SOME CONGRUENCES MOTIVATED
BY ALGEBRAIC TOPOLOGY

ZHI-WEI SUN
Department of Mathematics
Nanjing University
Nanjing 210093, P. R. China
zwsun@nju.edu.cn, zwsun@math.uci.edu
http://pweb.nju.edu.cn/zwsun
Dedicated to Prof. R. L. Graham for his 70th birthday

Abstract. In July 2005, D. M. Davis posted several original number-
theoretic conjectures arising from his investigation of homotopy exponents
of the special unitary group SU(n). The recent study of these conjectures
and their generalizations by the author and Davis led to a strong lower
bound for the homotopy p-exponent of SU(n), as well as a number of
new combinatorial congruences some of which extend vastly some classical
congruences (such as Lucas’ theorem) concerning binomial coefficients. We
talk about these results and propose some further conjectures.

1. Davis’ conjectures arising from algebraic topology

Let $\mathbb{N} = \{0, 1, 2, \ldots \}$. For a prime p and an integer m, we call
\[
\operatorname{ord}_p(m) = \sup \{ n \in \mathbb{N} : p^n \mid m \}
\]
the p-adic order of m (or the order of m at prime p).

On July 8, 2005, Prof. Donald M. Davis (a topologist from Lehigh Un-
iversity) posted a message to Number Theory Listserver and Archives
containing several conjectures arising from his study of algebraic topology.
Here are three main conjectures of Davis:
Conjecture D1. Let $m, n \in \mathbb{N}$ and $m \geq n$. If $L \in \mathbb{N}$ is sufficiently large (e.g. $L > 3n/2$), then

$$\text{ord}_2(m!S(2^L + n - 1, m)) \geq n - 1 + \text{ord}_2\left(\left\lfloor \frac{n}{2} \right\rfloor !\right),$$

where the Stirling number $S(k, m)$ of the second kind is defined as the number of partitions of a set of cardinality k into m nonempty subsets.

Conjecture D2. If $n > l \geq 0$ are integers, then

$$\text{ord}_2\left(\sum_{k \in \mathbb{N}} \left(\begin{array}{c} n \\ 2k \end{array}\right) k^l\right) \geq \text{ord}_2\left(\left\lfloor \frac{l+1}{2} \right\rfloor !\right).$$

Conjecture D3. For $l, n \in \mathbb{N}$ we have

$$\text{ord}_2\left(\sum_{k \in \mathbb{N}} \left(\begin{array}{c} n \\ 4k + 2 \end{array}\right) \left(\begin{array}{c} k \\ l \end{array}\right)\right) \geq \text{ord}_2\left(\left\lfloor \frac{n}{2} \right\rfloor !\right) - l - \text{ord}_2(l!).$$

Davis noted that D3 \Rightarrow D2 \Rightarrow D1. After posting the message publicly, Davis wrote me the following:

“I have worked very hard off and on during the past two years trying to prove these conjectures. In the past, I have communicated them privately to others (at least 5 experts) without any significant progress.”

Then, in July and August I worked very hard on Davis’ conjectures. Later Davis and I wrote two joint papers:

2. The mains results of Davis and Sun

Theorem 1 [Davis and Sun, arXiv:math.AT/0508083]. Let \(p \) be a prime, \(\alpha, n \in \mathbb{N} \) and \(r \in \mathbb{Z} \). Then, for any polynomial \(f(x) \in \mathbb{Z}[x] \), we have

\[
\text{ord}_p \left(\sum_{k \equiv r \pmod{p^\alpha}} \binom{n}{k} (-1)^k f \left(\frac{k - r}{p^\alpha} \right) \right) \\
\geq \text{ord}_p \left(\left\lfloor \frac{n}{p^\alpha} \right\rfloor ! \right) + \tau_p(\{r\}_{p^\alpha}, \{n - r\}_{p^\alpha}),
\]

where \(\{a\}_{p^\alpha} \) is the least nonnegative residue of \(a \) modulo \(p^\alpha \), and \(\tau_p(a, b) = \text{ord}_p \left(\binom{a+b}{a} \right) \) is the number of carries occurring in the addition of \(a \) and \(b \) in base \(p \).

