
ar
X

iv
:1

30
8.

29
00

v5
  [

m
at

h.
N

T
] 

 2
2 

A
ug

 2
01

3

Preprint, arXiv:1308.2900

ON SOME DETERMINANTS WITH

LEGENDRE SYMBOL ENTRIES

Zhi-Wei Sun

Department of Mathematics, Nanjing University
Nanjing 210093, People’s Republic of China

zwsun@nju.edu.cn
http://math.nju.edu.cn/∼zwsun

Abstract. In this paper we mainly focus on some determinants with Legendre
symbol entries. For an odd prime p and an integer d, let S(d, p) denote the

determinant of the (p − 1)/2 × (p − 1)/2 matrix whose (i, j)-entry (1 6 i, j 6

(p− 1)/2) is the Legendre symbol ( i
2+dj2

p
). We investigate properties of S(d, p)

as well as some other determinants involving Legendre symbols. In Section 3 we

pose 17 open conjectures on determinants one of which states that (
−S(d,p)

p
) = 1

if ( d
p
) = 1, and S(d, p) = 0 if ( d

p
) = −1. This material might interest some

readers and stimulate further research.

1. Introduction

For an n× n matrix A = (aij)16i,j6n over the field of complex numbers, we
often write detA in the form |aij|16i,j6n. In this paper we study determinants
with Legendre symbol entries.

Let p be an odd prime and let ( ·
p
) be the Legendre symbol. The circulant

determinant
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since
∑p−1

k=0(
k
p ) = 0. (See [K99, (2.41)] for the evaluation of a general circulant

determinant.) For the matrix A = (aij)16i,j6p−1 with aij = ( i−j
p
), L. Carlitz

[C59, Theorem 4] proved that its characteristic polynomial is

|xIp−1 − A| =
(

x2 −
(−1

p

)

p

)(p−3)/2 (

x2 −
(−1

p

))

,

where Ip−1 is the (p− 1) × (p− 1) identity matrix. Putting x = 0 in Carlitz’s
formula, we obtain that

(−1)p−1|A| =
(

−
(−1

p

))(p−1)/2

p(p−3)/2 = p(p−3)/2.

For m ∈ Z let {m}p denote the least nonnegative residue of an integer
m modulo p. For any integer a 6≡ 0 (mod p), {aj}p (j = 1, . . . , p − 1) is
a permutation of 1, . . . , p − 1, and its sign is the Legendre symbol (ap ) by

Zolotarev’s theorem (cf. [DH] and [Z]). Therefore, for any integer d 6≡ 0 (mod p)
we have
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06i,j6p−1

= 0 (1.1)
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∣
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p

)
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∣

∣

∣
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i− j

p
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∣

16i,j6p−1

=

(−d

p

)

p(p−3)/2. (1.2)

Let p be an odd prime. In 2004, R. Chapman [Ch04] used quadratic Gauss
sums to determine the values of
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∣

∣
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p
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∣
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∣

16i,j6(p+1)/2

.

Since (p+ 1)/2− i+ (p+ 1)/2− j − 1 ≡ −(i+ j) (mod p), we see that
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∣
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∣
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∣
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Chapman [Ch12] also conjectured that
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=

{ −rp if p ≡ 1 (mod 4),

1 if p ≡ 3 (mod 4),
(1.3)
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where ε
(2−( 2

p
))h(p)

p = rp+sp
√
p with rp, sp ∈ Z. (Throughout this paper, εp and

h(p) stand for the fundamental unit and the class number of the real quadratic
field Q(

√
p) respectively.) As Chapman could not solve this problem for several

years, he called the determinant evil (cf. [Ch12]). Chapman’s conjecture on
his “evil” determinant was recently confirmed by M. Vsemirnov [V12, V13] via
matrix decomposition.

Let p ≡ 1 (mod 4) be a prime. In an unpublic manuscript written in 2003
Chapman [Ch03] conjectured that

sp =

(

2

p

)
∣

∣

∣

∣

(

j − i

p

)
∣

∣

∣

∣

16i,j6(p−1)/2

. (1.4)

Note that (1.3) and (1.4) together yield an interesting identity

ε
(2−( 2

p
))h(p)

p =

(

2

p

)
∣

∣

∣

∣

(

j − i

p

)
∣

∣

∣

∣

16i,j6(p−1)/2

√
p−

∣
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(

j − i

p

)
∣

∣

∣

∣

06i,j6(p−1)/2

.

Taking the norm with respect to the field extension Q(
√
p)/Q, we are led to

the identity

∣
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p
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06i,j6(p−1)/2

− p

∣
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p

)
∣

∣

∣

∣

2

16i,j6(p−1)/2

= (−1)h(p)

since N(εp) = −1 (cf. Theorem 3 of [Co62, p. 185]). This provides an explicit

solution to the diophantine equation x2 − py2 = (−1)h(p).
Now we state our first theorem.

