ON SOME DETERMINANTS WITH LEGENDRE SYMBOL ENTRIES

Zhi-Wei Sun

Department of Mathematics, Nanjing University Nanjing 210093, People's Republic of China zwsun@nju.edu.cn http://math.nju.edu.cn/~zwsun

ABSTRACT. In this paper we mainly focus on some determinants with Legendre symbol entries. For an odd prime p and an integer d, let S(d, p) denote the determinant of the $(p-1)/2 \times (p-1)/2$ matrix whose (i, j)-entry $(1 \leq i, j \leq (p-1)/2)$ is the Legendre symbol $(\frac{i^2+dj^2}{p})$. We investigate properties of S(d, p) as well as some other determinants involving Legendre symbols. In Section 3 we pose 17 open conjectures on determinants one of which states that $(\frac{-S(d,p)}{p}) = 1$ if $(\frac{d}{p}) = 1$, and S(d, p) = 0 if $(\frac{d}{p}) = -1$. This material might interest some readers and stimulate further research.

1. INTRODUCTION

For an $n \times n$ matrix $A = (a_{ij})_{1 \leq i,j \leq n}$ over the field of complex numbers, we often write det A in the form $|a_{ij}|_{1 \leq i,j \leq n}$. In this paper we study determinants with Legendre symbol entries.

Let p be an odd prime and let $\left(\frac{\cdot}{p}\right)$ be the Legendre symbol. The circulant determinant

$$\left| \left(\frac{j-i}{p}\right) \right|_{0 \leqslant i, j \leqslant p-1} = \begin{vmatrix} \left(\frac{0}{p}\right) & \left(\frac{1}{p}\right) & \left(\frac{2}{p}\right) & \dots & \left(\frac{p-1}{p}\right) \\ \left(\frac{p-1}{p}\right) & \left(\frac{0}{p}\right) & \left(\frac{1}{p}\right) & \dots & \left(\frac{p-2}{p}\right) \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ \left(\frac{1}{p}\right) & \left(\frac{2}{p}\right) & \left(\frac{3}{p}\right) & \dots & \left(\frac{0}{p}\right) \end{vmatrix}$$

takes the value

$$\prod_{r=0}^{p-1}\sum_{k=0}^{p-1} \left(\frac{k}{p}\right) \left(e^{2\pi i r/p}\right)^k = 0$$

2010 Mathematics Subject Classification. Primary 11C20; Secondary 15A15, 11A07, 11R11.

Keywords. Legendre symbols; determinants, congruences modulo primes, quadratic fields. © Copyright is owned by the author Zhi-Wei Sun. The material on the author's homepage

has been linked to the well-known Number Theory Web since August 9, 2013.

since $\sum_{k=0}^{p-1} \left(\frac{k}{p}\right) = 0$. (See [K99, (2.41)] for the evaluation of a general circulant determinant.) For the matrix $A = (a_{ij})_{1 \leq i,j \leq p-1}$ with $a_{ij} = \left(\frac{i-j}{p}\right)$, L. Carlitz [C59, Theorem 4] proved that its characteristic polynomial is

$$|xI_{p-1} - A| = \left(x^2 - \left(\frac{-1}{p}\right)p\right)^{(p-3)/2} \left(x^2 - \left(\frac{-1}{p}\right)\right),$$

where I_{p-1} is the $(p-1) \times (p-1)$ identity matrix. Putting x = 0 in Carlitz's formula, we obtain that

$$(-1)^{p-1}|A| = \left(-\left(\frac{-1}{p}\right)\right)^{(p-1)/2} p^{(p-3)/2} = p^{(p-3)/2}.$$

For $m \in \mathbb{Z}$ let $\{m\}_p$ denote the least nonnegative residue of an integer m modulo p. For any integer $a \not\equiv 0 \pmod{p}$, $\{aj\}_p \ (j = 1, \dots, p-1)$ is a permutation of $1, \dots, p-1$, and its sign is the Legendre symbol $\left(\frac{a}{p}\right)$ by Zolotarev's theorem (cf. [DH] and [Z]). Therefore, for any integer $d \not\equiv 0 \pmod{p}$ we have

$$\left| \left(\frac{i+dj}{p} \right) \right|_{0 \leqslant i, j \leqslant p-1} = \left(\frac{-d}{p} \right) \left| \left(\frac{i-j}{p} \right) \right|_{0 \leqslant i, j \leqslant p-1} = 0$$
(1.1)

and

$$\left| \left(\frac{i+dj}{p}\right) \right|_{1 \le i,j \le p-1} = \left(\frac{-d}{p}\right) \left| \left(\frac{i-j}{p}\right) \right|_{1 \le i,j \le p-1} = \left(\frac{-d}{p}\right) p^{(p-3)/2}.$$
 (1.2)

Let p be an odd prime. In 2004, R. Chapman [Ch04] used quadratic Gauss sums to determine the values of

$$\left\| \left(\frac{i+j-1}{p}\right) \right\|_{1 \le i, j \le (p-1)/2} \quad \text{and} \quad \left\| \left(\frac{i+j-1}{p}\right) \right\|_{1 \le i, j \le (p+1)/2}$$

Since $(p+1)/2 - i + (p+1)/2 - j - 1 \equiv -(i+j) \pmod{p}$, we see that

$$\left| \left(\frac{i+j-1}{p} \right) \right|_{1 \le i, j \le (p-1)/2} = \left(\frac{-1}{p} \right) \left| \left(\frac{i+j}{p} \right) \right|_{1 \le i, j \le (p-1)/2}$$

and

$$\left| \left(\frac{i+j-1}{p} \right) \right|_{1 \leq i,j \leq (p+1)/2} = \left| \left(\frac{i+j}{p} \right) \right|_{0 \leq i,j \leq (p-1)/2}.$$

Chapman [Ch12] also conjectured that

$$\left| \left(\frac{j-i}{p} \right) \right|_{0 \leqslant i, j \leqslant (p-1)/2} = \begin{cases} -r_p & \text{if } p \equiv 1 \pmod{4}, \\ 1 & \text{if } p \equiv 3 \pmod{4}, \end{cases}$$
(1.3)

where $\varepsilon_p^{(2-(\frac{2}{p}))h(p)} = r_p + s_p\sqrt{p}$ with $r_p, s_p \in \mathbb{Z}$. (Throughout this paper, ε_p and h(p) stand for the fundamental unit and the class number of the real quadratic field $\mathbb{Q}(\sqrt{p})$ respectively.) As Chapman could not solve this problem for several years, he called the determinant *evil* (cf. [Ch12]). Chapman's conjecture on his "evil" determinant was recently confirmed by M. Vsemirnov [V12, V13] via matrix decomposition.

