sum_{k=0}^{n+1}\binom{n+1}{k} B_{k}(x) 1^{n+1-k}-B_{n+1}(x) \\
& =B_{n+1}(x+1)-B_{n}(x)=(n+1) x^{n}
\end{aligned}
$$

and
$\sum_{k=0}^{n}\binom{n}{k} E_{k}(x)+E_{n}(x)=\sum_{k=0}^{n}\binom{n}{k} E_{k}(x) 1^{n-k}+E_{n}(x)=E_{n}(x+1)+E_{n}(x)=2 x^{n}$.
In view of the above and Theorem 1.1,

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n+1}{k}\left(B_{k}(1-x)-(-1)^{k} B_{k}(x)\right) \\
= & \sum_{k=0}^{n}\binom{n+1}{k} B_{k}(1-x)+(-1)^{n} \sum_{k=0}^{n}\binom{n+1}{k} B_{k}(x)(-1)^{n+1-k} \\
= & (n+1)(1-x)^{n}+(-1)^{n}\left(B_{n+1}(x-1)-B_{n+1}(x)\right) \\
= & (-1)^{n}\left((n+1)(x-1)^{n}-\left(B_{n+1}((x-1)+1)-B_{n+1}(x-1)\right)\right)=0 .
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \sum_{k=0}^{n}\binom{n}{k}\left(E_{k}(1-x)-(-1)^{k} E_{k}(x)\right)+E_{n}(1-x)-(-1)^{n} E_{n}(x) \\
= & \sum_{k=0}^{n}\binom{n}{k} E_{k}(1-x)+E_{n}(1-x)-(-1)^{n}\left(\sum_{k=0}^{n}\binom{n}{k} E_{k}(x)(-1)^{n-k}+E_{n}(x)\right) \\
= & 2(1-x)^{n}-(-1)^{n}\left(E_{n}(x-1)+E_{n}(x-1+1)\right)=0 .
\end{aligned}
$$

On the basis of these two recursions, (1.7) follows by induction.

Corollary 1.1. Let $n>1$ be an integer.
(i) When $n$ is odd, we have $B_{n}(1 / 2)=E_{n}=0$, and $B_{n}=0$ if $n>1$.
(ii) If $n$ is even, then $E_{n}(0)=0$.

Proof. When $n$ is odd, taking $x=1 / 2$ in (1.7) we find that $B_{n}(1 / 2)=E_{n}(1 / 2)=0$. Recall that $E_{n}=2^{n} E_{n}(1 / 2)$.

By (1.7), $B_{n}(1)=(-1)^{n} B_{n}(0)$ and $E_{n}(1)=(-1)^{n} E_{n}(0)$. This, together with (1.3), shows that $B_{n}=0$ if $n>1$ and $2 \nmid n$, and that $E_{n}(0)=0$ if $2 \mid n$.
2. On The Sums $\sum_{r=0}^{n-1} r^{k}$ and $\sum_{r=0}^{n-1}(-1)^{r} r^{k}$

For $k \in \mathbb{N}=\{0,12, \cdots\}$ and $n \in \mathbb{Z}^{+}=\{1,2,3, \cdots\}$, we set

$$
\begin{equation*}
S_{k}(n)=\sum_{r=0}^{n-1} r^{k} \text { and } T_{k}(n)=\sum_{r=0}^{n-1}(-1)^{r} r^{k} \tag{2.1}
\end{equation*}
$$

It is well known that

$$
S_{0}(n)=n, S_{1}(n)=\frac{n(n-1)}{2} \text { and } S_{2}(n)=\frac{n(n-1)(2 n-1)}{6}
$$

In 1713 J. Bernoulli introduced the Bernoulli numbers, and used them to express $S_{k}(n)$ as a polynomial in $n$ with degree $k+1$. Later Euler introduced the Euler numbers to study the sum $T_{k}(n)$.