Theorem 1.1. Let p be an odd prime. For d ∈ Z define

R(d, p) :=

∣

∣

∣

∣

(

i+ dj

p

)
∣

∣

∣

∣

06i,j6(p−1)/2

. (1.5)

If p ≡ 1 (mod 4), then

R(d, p) ≡
((

d

p

)

d

)(p−1)/4
p− 1

2
! (mod p). (1.6)

When p ≡ 3 (mod 4), we have

R(d, p) ≡
{

( 2p ) (mod p) if (dp ) = 1,

1 (mod p) if (dp ) = −1.
(1.7)

Also,

R(−d, p) ≡
(

2

p

)

R(d, p) (mod p), (1.8)
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and
∣
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06i,j6(p−1)/2

≡ R(d, p) (mod p) for all c ∈ Z. (1.9)

Remark 1.1. Let p be any odd prime. By Wilson’s theorem,

(

p− 1

2
!

)2

≡
{ −1 (mod p) if p ≡ 1 (mod 4),

1 (mod p) if p ≡ 3 (mod 4).
(1.10)

Corollary 1.1. Let p ≡ 1 (mod 4) be a prime, and write ε
h(p)
p = ap + bp

√
p

with ap, bp ∈ Q, where εp and h(p) are the fundamental unit and the class

number of the real quadratic field Q(
√
p). Then we have

ap ≡ −p− 1

2
! (mod p) and h(p) ≡ 1 (mod 2). (1.11)

Proof. By (1.6) we have

R(1, p) ≡ p− 1

2
! (mod p).

On the other hand, Chapman [Ch04, Corollary 3] proved that
∣
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16i,j6(p+1)/2

= −
(

2

p

)

2(p−1)/2ap.

So we have the first congruence in (1.11). Taking norms (with respect to the

field extension Q(
√
p)/Q) of both sides of the identity ε

h(p)
p = ap + bp

√
p, we

obtain
N(ε)h(p) = a2p − pb2p.

Since

a2p ≡
(

p− 1

2
!

)2

≡ −1 (mod p),

we must have N(ε) = −1 and 2 ∤ h(p). This proves the second congruence in
(1.11). �

It is well known that for any odd prime p the (p− 1)/2 squares

12, 22, . . . ,

(

p− 1

2

)2

give all the (p−1)/2 quadratic residues modulo p. So we think that it’s natural
to consider some Legendre symbol determinants involving binary quadratic
forms.
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Theorem 1.2. Let p be any odd prime. For d ∈ Z define

S(d, p) :=

∣

∣

∣

∣

(

i2 + dj2

p

)
∣

∣

∣

∣

16i,j6(p−1)/2

(1.12)

and

T (d, p) :=

∣

∣

∣

∣

(

i2 + dj2

p

)
∣

∣

∣

∣

06i,j6(p−1)/2

. (1.13)

(i) For any c ∈ Z with p ∤ c, we have

S(c2d, p) =

(

c

p

)(p+1)/2

S(d, p) and T (c2d, p) =

(

c

p

)(p+1)/2

T (d, p). (1.14)

If p ≡ 1 (mod 4), then

S(−d, p) =

(

2

p

)

S(d, p) and T (−d, p) =

(

2

p

)

T (d, p). (1.15)

When p ≡ 3 (mod 4), we have
(

d

p

)

= −1 =⇒ S(d, p) = 0. (1.16)

(ii) We have
(

T (d, p)

p

)

=

{

( 2p ) if (dp ) = 1,

1 if (d
p
) = −1.

(1.17)

Also,

T (−d, p) ≡
(

2

p

)

T (d, p) (mod p) (1.18)

and
∣
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∣

∣

(

i2 + dj2 + c

p

)
∣
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∣

∣

06i,j6(p−1)/2

≡ T (d, p) (mod p) for all c ∈ Z. (1.19)

Example 1.1. Note that

S(1, 11) =

∣
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−1 1 −1 −1 1
1 −1 −1 1 −1
−1 −1 −1 1 1
−1 1 1 −1 −1
1 −1 1 −1 −1
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∣

= −16

and

S(2, 13) =

∣
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1 1 −1 −1 1 −1
−1 1 1 1 −1 −1
−1 1 1 −1 −1 1
−1 −1 −1 1 1 1
1 −1 1 −1 1 −1
1 −1 −1 1 −1 1

∣
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∣

∣

∣

= 0.