Let $p \equiv 1 \pmod{4}$ be a prime. In an unpublic manuscript written in 2003 Chapman [Ch03] conjectured that

$$s_p = \left(\frac{2}{p}\right) \left| \left(\frac{j-i}{p}\right) \right|_{1 \le i, j \le (p-1)/2}.$$
(1.4)

Note that (1.3) and (1.4) together yield an interesting identity

$$\varepsilon_p^{(2-(\frac{2}{p}))h(p)} = \left(\frac{2}{p}\right) \left| \left(\frac{j-i}{p}\right) \right|_{1 \le i, j \le (p-1)/2} \sqrt{p} - \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-i}{p}\right) \right|_{0 \le i, j \le (p-1)/2} \sqrt{p} = \left| \left(\frac{j-$$

Taking the norm with respect to the field extension $\mathbb{Q}(\sqrt{p})/\mathbb{Q}$, we are led to the identity

$$\left| \left(\frac{j-i}{p}\right) \right|_{0 \leqslant i, j \leqslant (p-1)/2}^2 - p \left| \left(\frac{j-i}{p}\right) \right|_{1 \leqslant i, j \leqslant (p-1)/2}^2 = (-1)^{h(p)}$$

since $N(\varepsilon_p) = -1$ (cf. Theorem 3 of [Co62, p. 185]). This provides an *explicit* solution to the diophantine equation $x^2 - py^2 = (-1)^{h(p)}$.

Now we state our first theorem.

Theorem 1.1. Let p be an odd prime. For $d \in \mathbb{Z}$ define

$$R(d,p) := \left| \left(\frac{i+dj}{p} \right) \right|_{0 \le i,j \le (p-1)/2}.$$
(1.5)

If $p \equiv 1 \pmod{4}$, then

$$R(d,p) \equiv \left(\left(\frac{d}{p}\right)d\right)^{(p-1)/4} \frac{p-1}{2}! \pmod{p}.$$
 (1.6)

When $p \equiv 3 \pmod{4}$, we have

$$R(d,p) \equiv \begin{cases} \left(\frac{2}{p}\right) \pmod{p} & if\left(\frac{d}{p}\right) = 1, \\ 1 \pmod{p} & if\left(\frac{d}{p}\right) = -1. \end{cases}$$
(1.7)

Also,

$$R(-d,p) \equiv \left(\frac{2}{p}\right) R(d,p) \pmod{p},\tag{1.8}$$

and

$$\left| \left(\frac{i + dj + c}{p} \right) \right|_{0 \leqslant i, j \leqslant (p-1)/2} \equiv R(d, p) \pmod{p} \quad for \ all \ c \in \mathbb{Z}.$$
(1.9)

Remark 1.1. Let p be any odd prime. By Wilson's theorem,

$$\left(\frac{p-1}{2}!\right)^2 \equiv \begin{cases} -1 \pmod{p} & \text{if } p \equiv 1 \pmod{4}, \\ 1 \pmod{p} & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$
(1.10)

Corollary 1.1. Let $p \equiv 1 \pmod{4}$ be a prime, and write $\varepsilon_p^{h(p)} = a_p + b_p \sqrt{p}$ with $a_p, b_p \in \mathbb{Q}$, where ε_p and h(p) are the fundamental unit and the class number of the real quadratic field $\mathbb{Q}(\sqrt{p})$. Then we have

$$a_p \equiv -\frac{p-1}{2}! \pmod{p} \quad and \ h(p) \equiv 1 \pmod{2}.$$
 (1.11)

Proof. By (1.6) we have

$$R(1,p) \equiv \frac{p-1}{2}! \pmod{p}.$$

On the other hand, Chapman [Ch04, Corollary 3] proved that

$$\left| \left(\frac{i+j}{p} \right) \right|_{0 \le i, j \le (p-1)/2} = \left| \left(\frac{i+j-1}{p} \right) \right|_{1 \le i, j \le (p+1)/2} = -\left(\frac{2}{p} \right) 2^{(p-1)/2} a_p.$$

So we have the first congruence in (1.11). Taking norms (with respect to the field extension $\mathbb{Q}(\sqrt{p})/\mathbb{Q}$) of both sides of the identity $\varepsilon_p^{h(p)} = a_p + b_p\sqrt{p}$, we obtain

$$N(\varepsilon)^{h(p)} = a_p^2 - pb_p^2.$$

Since

$$a_p^2 \equiv \left(\frac{p-1}{2}!\right)^2 \equiv -1 \pmod{p},$$

we must have $N(\varepsilon) = -1$ and $2 \nmid h(p)$. This proves the second congruence in (1.11). \Box

It is well known that for any odd prime p the (p-1)/2 squares

$$1^2, 2^2, \dots, \left(\frac{p-1}{2}\right)^2$$

give all the (p-1)/2 quadratic residues modulo p. So we think that it's natural to consider some Legendre symbol determinants involving binary quadratic forms.

Theorem 1.2. Let p be any odd prime. For $d \in \mathbb{Z}$ define

$$S(d,p) := \left| \left(\frac{i^2 + dj^2}{p} \right) \right|_{1 \leq i,j \leq (p-1)/2}$$

$$(1.12)$$

and

$$T(d,p) := \left| \left(\frac{i^2 + dj^2}{p} \right) \right|_{0 \le i, j \le (p-1)/2}.$$
 (1.13)

(i) For any $c \in \mathbb{Z}$ with $p \nmid c$, we have

$$S(c^{2}d,p) = \left(\frac{c}{p}\right)^{(p+1)/2} S(d,p) \quad and \quad T(c^{2}d,p) = \left(\frac{c}{p}\right)^{(p+1)/2} T(d,p).$$
(1.14)

If $p \equiv 1 \pmod{4}$, then

$$S(-d,p) = \left(\frac{2}{p}\right)S(d,p) \quad and \quad T(-d,p) = \left(\frac{2}{p}\right)T(d,p). \tag{1.15}$$

When $p \equiv 3 \pmod{4}$, we have

$$\left(\frac{d}{p}\right) = -1 \Longrightarrow S(d, p) = 0. \tag{1.16}$$

(ii) We have

$$\left(\frac{T(d,p)}{p}\right) = \begin{cases} \left(\frac{2}{p}\right) & \text{if } \left(\frac{d}{p}\right) = 1, \\ 1 & \text{if } \left(\frac{d}{p}\right) = -1. \end{cases}$$
(1.17)

Also,

$$T(-d,p) \equiv \left(\frac{2}{p}\right) T(d,p) \pmod{p} \tag{1.18}$$

and

$$\left| \left(\frac{i^2 + dj^2 + c}{p} \right) \right|_{0 \leqslant i, j \leqslant (p-1)/2} \equiv T(d, p) \pmod{p} \quad for \ all \ c \in \mathbb{Z}.$$
(1.19)

Example 1.1. Note that

and

Now we present our third theorem.

