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ABSTRACT. In this paper we mainly focus on some determinants with Legendre
symbol entries. For an odd prime p and an integer d, let S(d,p) denote the
determinant of the (p — 1)/2 x (p — 1)/2 matrix whose (i, j)-entry (1 < 4,7 <
.2 )

(p—1)/2) is the Legendre symbol (%). We investigate properties of S(d, p)
as well as some other determinants involving Legendre symbols. In Section 3 we
pose 17 open conjectures on determinants one of which states that (%) =1
if (%) =1, and S(d,p) = 0 if (%) = —1. This material might interest some
readers and stimulate further research.

1. INTRODUCTION

For an n x n matrix A = (a;;)1<i,j<n Over the field of complex numbers, we
often write det A in the form |a;j|1<;, j<n- In this paper we study determinants
with Legendre symbol entries.

Let p be an odd prime and let (5) be the Legendre symbol. The circulant
determinant

B G ) 5
'(j—i) _ | 5) ) ) (%°)
p 0<i,j<p—1 : : : :
) 3 G (3)
takes the value
TS (R (mirn)
I3 () () =0
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since Zz;é(%) = 0. (See [K99, (2.41)] for the evaluation of a general circulant
determinant.) For the matrix A = (ai;)1<i,j<p—1 With a;; = (%), L. Carlitz
[C59, Theorem 4] proved that its characteristic polynomial is

(o)) 6 ()

where [, is the (p — 1) x (p — 1) identity matrix. Putting z = 0 in Carlitz’s
formula, we obtain that

-1 (p—1)/2
(=1)P~1A| = <_ <?>> pP=3)/2 = p(P=3)/2,

For m € Z let {m}, denote the least nonnegative residue of an integer
m modulo p. For any integer a # 0 (mod p), {aj}, (j = 1,...,p—1) is

a permutation of 1,...,p — 1, and its sign is the Legendre symbol (%) by
Zolotarev’s theorem (cf. [DH] and [Z]). Therefore, for any integer d # 0 (mod p)

we have
i+ dj —d i —7
‘( p ) ogi,jgp—1: (?) ‘( p )
and
i+ dj —d i—7
‘( p ) 1<i,j<p—1: (?) ‘( p )

Let p be an odd prime. In 2004, R. Chapman [Ch04] used quadratic Gauss
sums to determine the values of

'(z’—l—j—l) and '(z’—i—j—l)
p 1<i,j<(p—1)/2 p

Since (p+1)/2—i+(p+1)/2—j—1= —(i+j) (mod p), we see that

‘(i—f—j—l) (—1)‘(2—1—])
p 1<i,5<(p—1)/2 p p
‘(i-l—j—l) ‘(24—])

Chapman [Ch12] also conjectured that

()

=0 (1.1)
0<i,j<p—1

= (__d) pP=/2 (1.2)

p

1<i,j<p—1

1<i,j<(p+1)/2

0<,j<(p—1)/2

B { —rp, ifp=1(mod4),
0<i,j<(p—1)/2 1 if p=3 (mod4),
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2=(£)h(p) _ . :
where ¢, = 7p+5py/p With rp, s, € Z. (Throughout this paper, €, and
h(p) stand for the fundamental unit and the class number of the real quadratic
field Q(,/p) respectively.) As Chapman could not solve this problem for several
years, he called the determinant evil (cf. [Chl12]). Chapman’s conjecture on
his “evil” determinant was recently confirmed by M. Vsemirnov [V12, V13] via
matrix decomposition.
Let p =1 (mod 4) be a prime. In an unpublic manuscript written in 2003
Chapman [ChO03] conjectured that

QI

Note that (1.3) and (1.4) together yield an interesting identity

@-2)h(p) (2 j—i i —i
= () (5) | ()
p P/ h<ij<op-1)/2 p

Taking the norm with respect to the field extension Q(,/p)/Q, we are led to

the identity
2 .
j—i
0<i,j<(p—1)/2 p

(1.4)

2

)
p 1<6,5<(p—1)/2
since N(e,) = —1 (cf. Theorem 3 of [Co62, p.185]). This provides an explicit
solution to the diophantine equation 22 — py? = (—1)"®),

Now we state our first theorem.