Now we present our third theorem.
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Theorem 1.3. (i) For any odd prime p, we have

∣

∣

∣

∣

( i+j
p )

i+ j

∣

∣

∣

∣

16i,j6(p−1)/2

≡
{

( 2
p
) (mod p) if p ≡ 1 (mod 4),

((p− 1)/2)! (mod p) if p ≡ 3 (mod 4).
(1.20)

(ii) Let p ≡ 3 (mod 4) be a prime. Then

∣

∣

∣

∣

1

i2 + j2

∣

∣

∣

∣

16i,j6(p−1)/2

≡
(

2

p

)

(mod p). (1.21)

We are going to prove Theorems 1.1-1.3 in the next section, and pose over
ten new conjectures on determinants in Section 3.

2. Proof of Theorems 1.1-1.3

Lemma 2.1 ([K05, Lemma 9]). Let P (z) =
∑n−1

k=0 akz
k be a polynomial with

complex number coefficients. Then we have

|P (xi + yj)|16i,j6n = ann−1

n−1
∏

k=0

(

n− 1

k

)

×
∏

16i<j6n

(xi − xj)(yj − yi). (2.1)

Proof of Theorem 1.1. Set n = (p− 1)/2. For any c ∈ Z, we have

∣

∣

∣

∣

(

i+ dj + c

p

)
∣

∣

∣

∣

06i,j6(p−1)/2

≡ |(i+ dj + c)n|06i,j6n (mod p).

In light of Lemma 2.2,

|(i+ dj + c)n|06i,j6n = |(i+ dj + c− d− 1)n|16i,j6n+1

=

n
∏

k=0

(

n

k

)

×
∏

16i<j6n+1

(i− j)(dj + c− d− 1− (di+ c− d− 1))

=
(n!)n+1

∏n
k=0 k!(n− k)!

(−d)n(n+1)/2
∏

16i<j6n+1

(j − i)2 = (−d)n(n+1)/2(n!)n+1.

Therefore (1.9) holds, and also

R(d, p) ≡ (−d)(p
2−1)/8

(

p− 1

2
!

)(p+1)/2

(mod p). (2.2)
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In the case p ≡ 1 (mod 4), from (2.2) we obtain

R(d, p) ≡(−d)(p−1)/4 (p+1)/2 p− 1

2
!

(

p− 1

2
!

)2(p−1)/4

≡
(

d(p+1)/2
)(p−1)/4 p− 1

2
! ≡

((

d

p

)

d

)(p−1)/4
p− 1

2
! (mod p).

In the case p ≡ 3 (mod 4), (2.2) yields

R(d, p) ≡ (−d)(p−1)/2×(p+1)/4

(

p− 1

2
!

)2(p+1)/4

≡
(−d

p

)(p+1)/4

(mod p)

and hence (1.7) follows.
Now it remains to show (1.8). If p ≡ 1 (mod 4), then by (1.6)

R(−d, p) ≡
((−d

p

)

(−d)

)(p−1)/4
p− 1

2
! ≡

(

2

p

)

R(d, p) (mod p).

If p ≡ 3 (mod 4), then (−d
p
) = −(d

p
) and hence we get (1.8) from (1.7).

The proof of Theorem 1.1 is now complete. �

Lemma 2.2. Let p ≡ 1 (mod 4) be a prime. Then

(

((p− 1)/2)!

p

)

=

(

2

p

)

. (2.3)

Proof. Since

(−4)(p−1)/4 = (−1)(p−1)/42(p−1)/2 =

(

2

p

)

2(p−1)/2 ≡ 1 (mod p),

for some x ∈ Z we have

x4 ≡ −4 ≡ 4

(

p− 1

2
!

)2

(mod p), i.e., x2 ≡ ±2× p− 1

2
! (mod p).

Therefore (2.3) holds. �

Proof of Theorem 1.2(i). Let c ∈ Z with p ∤ c. For each j = 1, . . . , (p− 1)/2 let
σc(j) be the unique r ∈ {1, . . . , (p − 1)/2} such that cj ≡ r or − r (mod p).
By a result of H. Pan [P06], the sign of the permutation σc equals ( cp )

(p+1)/2.

Thus

S(c2d, p) =

∣

∣

∣

∣

(

i2 + dσc(j)
2

p

)
∣

∣

∣

∣

16i,j6(p−1)/2

=

(

c

p

)(p+1)/2

S(d, p).
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Similarly the second equality in (1.14) also holds.
Now we handle the case p ≡ 1 (mod 4). As ((p− 1)/2)!2 ≡ −1 (mod p), by

applying (1.14) with c = ((p−1)/2)! and using (2.3) we immediately get (1.15).
Below we assume that p ≡ 3 (mod 4). As the transpose of S(−1, p) equals

(−1
p )(p−1)/2S(−1, p) = −S(−1, p), we have S(−1, p) = 0. If (dp ) = −1, then

d ≡ −c2 (mod p) for some integer c 6≡ 0 (mod p), and hence

S(d, p) = S(−c2, p) =

(

c

p

)(p+1)/2

S(−1, p) = 0.