5

Theorem 1.3. (i) For any odd prime p, we have

$$\left|\frac{\frac{(i+j)}{p}}{i+j}\right|_{1\leqslant i,j\leqslant (p-1)/2} \equiv \begin{cases} \left(\frac{2}{p}\right) \pmod{p} & \text{if } p \equiv 1 \pmod{4}, \\ ((p-1)/2)! \pmod{p} & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$
(1.20)

(ii) Let $p \equiv 3 \pmod{4}$ be a prime. Then

$$\left|\frac{1}{i^2+j^2}\right|_{1\leqslant i,j\leqslant (p-1)/2} \equiv \left(\frac{2}{p}\right) \pmod{p}.$$
(1.21)

We are going to prove Theorems 1.1-1.3 in the next section, and pose over ten new conjectures on determinants in Section 3.

2. Proof of Theorems 1.1-1.3

Lemma 2.1 ([K05, Lemma 9]). Let $P(z) = \sum_{k=0}^{n-1} a_k z^k$ be a polynomial with complex number coefficients. Then we have

$$|P(x_i + y_j)|_{1 \le i,j \le n} = a_{n-1}^n \prod_{k=0}^{n-1} \binom{n-1}{k} \times \prod_{1 \le i < j \le n} (x_i - x_j)(y_j - y_i).$$
(2.1)

Proof of Theorem 1.1. Set n = (p-1)/2. For any $c \in \mathbb{Z}$, we have

$$\left\| \left(\frac{i+dj+c}{p}\right) \right\|_{0 \leqslant i,j \leqslant (p-1)/2} \equiv |(i+dj+c)^n|_{0 \leqslant i,j \leqslant n} \pmod{p}.$$

In light of Lemma 2.2,

$$\begin{aligned} &|(i+dj+c)^{n}|_{0\leqslant i,j\leqslant n} = |(i+dj+c-d-1)^{n}|_{1\leqslant i,j\leqslant n+1} \\ &= \prod_{k=0}^{n} \binom{n}{k} \times \prod_{1\leqslant i < j\leqslant n+1} (i-j)(dj+c-d-1-(di+c-d-1)) \\ &= \frac{(n!)^{n+1}}{\prod_{k=0}^{n} k!(n-k)!} (-d)^{n(n+1)/2} \prod_{1\leqslant i < j\leqslant n+1} (j-i)^{2} = (-d)^{n(n+1)/2} (n!)^{n+1}. \end{aligned}$$

Therefore (1.9) holds, and also

$$R(d,p) \equiv (-d)^{(p^2-1)/8} \left(\frac{p-1}{2}!\right)^{(p+1)/2} \pmod{p}.$$
 (2.2)

In the case $p \equiv 1 \pmod{4}$, from (2.2) we obtain

$$R(d,p) \equiv (-d)^{(p-1)/4} \ {}^{(p+1)/2} \ {\frac{p-1}{2}!} \left(\frac{p-1}{2}!\right)^{2(p-1)/4}$$
$$\equiv \left(d^{(p+1)/2}\right)^{(p-1)/4} \ {\frac{p-1}{2}!} \equiv \left(\left(\frac{d}{p}\right)d\right)^{(p-1)/4} \ {\frac{p-1}{2}!} \ (\text{mod } p).$$

In the case $p \equiv 3 \pmod{4}$, (2.2) yields

$$R(d,p) \equiv (-d)^{(p-1)/2 \times (p+1)/4} \left(\frac{p-1}{2}!\right)^{2(p+1)/4} \equiv \left(\frac{-d}{p}\right)^{(p+1)/4} \pmod{p}$$

and hence (1.7) follows.

Now it remains to show (1.8). If $p \equiv 1 \pmod{4}$, then by (1.6)

$$R(-d,p) \equiv \left(\left(\frac{-d}{p}\right) (-d) \right)^{(p-1)/4} \frac{p-1}{2}! \equiv \left(\frac{2}{p}\right) R(d,p) \pmod{p}.$$

If $p \equiv 3 \pmod{4}$, then $\left(\frac{-d}{p}\right) = -\left(\frac{d}{p}\right)$ and hence we get (1.8) from (1.7). The proof of Theorem 1.1 is now complete. \Box

Lemma 2.2. Let $p \equiv 1 \pmod{4}$ be a prime. Then

$$\left(\frac{((p-1)/2)!}{p}\right) = \left(\frac{2}{p}\right). \tag{2.3}$$

Proof. Since

$$(-4)^{(p-1)/4} = (-1)^{(p-1)/4} 2^{(p-1)/2} = \left(\frac{2}{p}\right) 2^{(p-1)/2} \equiv 1 \pmod{p},$$

for some $x \in \mathbb{Z}$ we have

$$x^4 \equiv -4 \equiv 4\left(\frac{p-1}{2}!\right)^2 \pmod{p}, \text{ i.e., } x^2 \equiv \pm 2 \times \frac{p-1}{2}! \pmod{p}.$$

Therefore (2.3) holds. \Box

Proof of Theorem 1.2(i). Let $c \in \mathbb{Z}$ with $p \nmid c$. For each $j = 1, \ldots, (p-1)/2$ let $\sigma_c(j)$ be the unique $r \in \{1, \ldots, (p-1)/2\}$ such that $cj \equiv r$ or $-r \pmod{p}$. By a result of H. Pan [P06], the sign of the permutation σ_c equals $(\frac{c}{p})^{(p+1)/2}$. Thus

$$S(c^{2}d,p) = \left| \left(\frac{i^{2} + d\sigma_{c}(j)^{2}}{p} \right) \right|_{1 \leq i,j \leq (p-1)/2} = \left(\frac{c}{p} \right)^{(p+1)/2} S(d,p).$$

Similarly the second equality in (1.14) also holds.