Theorem 2.1. Let $k$ and $n$ be positive integers. Then

$$
\begin{equation*}
S_{k}(n)=\frac{B_{k+1}(n)-B_{k+1}}{k+1}=\frac{n^{k+1}}{k+1}-\frac{n^{k}}{2}+\sum_{\substack{1<l \leq k \\ 2 \mid \bar{l}}}\binom{k}{l-1} \frac{B_{l}}{l} n^{k-l+1} \tag{2.2}
\end{equation*}
$$

and

$$
\begin{equation*}
T_{k}(n)=\frac{E_{k}(0)-(-1)^{n} E_{k}(n)}{2}=2^{k+1} S_{k}\left(\left[\frac{n+1}{2}\right]\right)-S_{k}(n) \tag{2.3}
\end{equation*}
$$

Proof. By Theorem 2.1, $B_{k+1}(x+1)-B_{k+1}(x)=(k+1) x^{k}$. Therefore

$$
\begin{aligned}
(k+1) S_{k}(n) & =\sum_{r=0}^{n-1}\left(B_{k+1}(r+1)-B_{k+1}(r)\right) \\
& =B_{k+1}(n)-B_{k+1}=\sum_{l=0}^{k}\binom{k+1}{l} B_{l} n^{k+1-l} \\
& =n^{k+1}-(k+1) \frac{n^{k}}{2}+(k+1) \sum_{1<l \leq k}\binom{k}{l-1} \frac{B_{l}}{l} n^{k-l+1} .
\end{aligned}
$$

By Corollary 1.1 $B_{l}=0$ for $l=3,5, \cdots$, so (2.2) follows.
In view of Theorem 2.1, $E_{k}(x+1)+E_{k}(x)=2 x^{k}$. Thus

$$
\begin{aligned}
2 T_{k}(n) & =\sum_{r=0}^{n-1}(-1)^{r}\left(E_{k}(r)+E_{k}(r+1)\right) \\
& =\sum_{r=0}^{n-1}\left((-1)^{r} E_{k}(r)-(-1)^{r+1} E_{k}(r+1)\right)=E_{k}(0)-(-1)^{n} E_{k}(n) .
\end{aligned}
$$

We also have
$T_{k}(n)=2 \sum_{\substack{r=0 \\ 2 \mid r}}^{n-1} r^{k}-\sum_{r=0}^{n-1} r^{k}=2^{k+1} \sum_{j=0}^{[(n-1) / 2]} j^{k}-S_{k}(n)=2^{k+1} S_{k}\left(\left[\frac{n+1}{2}\right]\right)-S_{k}(n)$.
This ends our proof.
Example 2.1 As $B_{4}(x)=x^{4}-2 x^{3}+x^{2}-1 / 30$, we have

$$
S_{3}(n)=\frac{B_{4}(n)-B_{4}}{4}=\frac{n^{4}-2 n^{3}+n^{2}}{4}=\frac{n^{2}(n-1)^{2}}{4}=S_{1}(n)^{2} .
$$

Similarly,

$$
S_{4}(n)=\frac{B_{5}(n)-B_{5}}{5}=\frac{B_{5}(n)}{5}=\frac{n^{5}}{5}-\frac{n^{4}}{2}+\frac{n^{3}}{3}-\frac{n}{30} .
$$

Since $E_{3}(x)=x^{3}-(3 / 2) x^{2}+1 / 6$ and $E_{4}(x)=x^{4}-2 x^{3}+(2 / 3) x$, we have

$$
\begin{aligned}
T_{3}(n) & =\frac{E_{3}(0)-(-1)^{n} E_{3}(n)}{2}=\frac{1}{12}-\frac{(-1)^{n}}{2}\left(n^{3}-\frac{3}{2} n^{2}+\frac{1}{6}\right) \\
& =\frac{1-(-1)^{n}}{12}-(-1)^{n} \frac{n^{2}}{4}(2 n-3)
\end{aligned}
$$

and

$$
T_{4}(n)=\frac{E_{4}(0)-(-1)^{n} E_{4}(n)}{2}=(-1)^{n-1}\left(n^{4}-2 n^{3}+\frac{2}{3} n\right)
$$