Theorem 1.1. Let p be an odd prime. For d € 7. define

R(d, p) = ‘ (”dj) | (1.5)
P/ lo<ig<r-1)/2
If p=1 (mod 4), then
B d (p—1)/4 p— 1
R(d,p) = ((5) d) 5 ' (mod p). (1.6)
When p = 3 (mod 4), we have
() (modp) i (H)=1,
= { L(modp) i (%)= 1 4

Also,
R(—d,p) = (%) R(d,p) (mod p), (1.8)
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(5)

Remark 1.1. Let p be any odd prime. By Wilson’s theorem,

p—1 2_ —1 (mod p) if p=1 (mod 4),
(T) - { 1 (mod p) if p=3 (mod 4).

and

= R(d,p) (mod p) for all c € Z. (1.9)

0<i,j<(p—1)/2

(1.10)

Corollary 1.1. Let p =1 (mod 4) be a prime, and write 52@) = ap + by\/D
with ap,b, € Q, where €, and h(p) are the fundamental unit and the class
number of the real quadratic field Q(\/p). Then we have

a, = b ; 1! (mod p) and h(p) =1 (mod 2). (1.11)

R(1,p) = %1 (mod p).

On the other hand, Chapman [Ch04, Corollary 3] proved that

‘(i-l—j) _‘(i-i-j—l) __<2)2(p—1)/2a
| (=2 _ o
p 0<i,j<(p—1)/2 p 1<i,j<(p+1) /2 p

So we have the first congruence in (1.11). Taking norms (with respect to the

field extension Q(,/p)/Q) of both sides of the identity 5Z(p ) = a, + by\/p, we
obtain

N(e)"®) = ag — pbf,.

Since
p—1\°
a127 = ( 2 ‘) = -1 (IIlOd p)7
we must have N(¢) = —1 and 2 { h(p). This proves the second congruence in
(1.11). O

It is well known that for any odd prime p the (p — 1)/2 squares

~1\?
12,02 (222
b b 7( 2 )

give all the (p—1)/2 quadratic residues modulo p. So we think that it’s natural
to consider some Legendre symbol determinants involving binary quadratic
forms.
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Theorem 1.2. Let p be any odd prime. For d € 7Z define

i? + dj?
S(d,p) = ' ( ] )
p 1<i,j<(p—1)/2
i? + dj?
T(d,p):= ' ( ) :
p 0<i,j<(p—1)/2

(i) For any c € Z with p{ ¢, we have

c (p+1)/2 c (p+1)/2
s@an=(5) sap wd @ = (5) 0 Tl

p
If p=1 (mod 4), then

st-d.p = (2)s@p o T-dp) = (2) 00
When p = 3 (mod 4), we have

(g) =—-1= S5(d,p) =0.

p

(ii) We have

(T(d,p)) (@) dE) =1
p 1 i (d=-1
Also,
2
T(—d,p) = (];) T(d,p) (mod p)
and
2 2
‘ <Z+dij+c) =T(d,p) (modp) forallceZ.
p 0<i,j<(p—1)/2
Example 1.1. Note that
-1 1 -1 -1 1
1 -1 -1 1 -1
S(1,1)=|-1 -1 -1 1 1 |=-16
-1 1 1 -1 -1
1 -1 1 -1 -1
and
1 1 -1 -1 1 -1
-1 1 1 1 -1 -1
-1 1 1 -1 -1 1
S(2,13) = 1 -1 -1 1 1 1 =0.
1 -1 1 -1 1 -1
1 -1 -1 1 -1 1

Now we present our third theorem.

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

(1.19)
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Theorem 1.3. (i) For any odd prime p, we have

(50 _ { (2) (mod p) Yp=1(modd), o
1+ i g<pr-1)2 ((p—1)/2)! (mod p) ifp=3 (mod 4).
(ii) Let p =3 (mod 4) be a prime. Then
1 (5
o) = |- (mod p). (1.21)
Z+ <oz \P

We are going to prove Theorems 1.1-1.3 in the next section, and pose over
ten new conjectures on determinants in Section 3.