Now we handle the case $p \equiv 1 \pmod{4}$. As $((p-1)/2)!^2 \equiv -1 \pmod{p}$, by applying (1.14) with c = ((p-1)/2)! and using (2.3) we immediately get (1.15).

Below we assume that $p \equiv 3 \pmod{4}$. As the transpose of S(-1, p) equals $(\frac{-1}{p})^{(p-1)/2}S(-1, p) = -S(-1, p)$, we have S(-1, p) = 0. If $(\frac{d}{p}) = -1$, then $d \equiv -c^2 \pmod{p}$ for some integer $c \not\equiv 0 \pmod{p}$, and hence

$$S(d,p) = S(-c^2,p) = \left(\frac{c}{p}\right)^{(p+1)/2} S(-1,p) = 0.$$

This proves (1.16).

So far we have proved the first part of Theorem 1.2. \Box

Proof of Theorem 1.2(ii). Set n = (p-1)/2. For any $c \in \mathbb{Z}$, we have

$$\left| \left(\frac{i^2 + dj^2 + c}{p} \right) \right|_{0 \le i, j \le (p-1)/2} \equiv |(i^2 + dj^2 + c)^n|_{0 \le i, j \le n} \pmod{p}.$$

In light of Lemma 2.2,

$$\begin{split} &|(i^2 + dj^2 + c)^n|_{0 \le i,j \le n} = |((i-1)^2 + d(j-1)^2 + c)^n|_{1 \le i,j \le n+1} \\ &= \prod_{k=0}^n \binom{n}{k} \times \prod_{1 \le i < j \le n+1} ((i-1)^2 - (j-1)^2)(d(j-1)^2 + c - d(i-1)^2 - c) \\ &= \frac{(n!)^{n+1}}{\prod_{k=0}^n k! (n-k)!} (-d)^{n(n+1)/2} \prod_{0 \le i < j \le n} (j-i)^2 (j+i)^2 \\ &= (-d)^{n(n+1)/2} (n!)^{n+1} \prod_{0 \le i < j \le n} (i+j)^2. \end{split}$$

Therefore (1.19) holds, and also

$$T(d,p) \equiv (-d)^{(p^2-1)/8} \left(\frac{p-1}{2}!\right)^{(p+1)/2} \prod_{0 \le i < j \le (p-1)/2} (i+j)^2$$
$$\equiv R(d,p) \prod_{0 \le i < j \le (p-1)/2} (i+j)^2 \pmod{p}$$

with the help of (2.2). Combining this with (1.8) we obtain (1.18). Note that

$$\left(\frac{T(d,p)}{p}\right) = \left(\frac{R(d,p)}{p}\right).$$

If $\left(\frac{d}{p}\right) = 1$, then by Theorem 1.1 we have

$$R(d,p) \equiv \begin{cases} d^{(p-1)/4}((p-1)/2)! \pmod{p} & \text{if } p \equiv 1 \pmod{4}, \\ (\frac{2}{p}) \pmod{p} & \text{if } p \equiv 3 \pmod{4}, \end{cases}$$

and hence $\left(\frac{R(d,p)}{p}\right) = \left(\frac{2}{p}\right)$ with the help if Lemma 2.2. In the case $\left(\frac{d}{p}\right) = -1$, by Theorem 1.1 we have

$$R(d,p) \equiv \begin{cases} (-d)^{(p-1)/4}((p-1)/2)! \pmod{p} & \text{if } p \equiv 1 \pmod{4}, \\ 1 \pmod{p} & \text{if } p \equiv 3 \pmod{4}, \end{cases}$$

and hence $(\frac{R(d,p)}{p}) = 1$ with the help if Lemma 2.2. Therefore (1.17) also holds. We are done. \Box

Lemma 2.3. Let p be any odd prime. For any $d \in \mathbb{Z}$ with $\left(\frac{d}{p}\right) = -1$, we have the new congruence

$$\prod_{x=1}^{(p-1)/2} (x^2 - d) \equiv (-1)^{(p+1)/2} 2 \pmod{p}.$$
 (2.4)

Proof. For any integer a, it is well known that

$$a^{(p-1)/2} \equiv 1 \pmod{p} \iff \left(\frac{a}{p}\right) = 1$$

 $\iff a \equiv x^2 \pmod{p} \text{ for some } x = 1, \dots, \frac{p-1}{2}.$

Therefore

$$\prod_{x=1}^{(p-1)/2} (z - x^2) \equiv z^{(p-1)/2} - 1 \pmod{p}$$

and hence

$$\prod_{x=1}^{(p-1)/2} (y+d-x^2) \equiv (y+d)^{(p-1)/2} - 1 \pmod{p}.$$
 (2.5)

Comparing the constant terms of both sides of the congruence (2.5), we obtain

$$\prod_{x=1}^{(p-1)/2} (d-x^2) \equiv d^{(p-1)/2} - 1 \equiv -2 \pmod{p}$$

and hence (2.4 follows. \Box

Remark 2.1. Under the condition of Lemma 2.3, we could also prove the following congruences

$$\sum_{x=1}^{(p-1)/2} \frac{1}{x^2 - d} \equiv \frac{1}{4d} \pmod{p} \text{ and } \sum_{x=1}^{(p-1)/2} \frac{1}{(x^2 - d)^2} \equiv -\frac{5}{16d^2} \pmod{p}$$
(2.6)

by comparing coefficients of y and y^2 in the congruence (2.5).