This proves (1.16).
So far we have proved the first part of Theorem 1.2. �

Proof of Theorem 1.2(ii). Set n = (p− 1)/2. For any c ∈ Z, we have
∣

∣

∣

∣

(

i2 + dj2 + c

p

)
∣

∣

∣

∣

06i,j6(p−1)/2

≡ |(i2 + dj2 + c)n|06i,j6n (mod p).

In light of Lemma 2.2,

|(i2 + dj2 + c)n|06i,j6n = |((i− 1)2 + d(j − 1)2 + c)n|16i,j6n+1

=

n
∏

k=0

(

n

k

)

×
∏

16i<j6n+1

((i− 1)2 − (j − 1)2)(d(j − 1)2 + c− d(i− 1)2 − c)

=
(n!)n+1

∏n
k=0 k!(n− k)!

(−d)n(n+1)/2
∏

06i<j6n

(j − i)2(j + i)2

=(−d)n(n+1)/2(n!)n+1
∏

06i<j6n

(i+ j)2.

Therefore (1.19) holds, and also

T (d, p) ≡(−d)(p
2−1)/8

(

p− 1

2
!

)(p+1)/2
∏

06i<j6(p−1)/2

(i+ j)2

≡R(d, p)
∏

06i<j6(p−1)/2

(i+ j)2 (mod p)

with the help of (2.2). Combining this with (1.8) we obtain (1.18). Note that
(

T (d, p)

p

)

=

(

R(d, p)

p

)

.

If (dp ) = 1, then by Theorem 1.1 we have

R(d, p) ≡
{

d(p−1)/4((p− 1)/2)! (mod p) if p ≡ 1 (mod 4),

( 2p ) (mod p) if p ≡ 3 (mod 4),
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and hence (R(d,p)
p ) = ( 2p ) with the help if Lemma 2.2. In the case (dp ) = −1, by

Theorem 1.1 we have

R(d, p) ≡
{

(−d)(p−1)/4((p− 1)/2)! (mod p) if p ≡ 1 (mod 4),

1 (mod p) if p ≡ 3 (mod 4),

and hence (R(d,p)
p

) = 1 with the help if Lemma 2.2. Therefore (1.17) also holds.

We are done. �

Lemma 2.3. Let p be any odd prime. For any d ∈ Z with (dp ) = −1, we have

the new congruence

(p−1)/2
∏

x=1

(x2 − d) ≡ (−1)(p+1)/2 2 (mod p). (2.4)

Proof. For any integer a, it is well known that

a(p−1)/2 ≡ 1 (mod p) ⇐⇒
(

a

p

)

= 1

⇐⇒ a ≡ x2 (mod p) for some x = 1, . . . ,
p− 1

2
.

Therefore
(p−1)/2
∏

x=1

(z − x2) ≡ z(p−1)/2 − 1 (mod p)

and hence

(p−1)/2
∏

x=1

(y + d− x2) ≡ (y + d)(p−1)/2 − 1 (mod p). (2.5)

Comparing the constant terms of both sides of the congruence (2.5), we obtain

(p−1)/2
∏

x=1

(d− x2) ≡ d(p−1)/2 − 1 ≡ −2 (mod p)

and hence (2.4 follows. �

Remark 2.1. Under the condition of Lemma 2.3, we could also prove the fol-
lowing congruences

(p−1)/2
∑

x=1

1

x2 − d
≡ 1

4d
(mod p) and

(p−1)/2
∑

x=1

1

(x2 − d)2
≡ − 5

16d2
(mod p)

(2.6)
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by comparing coefficients of y and y2 in the congruence (2.5).

Proof of Theorem 1.3. (i) Set n = (p− 1)/2. Clearly

∣

∣

∣

∣

( i+j
p )

i+ j

∣

∣

∣

∣

16i,j6(p−1)/2

≡ |(i+ j)n−1|16i,j6n (mod p).

By Lemma 2.1,

|(i+ j)n−1|16i,j6n =
n−1
∏

k=0

(

n− 1

k

)

×
∏

16i<j6n

(i− j)(j − i)

=
(n− 1)!n

∏n−1
k=0 k!(n− 1− k)!

(−1)n(n−1)/2
∏

16i<j6n

(j − i)2

=(−1)n(n−1)/2(n− 1)!n

=(−1)(p−1)(p−3)/8

(

2

p− 1

)(p−1)/2 (
p− 1

2
!