Corollary 2.1. For any $k \in \mathbb{N}$ we have

$$
\begin{equation*}
E_{k}(x)=\frac{2^{k+1}}{k+1}\left(B_{k+1}\left(\frac{x+1}{2}\right)-B_{k+1}\left(\frac{x}{2}\right)\right) \tag{2.4}
\end{equation*}
$$

Proof. Whenever $n \in\{2,4,6, \cdots\}$ we have

$$
\begin{aligned}
\frac{E_{k}(0)-E_{k}(n)}{2} & =T_{k}(n)=\frac{2^{k+1} S_{k}(n / 2)-S_{k}(n)}{k+1} \\
& =\frac{2^{k+1} B_{k+1}(n / 2)-B_{k+1}(n)+\left(1-2^{k+1}\right) B_{k+1}}{k+1}
\end{aligned}
$$

Since both sides are polynomials in $n$, it follows that

$$
\begin{equation*}
\frac{E_{k}(0)-E_{k}(x)}{2}=\frac{2^{k+1} B_{k+1}(x / 2)-B_{k+1}(x)+\left(1-2^{k+1}\right) B_{k+1}}{k+1} \tag{*}
\end{equation*}
$$

If $n \in\{1,3,5, \cdots\}$, then

$$
\begin{aligned}
\frac{E_{k}(0)+E_{k}(n)}{2} & =T_{k}(n)=\frac{2^{k+1} S_{k}((n+1) / 2)-S_{k}(n)}{k+1} \\
& =\frac{2^{k+1} B_{k+1}((n+1) / 2)-B_{k+1}(n)+\left(1-2^{k+1}\right) B_{k+1}}{k+1}
\end{aligned}
$$

So

$$
\frac{E_{k}(0)+E_{k}(x)}{2}=\frac{2^{k+1} B_{k+1}((x+1) / 2)-B_{k+1}(x)+\left(1-2^{k+1}\right) B_{k+1}}{k+1}
$$

( $\star$ ) minus (*) yields (2.4) immediately.

## 3. RaAbe's theorem and its applications

The following theorem of Raabe plays important roles in the theory of Bernoulli polynomials.

Theorem 3.1. Let $m>0$ and $n \geq 0$ be integers. Then

$$
\begin{equation*}
\sum_{r=0}^{m-1} B_{n}\left(\frac{x+r}{m}\right)=m^{1-n} B_{n}(x) \tag{3.1}
\end{equation*}
$$

Proof. For any $k=0,1,2, \cdots$ we have

$$
\begin{aligned}
(k+1) \sum_{r=0}^{m-1}(x+r)^{k} & =\sum_{r=0}^{m-1}\left(B_{k+1}(x+r+1)-B_{k+1}(x+r)\right) \\
& =B_{k+1}(x+m)-B_{k+1}(x)=\sum_{l=0}^{k}\binom{k+l}{l} B_{l}(x) m^{k+1-l} .
\end{aligned}
$$

This, together with Lemma 1.1 and the recursion for Bernoulli numbers, yields that

$$
\begin{aligned}
\sum_{r=0}^{m-1} B_{n}\left(\frac{x+r}{m}\right) & =\sum_{r=0}^{m-1} \sum_{k=0}^{n}\binom{n}{k} \frac{B_{n-k}}{m^{k}}(x+r)^{k} \\
& =\sum_{k=0}^{n}\binom{n}{k} \frac{B_{n-k}}{k+1} \sum_{l=0}^{k}\binom{k+1}{l} B_{l}(x) m^{1-l} \\
& =\frac{1}{n+1} \sum_{k=0}^{n}\binom{n+1}{k+1} B_{n-k} \sum_{l=0}^{k}\binom{k+1}{l} B_{l}(x) m^{1-l} \\
& =\frac{1}{n+1} \sum_{0 \leq l \leq k \leq n}\binom{n+1}{l}\binom{n+1-l}{k+1-l} m^{1-l} B_{l}(x) B_{n-k} \\
& =\frac{1}{n+1} \sum_{l=0}^{n}\binom{n+1}{l} m^{1-l} B_{l}(x) \sum_{k=l}^{n}\binom{n+1-l}{n-k} B_{n-k} \\
& =\frac{1}{n+1} \sum_{l=0}^{n}\binom{n+1}{l} m^{1-l} B_{l}(x) \delta_{l, n}=m^{1-n} B_{n}(x)
\end{aligned}
$$