Proof of Theorem 1.3. (i) Set n = (p-1)/2. Clearly

$$\left|\frac{\left(\frac{i+j}{p}\right)}{i+j}\right|_{1\leqslant i,j\leqslant (p-1)/2} \equiv |(i+j)^{n-1}|_{1\leqslant i,j\leqslant n} \pmod{p}.$$

By Lemma 2.1,

$$\begin{split} |(i+j)^{n-1}|_{1\leqslant i,j\leqslant n} &= \prod_{k=0}^{n-1} \binom{n-1}{k} \times \prod_{1\leqslant i< j\leqslant n} (i-j)(j-i) \\ &= \frac{(n-1)!^n}{\prod_{k=0}^{n-1} k! (n-1-k)!} (-1)^{n(n-1)/2} \prod_{1\leqslant i< j\leqslant n} (j-i)^2 \\ &= (-1)^{n(n-1)/2} (n-1)!^n \\ &= (-1)^{(p-1)(p-3)/8} \left(\frac{2}{p-1}\right)^{(p-1)/2} \left(\frac{p-1}{2}!\right)^{(p-1)/2}. \end{split}$$

Therefore

$$\left|\frac{\left(\frac{i+j}{p}\right)}{i+j}\right|_{1\leqslant i,j\leqslant (p-1)/2} \equiv \left(\frac{p-1}{2}!\right)^{(p-1)/2} \pmod{p}.$$
 (2.7)

In the case $p \equiv 1 \pmod{4}$, this yields

$$\left|\frac{\left(\frac{i+j}{p}\right)}{i+j}\right|_{1\leqslant i,j\leqslant (p-1)/2} \equiv (-1)^{(p-1)/4} = \left(\frac{2}{p}\right) \pmod{p}.$$

If $p \equiv 3 \pmod{4}$, then by (2.7) we have

$$\left|\frac{\binom{i+j}{p}}{i+j}\right|_{1\leqslant i,j\leqslant (p-1)/2} \equiv \frac{p-1}{2}! \left(\frac{p-1}{2}!\right)^{2(p-3)/4} \equiv \frac{p-1}{2}! \pmod{p}.$$

So (1.20) always holds.

(ii) It is known (cf. [K05, (5.5)]) that

$$\left|\frac{1}{x_i + y_j}\right|_{1 \le i, j \le n} = \frac{\prod_{1 \le i < j \le n} (x_j - x_i)(y_j - y_i)}{\prod_{i=1}^n \prod_{j=1}^n (x_i + y_j)}$$

Taking n = (p-1)/2 and $x_i = y_i = i^2$ for i = 1, ..., n, we get

$$\left|\frac{1}{i^2+j^2}\right|_{1\leqslant i,j\leqslant (p-1)/2} = \frac{\prod_{1\leqslant i< j\leqslant (p-1)/2} (j^2-i^2)^2}{\prod_{i=1}^{(p-1)/2} \prod_{j=1}^{(p-1)/2} (i^2+j^2)}.$$
(2.8)

Observe that

$$\begin{split} \prod_{1 \leqslant i < j \leqslant (p-1)/2} (j^2 - i^2)^2 &= \prod_{j=1}^{(p-1)/2} ((j-1)!(j+1)\cdots(2j-1))^2 \\ &= \prod_{j=1}^{(p-1)/2} \frac{(2j-1)!^2}{j^2} = \frac{\prod_{j=1}^{(p-1)/2} (2j-1)!(p-2j)!}{((p-1)/2)!^2} \\ &= \frac{\binom{(p-1)/2}{(p-1)!}}{(p-1)!} \prod_{j=1}^{(p-1)/2} \frac{(p-1)!}{\binom{p-1}{2j-1}} \\ &= \frac{(-1)^{(p-1)/2}}{-1} \prod_{j=1}^{(p-1)/2} \frac{(-1)^{(p-1)/2}}{(-1)^{2j-1}} = 1 \pmod{p} \end{split}$$

with the help of Wilson's theorem. Also,

$$\prod_{i=1}^{(p-1)/2} \prod_{j=1}^{(p-1)/2} (i^2 + j^2) = \prod_{i=1}^{(p-1)/2} \left(\prod_{j=1}^{(p-1)/2} i^2 \left(1 + \frac{j^2}{i^2} \right) \right)$$
$$\equiv \prod_{i=1}^{(p-1)/2} \left(i^{p-1} \prod_{x=1}^{(p-1)/2} (1 + x^2) \right) \pmod{p}.$$

As -1 is a quadratic non-residue modulo p, applying (2.4) with d = -1 we get

$$\prod_{x=1}^{(p-1)/2} (x^2+1) \equiv (-1)^{(p+1)/2} 2 = 2 \pmod{p}.$$

Therefore

$$\prod_{i=1}^{(p-1)/2} \prod_{j=1}^{(p-1)/2} (i^2 + j^2) \equiv \prod_{i=1}^{(p-1)/2} 2 = 2^{(p-1)/2} \equiv \left(\frac{2}{p}\right) \pmod{p}.$$

So the desired congruence (1.21) follows from (2.8). We are done. \Box

3. Some open conjectures on determinants

Wilson's theorem implies that

$$\frac{p-1}{2}! \equiv \pm 1 \pmod{p} \quad \text{for any prime } p \equiv 3 \pmod{4}.$$

Conjecture 3.1 (2013-08-05). Let p be an odd prime. Then we have

$$\left| \left(\frac{i^2 - ((p-1)/2)!j}{p} \right) \right|_{1 \leqslant i, j \leqslant (p-1)/2} = 0 \iff p \equiv 3 \pmod{4}.$$
(3.1)

Remark 3.1. See [Su13, A226163] for the sequence

$$\left\| \left(\frac{i^2 - ((p_n - 1)/2)!j}{p_n} \right) \right\|_{1 \le i, j \le (p_n - 1)/2} \quad (n = 2, 3, \dots),$$

where p_n denotes the *n*th prime. In 1961 L. J. Mordell [M61] proved that for any prime p > 3 with $p \equiv 3 \pmod{4}$ we have

$$\frac{p-1}{2}! \equiv (-1)^{(h(-p)+1)/2} \pmod{p},\tag{3.2}$$

where h(-p) is the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{-p})$.

Conjecture 3.2 (2013-07-18). Let p be an odd prime. For $d \in \mathbb{Z}$ let S(d, p) be given by (1.12). Then

$$\left(\frac{-S(d,p)}{p}\right) = 1 \quad if \ \left(\frac{d}{p}\right) = 1, \tag{3.3}$$

and

$$S(d,p) = 0 \quad if\left(\frac{d}{p}\right) = -1. \tag{3.4}$$

Remark 3.2. See [Su13, A227609] for the sequence $S(1, p_n)$ (n = 2, 3, ...). Let p be any odd prime and let $d \in \mathbb{Z}$ with $p \nmid d$. The sum of entries in each row or column of the determinant S(d, p) actually equals $-(1 + (\frac{d}{p}))/2$. Indeed, for any $i_0, j_0 = 1, ..., (p-1)/2$ we have

$$\sum_{j=1}^{(p-1)/2} \left(\frac{i_0^2 + dj^2}{p}\right) = \sum_{i=1}^{(p-1)/2} \left(\frac{i + dj_0^2}{p}\right) = \begin{cases} 0 & \text{if } \left(\frac{d}{p}\right) = -1, \\ -1 & \text{if } \left(\frac{d}{p}\right) = 1. \end{cases}$$

To see this we note that

$$\sum_{j=1}^{(p-1)/2} \left(\frac{i_0^2 + dj^2}{p}\right) \equiv \sum_{j=1}^{(p-1)/2} (i_0^2 + dj^2)^{(p-1)/2}$$
$$\equiv \frac{p-1}{2} i_0^{p-1} + \sum_{k=1}^{(p-1)/2} \binom{(p-1)/2}{k} i_0^{p-1-2k} \frac{d^k}{2} \sum_{j=1}^{p-1} j^{2k}$$
$$\equiv -\frac{1}{2} + \frac{1}{2} \left(\frac{d}{p}\right) (p-1) \equiv -\frac{1 + \left(\frac{d}{p}\right)}{2} \pmod{p}.$$

The following conjecture can be viewed as a supplement to Conjecture 3.2.