)(p−1)/2

.

Therefore

∣

∣

∣

∣

( i+j
p )

i+ j

∣

∣

∣

∣

16i,j6(p−1)/2

≡
(

p− 1

2
!

)(p−1)/2

(mod p). (2.7)

In the case p ≡ 1 (mod 4), this yields

∣

∣

∣

∣

( i+j
p )

i+ j

∣

∣

∣

∣

16i,j6(p−1)/2

≡ (−1)(p−1)/4 =

(

2

p

)

(mod p).

If p ≡ 3 (mod 4), then by (2.7) we have

∣

∣

∣

∣

( i+j
p )

i+ j

∣

∣

∣

∣

16i,j6(p−1)/2

≡ p− 1

2
!

(

p− 1

2
!

)2(p−3)/4

≡ p− 1

2
! (mod p).

So (1.20) always holds.
(ii) It is known (cf. [K05, (5.5)]) that

∣

∣

∣

∣

1

xi + yj

∣

∣

∣

∣

16i,j6n

=

∏

16i<j6n(xj − xi)(yj − yi)
∏n

i=1

∏n
j=1(xi + yj)

.

Taking n = (p− 1)/2 and xi = yi = i2 for i = 1, . . . , n, we get

∣

∣

∣

∣

1

i2 + j2

∣

∣

∣

∣

16i,j6(p−1)/2

=

∏

16i<j6(p−1)/2(j
2 − i2)2

∏(p−1)/2
i=1

∏(p−1)/2
j=1 (i2 + j2)

. (2.8)
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Observe that

∏

16i<j6(p−1)/2

(j2 − i2)2 =

(p−1)/2
∏

j=1

((j − 1)!(j + 1) · · · (2j − 1))2

=

(p−1)/2
∏

j=1

(2j − 1)!2

j2
=

∏(p−1)/2
j=1 (2j − 1)!(p− 2j)!

((p− 1)/2)!2

=

(

p−1
(p−1)/2

)

(p− 1)!

(p−1)/2
∏

j=1

(p− 1)!
(

p−1
2j−1

)

≡(−1)(p−1)/2

−1

(p−1)/2
∏

j=1

−1

(−1)2j−1
= 1 (mod p)

with the help of Wilson’s theorem. Also,

(p−1)/2
∏

i=1

(p−1)/2
∏

j=1

(i2 + j2) =

(p−1)/2
∏

i=1

( (p−1)/2
∏

j=1

i2
(

1 +
j2

i2

))

≡
(p−1)/2
∏

i=1

(

ip−1

(p−1)/2
∏

x=1

(1 + x2)

)

(mod p).

As −1 is a quadratic non-residue modulo p, applying (2.4) with d = −1 we get

(p−1)/2
∏

x=1

(x2 + 1) ≡ (−1)(p+1)/22 = 2 (mod p).

Therefore

(p−1)/2
∏

i=1

(p−1)/2
∏

j=1

(i2 + j2) ≡
(p−1)/2
∏

i=1

2 = 2(p−1)/2 ≡
(

2

p

)

(mod p).

So the desired congruence (1.21) follows from (2.8). We are done. �

3. Some open conjectures on determinants

Wilson’s theorem implies that

p− 1

2
! ≡ ±1 (mod p) for any prime p ≡ 3 (mod 4).
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Conjecture 3.1 (2013-08-05). Let p be an odd prime. Then we have
∣

∣

∣

∣

(

i2 − ((p− 1)/2)!j

p

)
∣

∣

∣

∣

16i,j6(p−1)/2

= 0 ⇐⇒ p ≡ 3 (mod 4). (3.1)

Remark 3.1. See [Su13, A226163] for the sequence
∣

∣

∣

∣

(

i2 − ((pn − 1)/2)!j

pn

)
∣

∣

∣

∣

16i,j6(pn−1)/2

(n = 2, 3, . . . ),

where pn denotes the nth prime. In 1961 L. J. Mordell [M61] proved that for
any prime p > 3 with p ≡ 3 (mod 4) we have

p− 1

2
! ≡ (−1)(h(−p)+1)/2 (mod p), (3.2)

where h(−p) is the class number of the imaginary quadratic field Q(
√−p).