This completes the proof.
Corollary 3.1. For $n \in \mathbb{N}$ we have

$$
\begin{equation*}
E_{n}(x)=\frac{2}{n+1}\left(B_{n+1}(x)-2^{n+1} B_{n+1}\left(\frac{x}{2}\right)\right) \tag{3.2}
\end{equation*}
$$

Proof. Applying Theorem 3.1 with $m=2$, we obtain that

$$
B_{n+1}\left(\frac{x}{2}\right)+B_{n+1}\left(\frac{x+1}{2}\right)=\frac{B_{n+1}(x)}{2^{n}}
$$

On the other hand, by Corollary 2.1,

$$
B_{n+1}\left(\frac{x+1}{2}\right)-B_{n+1}\left(\frac{x}{2}\right)=\frac{n+1}{2^{n+1}} E_{n}(x) .
$$

The first equation minus the second one yields that

$$
2 B_{n+1}\left(\frac{x}{2}\right)=\frac{2 B_{n+1}(x)-(n+1) E_{n}(x)}{2^{n+1}}
$$

which is equivalent to (3.2).
From Theorem 3.1 we can deduce the following result.
Theorem 3.2. Let $n \in \mathbb{N}$. Then

$$
\begin{equation*}
B_{n}\left(\frac{1}{2}\right)=\left(2^{1-n}-1\right) B_{n} \tag{3.3}
\end{equation*}
$$

When $2 \mid n$, we have

$$
\begin{array}{r}
B_{n}\left(\frac{1}{3}\right)=B_{n}\left(\frac{2}{3}\right)=\left(3^{1-n}-1\right) \frac{B_{n}}{2}, \\
B_{n}\left(\frac{1}{4}\right)=B_{n}\left(\frac{3}{4}\right)=2^{-n}\left(2^{1-n}-1\right) B_{n}, \\
B_{n}\left(\frac{1}{6}\right)=B_{n}\left(\frac{5}{6}\right)=\left(2^{1-n}-1\right)\left(3^{1-n}-1\right) \frac{B_{n}}{2} . \tag{3.6}
\end{array}
$$

Proof. Taking $x=0$ and $m=2$ in (3.1), we find that

$$
B_{n}\left(\frac{0}{2}\right)+B_{n}\left(\frac{1}{2}\right)=2^{1-n} B_{n}(0), \text { i.e. } B_{n}\left(\frac{1}{2}\right)=\left(2^{1-n}-1\right) B_{n}
$$

Now we let $n$ be even. Note that $B_{n}(1-x)=(-1)^{n} B_{n}(x)=B_{n}(x)$. (3.1) in the case $x=0$ and $m=3$, yields that

$$
B_{n}(0)+B_{n}\left(\frac{1}{3}\right)+B_{n}\left(\frac{2}{3}\right)=3^{1-n} B_{n}
$$

which is equivalent to (3.4). Taking $x=1 / 2$ and $m=2$ in (3.1), we get that

$$
B_{n}\left(\frac{1 / 2+0}{2}\right)+B_{n}\left(\frac{1 / 2+1}{2}\right)=2^{1-n} B_{n}\left(\frac{1}{2}\right)
$$

So

$$
B_{n}\left(\frac{1}{4}\right)=B_{n}\left(\frac{3}{4}\right)=2^{-n} B_{n}\left(\frac{1}{2}\right)=2^{-n}\left(2^{1-n}-1\right) B_{n}
$$