Conjecture 3.3 (2013-08-07). Let p be an odd prime, and let $c, d \in \mathbb{Z}$ with $p \nmid cd$. Define

$$S_c(d,p) = \left| \left(\frac{i^2 + dj^2 + c}{p} \right) \right|_{1 \le i,j \le (p-1)/2}.$$
 (3.5)

Then

$$\left(\frac{S_c(d,p)}{p}\right) = \begin{cases} 1 & \text{if } \left(\frac{c}{p}\right) = 1 \& \left(\frac{d}{p}\right) = -1, \\ \left(\frac{-1}{p}\right) & \text{if } \left(\frac{c}{p}\right) = \left(\frac{d}{p}\right) = -1, \\ \left(\frac{-2}{p}\right) & \text{if } \left(\frac{-c}{p}\right) = \left(\frac{d}{p}\right) = 1, \\ \left(\frac{-6}{p}\right) & \text{if } \left(\frac{-c}{p}\right) = -1 \& \left(\frac{d}{p}\right) = 1. \end{cases}$$
(3.6)

Remark 3.3. See [Su13, A228005] for the sequence $S_1(1, p_n)$ (n = 2, 3, ...). Let p be an odd prime and let $b, c, d \in \mathbb{Z}$ with $p \nmid bcd$. It is easy to see that

$$\left| \left(\frac{i^2 + dj^2 + b^2 c}{p} \right) \right|_{1 \leqslant i, j \leqslant (p-1)/2} = \left| \left(\frac{(bi)^2 + d(bj)^2 + b^2 c}{p} \right) \right|_{1 \leqslant i, j \leqslant (p-1)/2}$$
$$= \left| \left(\frac{i^2 + dj^2 + c}{p} \right) \right|_{1 \leqslant i, j \leqslant (p-1)/2}.$$

Conjecture 3.4 (2013-08-12). Let p be an odd prime. For $c, d \in \mathbb{Z}$ define

$$(c,d)_p := \left| \left(\frac{i^2 + cij + dj^2}{p} \right) \right|_{1 \leq i,j \leq p-1}.$$
(3.7)

(i) If d is nonzero, then there are infinitely many odd primes q with $(c, d)_q = 0$. Also,

$$\left(\frac{d}{p}\right) = -1 \implies (c,d)_p = 0. \tag{3.8}$$

When (c, d)_p is nonzero, its p-adic valuation (i.e., p-adic order) must be even.
(ii) We have

$$(6,1)_p = 0 \quad if \ p \equiv 3 \pmod{4},$$

$$(3,2)_p = (4,2)_p = 0 \quad if \ p \equiv 7 \pmod{8},$$

$$(3,3)_p = 0 \quad if \ p \equiv 11 \pmod{12},$$

$$(10,9)_p = 0 \quad if \ p \equiv 5 \pmod{12}.$$
(3.9)

Remark 3.4. See [Su13, A225611] for the sequence $(6,1)_{p_n}$ (n = 2, 3, ...). It is easy to see that $(-c, d)_p = (\frac{-1}{p})(c, d)_p$ for any odd prime p and integers c and d.

13

Conjecture 3.5 (2013-08-12). Let p be an odd prime. For $c, d \in \mathbb{Z}$ define

$$[c,d]_p := \left| \left(\frac{i^2 + cij + dj^2}{p} \right) \right|_{0 \le i,j \le p-1}.$$
 (3.10)

(i) If d is nonzero, then there are infinitely many odd primes q with $[c,d]_q = 0$. When $[c,d]_p$ is nonzero, its p-adic valuation (i.e., p-adic order) must be even.

(ii) If $p \nmid d$ and $(c, d)_p \neq 0$, then

$$\frac{[c,d]_p}{(c,d)_p} = \begin{cases} (p-1)/2 & \text{if } p \nmid c^2 - 4d, \\ (1-p)/(p-2) & \text{if } p \mid c^2 - 4d. \end{cases}$$
(3.11)

(iii) We have

$$[6,1]_{p} = [3,2]_{p} = 0 \quad if \ p \equiv 3 \pmod{4},$$

$$[3,3]_{p} = 0 \quad if \ p \equiv 5 \pmod{6},$$

$$[4,2]_{p} = 0 \quad if \ p \equiv 5,7 \pmod{8},$$

$$[5,5]_{p} = 0 \quad if \ p \equiv 13,17 \pmod{20}.$$

$$(3.12)$$

Remark 3.5. See [Su13, A228095] for the sequence $[3,3]_{p_n}$ (n = 2, 3, ...). It is easy to see that $[-c, d]_p = (\frac{-1}{p})[c, d]_p$ for any odd prime p and integers c and d.

Let p be any odd prime. For $a, b, c \in \mathbb{Z}$ with $p \nmid a$, it is known (cf. [BEW]) that

$$\sum_{x=0}^{p-1} \left(\frac{ax^2 + bx + c}{p} \right) = \begin{cases} -(\frac{a}{p}) & \text{if } p \nmid b^2 - 4ac, \\ (p-1)(\frac{a}{p}) & \text{if } p \mid b^2 - 4ac. \end{cases}$$

Thus, for any $c, d \in \mathbb{Z}$ we can easily calculate the sum of all entries in a row or a column of $(c, d)_p$ or $[c, d]_p$.