Conjecture 3.2 (2013-07-18). Let p be an odd prime. For d ∈ Z let S(d, p)
be given by (1.12). Then

(−S(d, p)

p

)

= 1 if

(

d

p

)

= 1, (3.3)

and

S(d, p) = 0 if

(

d

p

)

= −1. (3.4)

Remark 3.2. See [Su13, A227609] for the sequence S(1, pn) (n = 2, 3, . . . ). Let
p be any odd prime and let d ∈ Z with p ∤ d. The sum of entries in each row
or column of the determinant S(d, p) actually equals −(1+ (d

p
))/2. Indeed, for

any i0, j0 = 1, . . . , (p− 1)/2 we have

(p−1)/2
∑

j=1

(

i20 + dj2

p

)

=

(p−1)/2
∑

i=1

(

i+ dj20
p

)

=

{

0 if (dp ) = −1,

−1 if (dp ) = 1.

To see this we note that

(p−1)/2
∑

j=1

(

i20 + dj2

p

)

≡
(p−1)/2
∑

j=1

(i20 + dj2)(p−1)/2

≡p− 1

2
ip−1
0 +

(p−1)/2
∑

k=1

(

(p− 1)/2

k

)

ip−1−2k
0

dk

2

p−1
∑

j=1

j2k

≡− 1

2
+

1

2

(

d

p

)

(p− 1) ≡ −
1 + (dp )

2
(mod p).

The following conjecture can be viewed as a supplement to Conjecture 3.2.
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Conjecture 3.3 (2013-08-07). Let p be an odd prime, and let c, d ∈ Z with

p ∤ cd. Define

Sc(d, p) =

∣

∣

∣

∣

(

i2 + dj2 + c

p

)
∣

∣

∣

∣

16i,j6(p−1)/2

. (3.5)

Then

(

Sc(d, p)

p

)

=























1 if ( cp ) = 1 & (dp ) = −1,

(−1
p
) if ( c

p
) = (d

p
) = −1,

(−2
p ) if (−c

p ) = (dp ) = 1,

(−6
p
) if (−c

p
) = −1 & (d

p
) = 1.

(3.6)

Remark 3.3. See [Su13, A228005] for the sequence S1(1, pn) (n = 2, 3, . . . ). Let
p be an odd prime and let b, c, d ∈ Z with p ∤ bcd. It is easy to see that

∣

∣

∣

∣

(

i2 + dj2 + b2c

p

)
∣

∣

∣

∣

16i,j6(p−1)/2

=

∣

∣

∣

∣

(

(bi)2 + d(bj)2 + b2c

p

)
∣

∣

∣

∣

16i,j6(p−1)/2

=

∣

∣

∣

∣

(

i2 + dj2 + c

p

)
∣

∣

∣

∣

16i,j6(p−1)/2

.

Conjecture 3.4 (2013-08-12). Let p be an odd prime. For c, d ∈ Z define

(c, d)p :=

∣

∣

∣

∣

(

i2 + cij + dj2

p

)
∣

∣

∣

∣

16i,j6p−1

. (3.7)

(i) If d is nonzero, then there are infinitely many odd primes q with (c, d)q =
0. Also,

(

d

p

)

= −1 =⇒ (c, d)p = 0. (3.8)

When (c, d)p is nonzero, its p-adic valuation ( i.e., p-adic order) must be even.

(ii) We have

(6, 1)p = 0 if p ≡ 3 (mod 4),

(3, 2)p = (4, 2)p = 0 if p ≡ 7 (mod 8),

(3, 3)p = 0 if p ≡ 11 (mod 12),

(10, 9)p = 0 if p ≡ 5 (mod 12).

(3.9)

Remark 3.4. See [Su13, A225611] for the sequence (6, 1)pn
(n = 2, 3, . . . ). It is

easy to see that (−c, d)p = (−1
p
)(c, d)p for any odd prime p and integers c and

d.
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Conjecture 3.5 (2013-08-12). Let p be an odd prime. For c, d ∈ Z define

[c, d]p :=

∣

∣

∣

∣

(

i2 + cij + dj2

p

)
∣

∣

∣

∣

06i,j6p−1

. (3.10)

(i) If d is nonzero, then there are infinitely many odd primes q with [c, d]q =
0. When [c, d]p is nonzero, its p-adic valuation ( i.e., p-adic order) must be

even.

(ii) If p ∤ d and (c, d)p 6= 0, then

[c, d]p
(c, d)p

=

{

(p− 1)/2 if p ∤ c2 − 4d,

(1− p)/(p− 2) if p | c2 − 4d.
(3.11)

(iii) We have

[6, 1]p = [3, 2]p = 0 if p ≡ 3 (mod 4),

[3, 3]p = 0 if p ≡ 5 (mod 6),

[4, 2]p = 0 if p ≡ 5, 7 (mod 8),

[5, 5]p = 0 if p ≡ 13, 17 (mod 20).

(3.12)

Remark 3.5. See [Su13, A228095] for the sequence [3, 3]pn
(n = 2, 3, . . . ). It is

easy to see that [−c, d]p = (−1
p )[c, d]p for any odd prime p and integers c and d.