Theorem 1 in the case \(p = 2, \alpha = 1 \) and \(r = 0 \) implies Conj. D2.

Theorem 1 in the case \(r = 0 \) has the following consequence on \(p \)-adic orders of Stirling numbers of the second kind.

Corollary 1 [Davis and Sun, arXiv:math.AT/0508083]. Let \(p \) be any prime and \(n \) be a positive integer. If \(L \geq n - 1 + \left\lfloor n/(p(p-1)) \right\rfloor \), then for all \(m \geq n \) we have

\[
\text{ord}_p \left(m!S((p-1)p^L + n - 1, m) \right) \geq n - 1 + \text{ord}_p \left(\left\lfloor \frac{n}{p^L} \right\rfloor ! \right).
\]

When \(p = 2 \), Corollary 1 yields Conj. D1.

The **special unitary group** \(SU(n) \) (of degree \(n \)) is the space of all \(n \times n \) unitary matrices (the conjugate transpose of such a complex matrix equals its inverse) with determinant one. It plays important roles in many areas of mathematics and physics.

Here is an application of Corollary 1 in algebraic topology.
Theorem 2 [Davis and Sun, arXiv:math.AT/0508083]. For any prime p and $n \geq 2$, some homotopy group $\pi_i(SU(n))$ contains an element of order $p^{n-1 + \text{ord}_p([n/p]!)}$.

Numerical examples indicate that Theorem 2 is very strong.

Theorem 3 [Sun and Davis, arXiv:math.NT/0508087]. Let p be a prime, and let $\alpha, n \in \mathbb{N}$ and $r \in \mathbb{Z}$. Then, for any polynomial $f(x) \in \mathbb{Z}[x]$, we have

$$\text{ord}_p\left(\sum_{k \equiv r \pmod{p^\alpha}} \binom{n}{k} (-1)^k f\left(\frac{k-r}{p^\alpha}\right)\right) \geq \text{ord}_p\left(\left\lfloor \frac{n}{p^{\alpha-1}} \right\rfloor! - \deg f + \tau_p\{r\}_{p^{\alpha-1}}, \{n-r\}_{p^{\alpha-1}}\right).$$

where $\{a\}_{p^{\alpha-1}}$ is regarded as 0 if $\alpha = 0$.

Clearly Theorem 3 in the case $p = \alpha = r = 2$ and $f(x) = l!(\binom{x}{l})$ implies Conj. D3.

The following lemma (obtained by means of roots of unity) plays an important role in our proofs of Theorems 1 and 3.

Lemma 1 [Sun and Davis, arXiv:math.NT/0508087]. Let $d, m \in \mathbb{Z}^+ = \{1, 2, \ldots\}$, $n \in \mathbb{N}$ and $r \in \mathbb{Z}$, and let $f(x)$ be a function from \mathbb{Z} to the complex field. Then we have

$$\sum_{k \equiv r \pmod{d}} \binom{n}{k} (-1)^k f\left(\left\lfloor \frac{k-r}{m} \right\rfloor\right) = \sum_{j=0}^{n} \binom{n}{j} \left(\sum_{i \equiv r \pmod{d}} \binom{j}{i} (-1)^i\right) \sum_{i=0}^{m-1} \sigma_{ij},$$

where

$$\sigma_{ij} = \sum_{k \equiv r+i-j \pmod{m}} \binom{n-j}{k} (-1)^k f\left(\frac{k-(r+i-j)}{m}\right).$$
A famous theorem of E. Lucas states that if p is a prime, and $n, r, s, t \in \mathbb{N}$ and $s, t < p$ then
\[
\binom{pn + s}{pr + t} \equiv \binom{n}{r} \binom{s}{t} \pmod{p}.
\]

The following result is a vast generalization of Lucas’ theorem.