Conjecture 3.6 (2013-08-11). Let p > 5 be a prime with $p \equiv 1 \pmod{4}$. Define

$$D_p^+ := \left| (i+j) \left(\frac{i+j}{p} \right) \right|_{1 \le i, j \le (p-1)/2} \text{ and } D_p^- := \left| (j-i) \left(\frac{j-i}{p} \right) \right|_{1 \le i, j \le (p-1)/2} \tag{3.13}$$

Then

$$\left(\frac{D_p^+}{p}\right) = \left(\frac{D_p^-}{p}\right) = 1. \tag{3.14}$$

Remark 3.6. It is known that a skew-symmetric $2n \times 2n$ determinant with integer entries is always a square (cf. [St90] and [K99]).

Conjecture 3.7 (2013-08-20). *For any prime* p > 3*, we have*

$$\left| (i^2 + j^2) \left(\frac{i^2 + j^2}{p} \right) \right|_{0 \le i, j \le (p-1)/2} \equiv 0 \pmod{p}.$$
(3.15)

Remark 3.7. This conjecture is somewhat curious.

Conjecture 3.8 (2013-08-12). Let $p \equiv 5 \pmod{6}$ be a prime. Then

$$\operatorname{ord}_{p}\left|\frac{1}{i^{2}-ij+j^{2}}\right|_{1\leqslant i,j\leqslant (p-1)/2} = \frac{p+1}{6},$$
(3.16)

where $\operatorname{ord}_{p} x$ denotes the p-adic order of a rational number x. Also, we have

$$\left|\frac{1}{i^2 - ij + j^2}\right|_{1 \le i, j \le p-1} \equiv 2x^2 \pmod{p} \tag{3.17}$$

for some $x \in \{1, \dots, (p-1)/2\}$.

Remark 3.8. Compare this conjecture with Theorem 1.3(ii).

The $(n+1) \times (n+1)$ Hankel determinant associated with a sequence a_0, a_1, \ldots of numbers is defined by $|a_{i+j}|_{0 \le i,j \le n}$. The evaluation of this determinant is known for some particular sequences including Catalan numbers and Bell numbers (cf. [K99]).

Conjecture 3.9 (2013-08-17). (i) For any positive integers m and n, we have

$$(-1)^n \left| H_{i+j}^{(m)} \right|_{0 \le i, j \le n} > 0, \tag{3.18}$$

where $H_k^{(m)}$ denotes the m-th order harmonic number $\sum_{0 < j \leq k} 1/j^m$. (ii) For any prime $p \equiv 1 \pmod{4}$ and $m = 2, 4, 6, \ldots$ we have

$$\left| H_{i+j}^{(m)} \right|_{0 \le i, j \le (p-1)/2} \equiv 0 \pmod{p}.$$
 (3.19)

Remark 3.9. For any odd prime p and $i, j \in \{0, \ldots, (p-1)/2\}$, the number $H_{i+i}^{(m)}$ is an p-adic integer for each positive integer m.

Conjecture 3.10. (i) (2013-08-14) For Franel numbers $f_n := \sum_{k=0}^n {n \choose k}^3$ (n = 0, 1, ...), the number $6^{-n}|f_{i+j}|_{0 \le i,j \le n}$ is always a positive odd integer. In general, for any integer r > 1 and the r-th order Franel numbers $f_n^{(r)} := \sum_{k=0}^n {n \choose k}^r$ (n = 0, 1, ...), the number $2^{-n}|f_{i+j}^{(r)}|_{0 \le i,j \le n}$ is always a positive odd integer.

(ii) (2013-08-20) For any prime $p \equiv 1 \pmod{4}$ with $p \not\equiv 1 \pmod{24}$, we have

$$|f_{i+j}|_{0 \le i,j \le (p-1)/2} \equiv 0 \pmod{p}.$$
 (3.20)

Remark 3.10. See [Su13, A225776] for the sequence $|f_{i+j}|_{0 \le i,j \le n}$ (n = 0, 1, 2, ...).

Conjecture 3.11. (i) (2013-08-14) For two kinds of Apéry numbers

$$b_n := \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k} \text{ and } A_n := \sum_{k=0}^n \binom{n}{k}^2 \binom{n+k}{k}^2 \quad (n = 0, 1, 2, \dots),$$

both

$$\frac{|b_{i+j}|_{0\leqslant i,j\leqslant n}}{10^n} \quad and \quad \frac{|A_{i+j}|_{0\leqslant i,j\leqslant n}}{24^n}$$

are always positive integers.

(ii) (2013-08-20) For any prime p with $2 \nmid \lfloor p/10 \rfloor$ and $p \not\equiv 31, 39 \pmod{40}$, we have

$$|b_{i+j}|_{0 \le i,j \le (p-1)/2} \equiv 0 \pmod{p}.$$
 (3.21)

Remark 3.11. See [Su13, A228143] for the sequence $|A_{i+j}|_{0 \le i,j \le n}$ (n = 0, 1, 2, ...). Conjecture 3.12 (2013-08-20). For n = 0, 1, 2, ... define

$$c_n := \sum_{k=0}^n (-1)^k \binom{n}{k}^4 \quad and \quad d_n := \sum_{k=0}^n (-1)^k \binom{n}{k}^2 \binom{2k}{k} \binom{2(n-k)}{n-k}.$$

Then, for any odd prime p we have

$$|c_{i+j}|_{0\leqslant i,j\leqslant p-1} \equiv \left(\frac{-1}{p}\right) \pmod{p} \quad and \quad |d_{i+j}|_{0\leqslant i,j\leqslant p-1} \equiv 1 \pmod{p}.$$
(3.22)

Remark 3.12. See [Su13, A228304] for the sequence c_n (n = 0, 1, 2, ...). Conjecture 3.13. (i) (2013-08-14) For Catalan-Larcombe-French numbers

$$P_n := \sum_{k=0}^n \frac{\binom{2k}{k}^2 \binom{2(n-k)}{n-k}^2}{\binom{n}{k}} = 2^n \sum_{k=0}^{\lfloor n/2 \rfloor} \binom{n}{2k} \binom{2k}{k}^2 4^{n-2k} \quad (n = 0, 1, \dots),$$

the number $2^{-n(n+3)}|P_{i+j}|_{0 \leq i,j \leq n}$ is always a positive odd integer.