(3.1) in the case $x=1 / 3$ and $m=2$, gives that

$$
B_{n}\left(\frac{1 / 3+0}{2}\right)+B_{n}\left(\frac{1 / 3+1}{2}\right)=2^{1-n} B_{n}\left(\frac{1}{3}\right)
$$

therefore

$$
B_{n}\left(\frac{5}{6}\right)=B_{n}\left(\frac{1}{6}\right)=2^{1-n} B_{n}\left(\frac{1}{3}\right)-B_{n}\left(\frac{1}{3}\right)=\left(2^{1-n}-1\right)\left(3^{1-n}-1\right) \frac{B_{n}}{2}
$$

This completes the proof.
Corollary 3.2. Let $n \in \mathbb{N}$. Then

$$
\begin{equation*}
E_{n}(0)=2\left(1-2^{n+1}\right) \frac{B_{n+1}}{n+1} \tag{3.7}
\end{equation*}
$$

If $n$ is odd, then

$$
\begin{equation*}
E_{n}\left(\frac{1}{3}\right)=-E_{n}\left(\frac{2}{3}\right)=\left(2^{n+1}-1\right)\left(3^{-n}-1\right) \frac{B_{n+1}}{n+1} \tag{3.8}
\end{equation*}
$$

Proof. Taking $x=0$ in (3.2) we obtain (3.7).
Now let $n$ be odd. Then $E_{n}(2 / 3)=(-1)^{n} E_{n}(1 / 3)=-E_{n}(1 / 3)$. By Corollary 3.1 and Theorem 3.2, we have

$$
\begin{aligned}
E_{n}\left(\frac{1}{3}\right) & =\frac{2}{n+1}\left(B_{n+1}\left(\frac{1}{3}\right)-2^{n+1} B_{n+1}\left(\frac{1}{6}\right)\right) \\
& =\frac{2}{n+1}\left(\frac{3^{-n}-1}{2} B_{n+1}-2^{n+1}\left(2^{-n}-1\right)\left(3^{-n}-1\right) \frac{B_{n+1}}{2}\right) \\
& =\left(2^{n+1}-1\right)\left(3^{-n}-1\right) \frac{B_{n+1}}{n+1} .
\end{aligned}
$$

Theorem 3.3. Let $m \in \mathbb{Z}^{+}$and $n \in \mathbb{N}$. If $2 \mid m$ then

$$
\begin{equation*}
\sum_{r=0}^{m-1}(-1)^{r} B_{n+1}\left(\frac{x+r}{m}\right)=-\frac{n+1}{2 m^{n}} E_{n}(x) \tag{3.9}
\end{equation*}
$$

if $2 \nmid m$ then

$$
\begin{equation*}
\sum_{r=0}^{m-1}(-1)^{r} E_{n}\left(\frac{x+r}{m}\right)=\frac{E_{n}(x)}{m^{n}} \tag{3.10}
\end{equation*}
$$

Proof. We use Corollary 2.1 and Theorem 3.1. When $m$ is even, we have

$$
\begin{aligned}
& \sum_{r=0}^{m-1}(-1)^{r} B_{n+1}\left(\frac{x+r}{m}\right) \\
= & \sum_{s=0}^{m / 2-1} B_{n+1}\left(\frac{x+2 s}{m}\right)-\sum_{s=0}^{m / 2-1} B_{n+1}\left(\frac{x+1+2 s}{m}\right) \\
= & \sum_{s=0}^{m / 2-1} B_{n+1}\left(\frac{x / 2+s}{m / 2}\right)-\sum_{s=0}^{m / 2-1} B_{n+1}\left(\frac{(x+1) / 2+s}{m / 2}\right) \\
= & \left(\frac{m}{2}\right)^{-n} B_{n+1}\left(\frac{x}{2}\right)-\left(\frac{m}{2}\right)^{-n} B_{n+1}\left(\frac{x+1}{2}\right) \\
= & \left(\frac{2}{m}\right)^{n}\left(B_{n+1}\left(\frac{x}{2}\right)-B_{n+1}\left(\frac{x+1}{2}\right)\right)=-\frac{n+1}{2 m^{n}} E_{n}(x) .
\end{aligned}
$$