Theorem 4 [Sun and Davis, arXiv:math.NT/0508087]. Let p be any prime. And let $l, n \in \mathbb{N}$, $r, s, t \in \mathbb{Z}$ and $0 \leq s, t < p$. Then, for every $\alpha = 2, 3, \ldots$, we have
\[
\frac{1}{[n/p^{\alpha-1}]!} \sum_{k \equiv r \pmod{p^\alpha}} \binom{pn + s}{pk + t} (-1)^{pk} \left(\frac{k - r}{p^{\alpha-1}} \right)^l \equiv \frac{1}{[n/p^{\alpha-1}]!} \sum_{k \equiv r \pmod{p^\alpha}} \binom{n}{k} \binom{s}{t} (-1)^k \left(\frac{k - r}{p^{\alpha-1}} \right)^l \pmod{p}.
\]

When $\alpha > \log_p(\max\{n, p\})$ and $l = 0$, Theorem 4 yields the classical congruence of Lucas.

Conjecture 1 [Sun and Davis, arXiv:math.NT/0508087]. Theorem 4 also holds with $\alpha = 1$. When $s = t = 0$, the congruence in Theorem 4 even holds modulo p^3 with $p > 3$, and modulo p^2 with $p = 3$.

3. Some related results of another type

Theorem 5. Let p be a prime, and let $\alpha, n \in \mathbb{N}$ and $r \in \mathbb{Z}$.

(i) (A. Fleck, 1913) We have
\[
\mathrm{ord}_p \left(\sum_{k \equiv r \pmod{p}} \binom{n}{k} (-1)^k \right) \geq \left\lfloor \frac{n - 1}{p - 1} \right\rfloor.
\]
(ii) (C. S. Weisman, 1977; motivated by p-adic continuation) Let φ be the Euler totient function. Then

$$\text{ord}_p \left(\sum_{k \equiv r \pmod{p^\alpha}} \binom{n}{k} (-1)^k \right) \geq \left\lfloor \frac{n - p^{\alpha - 1}}{\varphi(p^\alpha)} \right\rfloor.$$

(iii) (D. Wan, May 2005; motivated by Fontaine’s rings) For $l \in \mathbb{N}$ we have

$$\text{ord}_p \left(\sum_{k \equiv r \pmod{p}} \binom{n}{k} (-1)^k \frac{(k - r)/p^\alpha}{l} \right) \geq \left\lfloor \frac{n - lp - 1}{p - 1} \right\rfloor.$$

(iv) (Z. W. Sun, June-July 2005, arXiv:math.NT/0507008; combinatorial arguments) For $l \in \mathbb{N}$ we have

$$\text{ord}_p \left(\sum_{k \equiv r \pmod{p^\alpha}} \binom{n}{k} (-1)^k \frac{(k - r)/p^\alpha}{l} \right) \geq \left\lfloor \frac{n - lp - 1}{\varphi(p^\alpha)} \right\rfloor - l\alpha.$$

If $\alpha > 1$, then

$$\text{ord}_p \left(\sum_{k \equiv r \pmod{p^\alpha}} \binom{n}{k} (-1)^k \frac{(k - r)/p^\alpha}{l} \right) \geq \left\lfloor \frac{n - p^{\alpha - 1}}{\varphi(p^\alpha)} \right\rfloor - l\alpha.$$

(v) (D. Wan, August 2005, arXiv:math.NT/0508159; motivated by Iwasawa theory) For $l \in \mathbb{N}$ we have

$$\text{ord}_p \left(\sum_{k \equiv r \pmod{p^\alpha}} \binom{n}{k} (-1)^k \frac{(k - r)/p^\alpha}{l} \right) \geq \left\lfloor \frac{n - lp^\alpha - p^{\alpha - 1}}{\varphi(p^\alpha)} \right\rfloor.$$