(ii) (2013-08-20) For any odd prime p, we have the supercongruence

$$|P_{i+j}|_{0 \leqslant i,j \leqslant p-1} \equiv \left(\frac{-1}{p}\right) \pmod{p^2}.$$
(3.23)

Remark 3.13. See [Sl, A053175] for some basic properties of Catalan-Larcombe-French numbers. Conjecture 3.14. (i) (2013-08-14) For Domb numbers

$$D_n := \sum_{k=0}^n \binom{n}{k}^2 \binom{2k}{k} \binom{2(n-k)}{n-k} \ (n=0,1,\ldots),$$

the number $12^{-n}|D_{i+j}|_{0 \le i,j \le n}$ is always a positive odd integer.

(ii) (2013-08-20) For any prime p, we have

$$|D_{i+j}|_{0 \leq i,j \leq p-1} \equiv \begin{cases} \left(\frac{-1}{p}\right)(4x^2 - 2p) \pmod{p^2} & \text{if } p = x^2 + 3y^2 \ (x, y \in \mathbb{Z}), \\ 0 \pmod{p^2} & \text{if } p \equiv 2 \pmod{3}. \end{cases}$$
(3.24)

Remark 3.14. See [Sl, A002895] for some basic properties of Domb numbers, and [Su13, A228289] for the sequence $|D_{i+j}|_{0 \le i,j \le p_n-1}$ (n = 1, 2, 3, ...). It is known that any prime $p \equiv 1 \pmod{3}$ can be written uniquely in the form $x^2 + 3y^2$ with x and y positive integers.

Conjecture 3.15 (2013-08-22). For n = 0, 1, 2, ... let

$$s_n := \sum_{k=0}^n {\binom{n}{k}}^2 C_k$$
 and $S(n) = |s_{i+j}|_{0 \le i,j \le n}$,

where C_k denotes the Catalan number $\binom{2k}{k}/(k+1) = \binom{2k}{k} - \binom{2k}{k+1}$.

(i) S(n) is always positive and odd, and not congruent to 7 modulo 8.

(ii) Let p be an odd prime. If $p \equiv 1 \pmod{3}$ and $p = x^2 + 3y^2$ with $x, y \in \mathbb{Z}$ and $x \equiv 1 \pmod{3}$, then

$$S(p-1) \equiv \left(\frac{-1}{p}\right) \left(2x - \frac{p}{2x}\right) \pmod{p^2}.$$
 (3.25)

If $p \equiv 2 \pmod{3}$, then

$$S(p-1) \equiv -\left(\frac{-1}{p}\right) \frac{3p}{\binom{(p+1)/2}{(p+1)/6}} \pmod{p^2}.$$
 (3.26)

Remark 3.15. See [Sl, A086618] for the sequence s_n (n = 0, 1, 2, ...), and [Su13, A228456] for the sequence S(n) (n = 0, 1, 2, ...).

Conjecture 3.16 (2013-08-21). For n = 0, 1, 2, ... let

$$w_n := \sum_{k=0}^{\lfloor n/3 \rfloor} (-1)^k 3^{n-3k} \binom{n}{3k} \binom{2k}{k} \binom{3k}{k} \text{ and } W(n) = |w_{i+j}|_{0 \le i,j \le n}.$$

Then

$$n \equiv 1 \pmod{3} \implies W(n) = 0.$$
 (3.27)

When $n \equiv 0, 2 \pmod{3}$, the number $(-1)^{\lfloor (n+1)/3 \rfloor} W(n)/6^n$ is always a positive odd integer.

Remark 3.16. See [Sl, A006077] for the sequence w_n (n = 0, 1, 2, ...).

Conjecture 3.17 (2013-08-15). For any positive integer n, we have

$$\left|B_{i+j}^2\right|_{0\leqslant i,j\leqslant n} < 0 \quad and \quad \left|E_{i+j}^2\right|_{0\leqslant i,j\leqslant n} > 0, \tag{3.28}$$

where B_0, B_1, B_2, \ldots are Bernoulli numbers and E_0, E_1, E_2, \ldots are Euler numbers.

Remark 3.17. We have many similar conjectures with Bernoulli or Euler numbers replaced by some other classical numbers.

Acknowledgments. The author would like to thank Prof. R. Chapman and C. Krattenthaler for their helpful comments.

References

- [BEW] B. C. Berndt, R. J. Evans and K. S. Williams, Gauss and Jacobi Sums, John Wiley & Sons, 1998.
- [C59] L. Carlitz, Some cyclotomic matrices, Acta Arith. 5 (1959), 293–308.
- [Ch03] R. Chapman, Determinants of Legendre matrices, preprint August 5, 2003.
- [Ch04] R. Chapman, Determinants of Legendre symbol matrices, Acta Arith. 115 (2004), 231–244.
- [Ch12] R. Chapman, My evil determinant problem, preprint, Dec. 12, 2012, available from http://empslocal.ex.ac.uk/people/staff/rjchapma/etc/evildet.pdf.
- [Co62] H. Cohn, Advanced Number Theory, Dover Publ., New York, 1962.
- [DH] W. Duke and K. Hopkins, Quadratic reciprocity in a finite group, Amer. Math. Monthly 112 (2005), 251–256.
- [G04] R. K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, 2004.
- [K99] C. Krattenthaler, Advanced determinant calculus, Séminaire Lotharinggien Combin. 42 (1999), Article B42q, 67pp.
- [K05] C. Krattenthaler, Advanced determinant calculus: a complement, Linear Algebra Appl. 411 (2005), 68–166.
- [M61] L. J. Mordell, The congruence $((p-1)/2)! \equiv \pm 1 \pmod{p}$, Amer. Math. Monthly 68 (1961), 145–146.
- [P06] H. Pan, A remark on Zoloterav's theorem, preprint, arXiv:0601026, 2006.
- [SI] N. J. A. Sloane, Sequences A002895, A006077, A053175, A086618 in OEIS, http://oeis.org.
- [St90] J. R. Stembridge, Nonintersecting paths, pfaffians and plane partitions, Adv. in Math. 83 (1990), 96–131.
- [Su13] Z.-W. Sun, Sequences A225611, A225776, A226163, A227609, A227968, A228005, A228095, A228143, A228289, A228304, A228456 in OEIS, http://oeis.org.
- [V12] M. Vsemirnov, On the evaluation of R. Chapman's "evil determinant", Linear Algebra Appl. 436 (2012), 4101–4106.
- [V13] M. Vsemirnov, On R. Chapman's "evil determinant": case $p \equiv 1 \pmod{4}$, Acta Arith. **159** (2013), 331–344.
- [Z] G. Zolotarev, Nouvelle démonstration de la loi de réciprocité de Legendre, Nouvelles Ann. Math. 11(1872), 354–362.