If $m$ is odd, then

$$
\begin{aligned}
& \frac{n+1}{2^{n+1}} \sum_{r=0}^{m-1}(-1)^{r} E_{n}\left(\frac{x+r}{m}\right) \\
= & \sum_{r=0}^{m-1}(-1)^{r}\left(B_{n+1}\left(\frac{(x+r) / m+1}{2}\right)-B_{n+1}\left(\frac{(x+r) / m}{2}\right)\right) \\
= & -\sum_{r=0}^{m-1}\left((-1)^{r} B_{n+1}\left(\frac{x+r}{2 m}\right)+(-1)^{r+m} B_{n+1}\left(\frac{x+r+m}{2 m}\right)\right) \\
= & -\sum_{r=0}^{2 m-1}(-1)^{r} B_{n+1}\left(\frac{x+r}{2 m}\right)=\frac{n+1}{2(2 m)^{n}} E_{n}(x)
\end{aligned}
$$

So (3.10) also holds.

## 4. Number-theoretic properties of Bernoulli

## numbers and Bernoulli polynomials

Let $p$ be a prime. A rational $a / b$ with $a, b \in \mathbb{Z}$ and $(b, p)=1$, will be called a $p$-integer. We let $\mathbb{Z}_{p}$ denote the set of all $p$-integers. For $x, y \in \mathbb{Z}_{p}$ and $n \in \mathbb{N}$, by $x \equiv y\left(\bmod p^{n}\right)$ we mean that $x-y \in p^{n} \mathbb{Z}_{p}$.

Lemma 4.1. Let $k$ be a positive integer and $p$ be a prime. Then $p B_{k} \in \mathbb{Z}_{p}$ and

$$
\begin{equation*}
\frac{S_{k}(p)-p B_{k}}{k} \equiv \frac{p}{2} p B_{k-1} \quad(\bmod p) \tag{4.1}
\end{equation*}
$$

Furthermore, if $p>3$ then

$$
\begin{equation*}
\frac{S_{k}(p)-p B_{k}}{k} \equiv \frac{p}{2} p B_{k-1} \quad\left(\bmod p^{2}\right) \tag{4.2}
\end{equation*}
$$

Proof. By Theorem 2.1,

$$
\begin{aligned}
S_{k}(p) & =\frac{B_{k+1}(p)-B_{k+1}}{k+1}=\frac{1}{k+1} \sum_{j=1}^{k+1}\binom{k+1}{j} p^{j} B_{k+1-j} \\
& =\frac{1}{k+1} \sum_{l=0}^{k}\binom{k+1}{l+1} p^{l+1} B_{k-l}=p B_{k}+\sum_{l=1}^{k}\binom{k}{l} \frac{p^{l}}{l+1} p B_{k-l} .
\end{aligned}
$$

Clearly $p^{l} \geq(1+1)^{l} \geq l+1$ and hence $p^{l} /(l+1) \in \mathbb{Z}_{p}$. So $p B_{k} \in \mathbb{Z}_{p}$ by induction on $k$.

Observe that

$$
\begin{aligned}
\frac{S_{k}(p)-p B_{k}}{k} & =\frac{1}{k} \sum_{l=1}^{k}\binom{k}{l} \frac{p^{l}}{l+1} p B_{k-l}=\sum_{l=1}^{k}\binom{k-1}{l-1} \frac{p^{l}}{l(l+1)} p B_{k-l} \\
& =\frac{p}{2} p B_{k-1}+p \sum_{1<l \leq k}\binom{k-1}{l-1} \frac{p^{l-1}}{l(l+1)} p B_{k-l} .
\end{aligned}
$$