Let p be any odd prime. For a, b, c ∈ Z with p ∤ a, it is known (cf. [BEW])
that

p−1
∑

x=0

(

ax2 + bx+ c

p

)

=

{

−(ap ) if p ∤ b2 − 4ac,

(p− 1)(a
p
) if p | b2 − 4ac.

Thus, for any c, d ∈ Z we can easily calculate the sum of all entries in a row or
a column of (c, d)p or [c, d]p.

Conjecture 3.6 (2013-08-11). Let p > 5 be a prime with p ≡ 1 (mod 4).
Define

D+
p :=

∣

∣

∣

∣

(i+j)

(

i+ j

p

)
∣

∣

∣

∣

16i,j6(p−1)/2

and D−
p :=

∣

∣

∣

∣

(j−i)

(

j − i

p

)
∣

∣

∣

∣

16i,j6(p−1)/2

.

(3.13)
Then

(

D+
p

p

)

=

(

D−
p

p

)

= 1. (3.14)

Remark 3.6. It is known that a skew-symmetric 2n × 2n determinant with
integer entries is always a square (cf. [St90] and [K99]).
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Conjecture 3.7 (2013-08-20). For any prime p > 3, we have
∣

∣

∣

∣

(i2 + j2)

(

i2 + j2

p

) ∣

∣

∣

∣

06i,j6(p−1)/2

≡ 0 (mod p). (3.15)

Remark 3.7. This conjecture is somewhat curious.

Conjecture 3.8 (2013-08-12). Let p ≡ 5 (mod 6) be a prime. Then

ordp

∣

∣

∣

∣

1

i2 − ij + j2

∣

∣

∣

∣

16i,j6(p−1)/2

=
p+ 1

6
, (3.16)

where ordp x denotes the p-adic order of a rational number x. Also, we have
∣

∣

∣

∣

1

i2 − ij + j2

∣

∣

∣

∣

16i,j6p−1

≡ 2x2 (mod p) (3.17)

for some x ∈ {1, . . . , (p− 1)/2}.

Remark 3.8. Compare this conjecture with Theorem 1.3(ii).

The (n+1)×(n+1) Hankel determinant associated with a sequence a0, a1, . . .
of numbers is defined by |ai+j |06i,j6n. The evaluation of this determinant
is known for some particular sequences including Catalan numbers and Bell
numbers (cf. [K99]).

Conjecture 3.9 (2013-08-17). (i) For any positive integers m and n, we have

(−1)n
∣

∣

∣
H

(m)
i+j

∣

∣

∣

06i,j6n
> 0, (3.18)

where H
(m)
k denotes the m-th order harmonic number

∑

0<j6k 1/j
m.

(ii) For any prime p ≡ 1 (mod 4) and m = 2, 4, 6, . . . we have
∣

∣

∣
H

(m)
i+j

∣

∣

∣

06i,j6(p−1)/2
≡ 0 (mod p). (3.19)

Remark 3.9. For any odd prime p and i, j ∈ {0, . . . , (p − 1)/2}, the number

H
(m)
i+j is an p-adic integer for each positive integer m.

Conjecture 3.10. (i) (2013-08-14) For Franel numbers fn :=
∑n

k=0

(

n
k

)3
(n =

0, 1, . . . ), the number 6−n|fi+j |06i,j6n is always a positive odd integer. In

general, for any integer r > 1 and the r-th order Franel numbers f
(r)
n :=

∑n
k=0

(

n
k

)r
(n = 0, 1, . . . ), the number 2−n|f (r)

i+j |06i,j6n is always a positive

odd integer.

(ii) (2013-08-20) For any prime p ≡ 1 (mod 4) with p 6≡ 1 (mod 24), we have

|fi+j |06i,j6(p−1)/2 ≡ 0 (mod p). (3.20)

Remark 3.10. See [Su13, A225776] for the sequence |fi+j |06i,j6n (n = 0, 1, 2, . . . ).
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Conjecture 3.11. (i) (2013-08-14) For two kinds of Apéry numbers

bn :=
n
∑

k=0

(

n

k

)2(
n+ k

k

)

and An :=
n
∑

k=0

(

n

k

)2(
n+ k

k

)2

(n = 0, 1, 2, . . . ),

both
|bi+j |06i,j6n

10n
and

|Ai+j |06i,j6n

24n

are always positive integers.

(ii) (2013-08-20) For any prime p with 2 ∤ ⌊p/10⌋ and p 6≡ 31, 39 (mod 40),
we have

|bi+j |06i,j6(p−1)/2 ≡ 0 (mod p). (3.21)

Remark 3.11. See [Su13, A228143] for the sequence |Ai+j |06i,j6n (n = 0, 1, 2, . . . ).