Obviously $p^{2-1} /(2 \cdot 3)=p / 6 \in \mathbb{Z}_{p}$, and $p / 6 \in p \mathbb{Z}_{p}$ if $p>3$. When $l \in\{3,4, \cdots\}$, we have $p^{l-1} \geq(1+1)^{l-1} \geq 1+(l-1)+1=l+1$, and

$$
p^{l-2} \geq(1+4)^{l-2} \geq 1+4(l-2) \geq l+1
$$

providing $p \geq 5$. Thus, if $l \in\{3,4, \cdots\}$, then $p^{l-1} /(l(l+1))=p^{l-1} /(l+1)-p^{l-1} / l \in$ $\mathbb{Z}_{p}$, moreover $p^{l-1} /(l(l+1)) \in p \mathbb{Z}_{p}$ providing $p>3$. In view of the above, holds, and (4.2) is also valid if $p>3$.

Theorem 4.1 (von Staudt-Clausen). We have

$$
\begin{equation*}
B_{k}+\sum_{p-1 \mid k} \frac{1}{p} \in \mathbb{Z} \text { for } k=2,4,6, \cdots \tag{4.3}
\end{equation*}
$$

Proof. Let $k>0$ be an even integer. Recall that $B_{k-1}=0$ if $k>2$. So, by Lemma 4.1, we have

$$
S_{k}(p)-p B_{k} \equiv \delta_{k, 2} p^{2} B_{1} \equiv 0(\bmod p)
$$

If $p-1 \mid k$, then by Fermat's little theorem

$$
S_{k}(p)=\sum_{r=1}^{p-1} r^{k} \equiv \sum_{r=1}^{p-1} 1 \equiv-1(\bmod p)
$$

and hence $B_{k}+1 / p \in \mathbb{Z}_{p}$. If $p-1 \nmid k$, then there is a $g \in \mathbb{Z}$ such that $g^{k} \not \equiv 1(\bmod p)$, as $\left(g^{k}-1\right) S_{k}(p)=\sum_{r=1}^{p-1}(g r)^{k}-\sum_{r=1}^{p-1} r^{k} \equiv 0(\bmod p)$ we have $p \mid S_{k}(p)$ and hence $B_{k} \in \mathbb{Z}_{p}$.

By the above, $B_{k}+\sum_{p-1 \mid k} p^{-1} \in \mathbb{Z}_{q}$ for any prime $q$. So $B_{k}+\sum_{p-1 \mid k} p^{-1} \in \mathbb{Z}$. We are done.

Theorem 4.2 (Beeger, 1913). Let $p>3$ be a prime. Then

$$
\begin{equation*}
(p-1)!\equiv p B_{p-1}-p \quad\left(\bmod p^{2}\right) \tag{4.4}
\end{equation*}
$$

Proof. Wilson's theorem asserts that $w_{p}=((p-1)!+1) / p \in \mathbb{Z}$. For any integer $a \not \equiv 0(\bmod p)$ let $q_{p}(a)$ denote the Fermat quotient $\left(a^{p-1}-1\right) / p$. Then

$$
\left(p w_{p}-1\right)^{p-1}=\prod_{r=1}^{p-1} r^{p-1}=\prod_{r=1}^{p-1}\left(1+p q_{p}(r)\right) \equiv 1+p \sum_{r=1}^{p-1} q_{p}(r)\left(\bmod p^{2}\right)
$$

and hence

$$
1-(p-1) p w_{p} \equiv\left(p w_{p}-1\right)^{p-1} \equiv 1+\sum_{r=1}^{p-1}\left(r^{p-1}-1\right)=S_{p-1}(p)-p+2
$$

By Theorem 4.2, $S_{p-1}(p) \equiv p B_{p-1}\left(\bmod p^{2}\right)$. So $(p-1)!=p w_{p}-1 \equiv p B_{p-1}-$ $p\left(\bmod p^{2}\right)$.