Conjecture 3.12 (2013-08-20). For n = 0, 1, 2, . . . define

cn :=
n
∑

k=0

(−1)k
(

n

k

)4

and dn :=
n
∑

k=0

(−1)k
(

n

k

)2(
2k

k

)(

2(n− k)

n− k

)

.

Then, for any odd prime p we have

|ci+j |06i,j6p−1 ≡
(−1

p

)

(mod p) and |di+j|06i,j6p−1 ≡ 1 (mod p).

(3.22)

Remark 3.12. See [Su13, A228304] for the sequence cn (n = 0, 1, 2, . . . ).

Conjecture 3.13. (i) (2013-08-14) For Catalan-Larcombe-French numbers

Pn :=

n
∑

k=0

(

2k
k

)2(2(n−k)
n−k

)2

(

n
k

) = 2n
⌊n/2⌋
∑

k=0

(

n

2k

)(

2k

k

)2

4n−2k (n = 0, 1, . . . ),

the number 2−n(n+3)|Pi+j |06i,j6n is always a positive odd integer.

(ii) (2013-08-20) For any odd prime p, we have the supercongruence

|Pi+j |06i,j6p−1 ≡
(−1

p

)

(mod p2). (3.23)

Remark 3.13. See [Sl, A053175] for some basic properties of Catalan-Larcombe-
French numbers.
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Conjecture 3.14. (i) (2013-08-14) For Domb numbers

Dn :=

n
∑

k=0

(

n

k

)2(
2k

k

)(

2(n− k)

n− k

)

(n = 0, 1, . . . ),

the number 12−n|Di+j |06i,j6n is always a positive odd integer.

(ii) (2013-08-20) For any prime p, we have

|Di+j |06i,j6p−1 ≡
{

(−1
p )(4x2 − 2p) (mod p2) if p = x2 + 3y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 2 (mod 3).

(3.24)

Remark 3.14. See [Sl, A002895] for some basic properties of Domb numbers,
and [Su13, A228289] for the sequence |Di+j |06i,j6pn−1 (n = 1, 2, 3, . . . ). It
is known that any prime p ≡ 1 (mod 3) can be written uniquely in the form
x2 + 3y2 with x and y positive integers.

Conjecture 3.15 (2013-08-22). For n = 0, 1, 2, . . . let

sn :=
n
∑

k=0

(

n

k

)2

Ck and S(n) = |si+j |06i,j6n ,

where Ck denotes the Catalan number
(

2k
k

)

/(k + 1) =
(

2k
k

)

−
(

2k
k+1

)

.

(i) S(n) is always positive and odd, and not congruent to 7 modulo 8.
(ii) Let p be an odd prime. If p ≡ 1 (mod 3) and p = x2 + 3y2 with x, y ∈ Z

and x ≡ 1 (mod 3), then

S(p− 1) ≡
(−1

p

)

(

2x− p

2x

)

(mod p2). (3.25)

If p ≡ 2 (mod 3), then

S(p− 1) ≡ −
(−1

p

)

3p
(

(p+1)/2
(p+1)/6

)
(mod p2). (3.26)

Remark 3.15. See [Sl, A086618] for the sequence sn (n = 0, 1, 2, . . . ), and [Su13,
A228456] for the sequence S(n) (n = 0, 1, 2, . . . ).

Conjecture 3.16 (2013-08-21). For n = 0, 1, 2, . . . let

wn :=

⌊n/3⌋
∑

k=0

(−1)k3n−3k

(

n

3k

)(

2k

k

)(

3k

k

)

and W (n) = |wi+j |06i,j6n .

Then

n ≡ 1 (mod 3) =⇒ W (n) = 0. (3.27)

When n ≡ 0, 2 (mod 3), the number (−1)⌊(n+1)/3⌋W (n)/6n is always a positive

odd integer.

Remark 3.16. See [Sl, A006077] for the sequence wn (n = 0, 1, 2, . . . ).
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Conjecture 3.17 (2013-08-15). For any positive integer n, we have

∣

∣B2
i+j

∣

∣

06i,j6n
< 0 and

∣

∣E2
i+j

∣

∣

06i,j6n
> 0, (3.28)

where B0, B1, B2, . . . are Bernoulli numbers and E0, E1, E2, . . . are Euler num-

bers.

Remark 3.17. We have many similar conjectures with Bernoulli or Euler num-
bers replaced by some other classical numbers.

Acknowledgments. The author would like to thank Prof. R. Chapman and
C. Krattenthaler for their helpful comments.
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