Theorem 4.3. Let $p$ be a prime and $n>0$ be an even integer.
(i) (E. Kummer) If $p-1 \nmid n$, then $B_{n} / n \in \mathbb{Z}_{p}$, moreover $B_{m} / m \equiv B_{n} / n(\bmod p)$ whenever $m \equiv n(\bmod p-1)$.
(ii) (L. Carlitz) If $p \neq 2$ and $p-1 \mid n$ then $\left(B_{n}+p^{-1}-1\right) / n \in \mathbb{Z}_{p}$.

Theorem 4.4 (Voronoi, 1889). Let $n>0$ be even, $p \in \mathbb{Z}^{+}, m \in \mathbb{Z}$ and $(p, m)=1$. Then

$$
\begin{equation*}
\left(m^{n}-1\right) B_{n} \equiv n m^{n-1} \sum_{j=1}^{p-1} j^{n-1}\left[\frac{j m}{p}\right] \quad(\bmod p) \tag{4.5}
\end{equation*}
$$

Theorem 4.5 (L. Euler). We have

$$
\tan x=\sum_{m=1}^{\infty}(-1)^{m-1} \frac{2^{2 m}\left(2^{2 m}-1\right) B_{2 m}}{(2 m)!} x^{2 m-1} \quad \text { for } x \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)
$$

and

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2 m}}=(-1)^{m-1} \frac{(2 \pi)^{2 m}}{2(2 m)!} B_{2 m} \quad \text { for } m=1,2,3, \cdots
$$

Theorem 4.6 (Kummer, 1847). Let $p>3$ be a prime such that $p$ does not divide the numerator of $B_{2}, B_{4}, \cdots, B_{p-3}$. Then $x^{p}+y^{p}=z^{p}$ has no integer solutions with $p \nmid x y z$.

Theorem 4.7 (A. Granville and Z. W. Sun, 1996). Let p be an odd prime relatively prime to a fixed $q \in\{5,8,10,12\}$. Then we can determine $B_{p-1}(a / q)-B_{p-1} \bmod$ $p$ (with $1 \leq a \leq q$ and $(a, q)=1)$ as follows:

$$
\begin{aligned}
B_{p-1}\left(\frac{a}{5}\right)-B_{p-1} & \equiv \frac{5}{4}\left(\left(\frac{a p}{5}\right) \frac{1}{p} F_{p-\left(\frac{5}{p}\right)}+\frac{5^{p-1}-1}{p}\right)(\bmod p) ; \\
B_{p-1}\left(\frac{a}{8}\right)-B_{p-1} & \equiv\left(\frac{2}{a p}\right) \frac{2}{p} P_{p-\left(\frac{2}{p}\right)}+4 \cdot \frac{2^{p-1}-1}{p}(\bmod p) ; \\
B_{p-1}\left(\frac{a}{10}\right)-B_{p-1} & \equiv \frac{15}{4}\left(\frac{a p}{5}\right) \frac{1}{p} F_{p-\left(\frac{5}{p}\right)}+\frac{5}{4} \cdot \frac{5^{p-1}-1}{p}+\frac{2\left(2^{p-1}-1\right)}{p}(\bmod p) ; \\
B_{p-1}\left(\frac{a}{12}\right)-B_{p-1} & \equiv\left(\frac{3}{a}\right) \frac{3}{p} S_{p-\left(\frac{3}{p}\right)}+\frac{3\left(2^{p-1}-1\right)}{p}+\frac{3}{2} \cdot \frac{3^{p-1}-1}{p}(\bmod p) ;
\end{aligned}
$$

where ( - ) is the Jacobi symbol, and we define the following second-order linear recurrence sequences:

$$
\begin{aligned}
& F_{0}=0, F_{1}=1, \text { and } F_{n+2}=F_{n+1}+F_{n} \text { for all } n \geq 0 \\
& P_{0}=0, P_{1}=1, \text { and } P_{n+2}=2 P_{n+1}+P_{n} \text { for all } n \geq 0 \\
& S_{0}=0, S_{1}=1, \text { and } S_{n+2}=4 S_{n+1}-S_{n} \text { for all } n \geq 0 .
\end{aligned}
$$