2. PROOF OF THEOREMS 1.1-1.3

Lemma 2.1 ([K05, Lemma 9]). Let P(z) = ZZ;S arpz® be a polynomial with
complex number coefficients. Then we have

n—1
" n—1
|P(2; + yj)li<ijen = an_y [ ] ( . ) x I @i—z)—w). (21
k=0

1<i<j<n

Proof of Theorem 1.1. Set n = (p —1)/2. For any ¢ € Z, we have

‘(i—l—dj—i—c)
p

In light of Lemma 2.2,

=|(i +dj +¢c)"|ogij<n  (mod p).
0<i,j<(p—1)/2

(i +dj +¢)"|ogijign = |(F+dj + ¢ —d = 1)"1<i j<nt1

:H (Z) X H (i—j)dj+c—d—1—(di+c—d—1))
k=0

1<i<j<n+1
(n!>n+1
o kl(n — k)

(e T G = () 2ty

1<i<j<n+1

Therefore (1.9) holds, and also

_ (p+1)/2
R(d,p) = (—d)@*~V/8 (Z’Tll) (mod p). (2.2)
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In the case p =1 (mod 4), from (2.2) we obtain

- 1
R(d,p) =(—d)P~D/4 (p+1)/2 p—-

_ 1' 2(p—1)/4
2 2 '
(r—1)/4 p— 1 (p—1)/4 p—1
= (glpt1)/2 !
= (d ) (( ) ) 5! (mod p).

In the case p = 3 (mod 4), (2.2) yields

p—1 2(p+1)/4 d (p+1)/4
R(d,p) = (—d)®~ 1)/2><(p+1)/4< ) = <_) (mod p)

2 p

and hence (1.7) follows.
Now it remains to show (1.8). If p =1 (mod 4), then by (1.6)

ri-ap = ( () <—d>)(p_1)/4 o= (2) R odp)

p

If p=3 (mod 4), then (_Td) = —(%) and hence we get (1.8) from (1.7).
The proof of Theorem 1.1 is now complete. [

Lemma 2.2. Let p =1 (mod 4) be a prime. Then

e e

Proof. Since

(—4) P74 — (_)o-1/190-1/2 _ (2) 20-1/2 =1 (mod p),
p

for some z € Z we have

1! (mod p).

2
-1
x45—454<p2 !) (mod p), i.e., 22 =492

Therefore (2.3) holds. O

Proof of Theorem 1.2(i). Let c € Z with p{c. Foreach j=1,...,(p—1)/2 let
o.(j) be the unique r € {1,...,(p — 1)/2} such that ¢j = r or —r (mod p).
By a result of H. Pan [P06], the sign of the permutation o, equals (;‘f)(p+1)/2.

Thus
c (p+1)/2
- (—) S(d.p)
b

S(c2d.p) = ' (F +do—c(j)2)

p

1<i,j<(p—1)/2
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Similarly the second equality in (1.14) also holds.
Now we handle the case p =1 (mod 4). As ((p —1)/2)!* = —1 (mod p), by
applying (1.14) with ¢ = ((p—1)/2)! and using (2.3) we immediately get (1.15).
Below we assume that p = 3 (mod 4). As the transpose of S(—1,p) equals
(_71)(”_1)/25(—1,1?) = —S(-1,p), we have S(—1,p) = 0. If (%) = —1, then
d = —c? (mod p) for some integer ¢ # 0 (mod p), and hence

c (p+1)/2
S(d.p) = S(—,p) = (5) S(~1,p) = 0.

This proves (1.16).
So far we have proved the first part of Theorem 1.2. [

Proof of Theorem 1.2(ii). Set n = (p — 1)/2. For any ¢ € Z, we have

’ <i2 + dj? -l-c)
p

In light of Lemma 2.2,

= [(i* + dj* + ¢)"|o<ij<n  (mod p).
0<i,j<(p—1)/2

2+ 7% + &) oigen = (= 12 +d( = 12 + 01 <ijns

:I}:IO(Z)X II (-1-G-D0dG—-1)+c—d(i-1)%—c)

Ii<jsn+1

IS | BN RN VRS,

0<i<j<n

(n!)n—i—l
_HZ:O kl(n — k)
(=2t T )R

0<i<j<n

Therefore (1.19) holds, and also

w18 (P~ 1 (p+1)/2 ' .
ran =(-a® (M) L )
0<i<j<(p—1)/2

=R(d,p) [[  (+j)? (modp)

0<i<j<(p—1)/2

with the help of (2.2). Combining this with (1.8) we obtain (1.18). Note that

(142)-(222)

If (¢) =1, then by Theorem 1.1 we have
p

R(d,p) = { d(p—l)/4((p —1)/2)! (mod p) if p=1 (mod 4),

(2) (mod p) if p=3 (mod 4),
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and hence (@) = (%) with the help if Lemma 2.2. In the case (%) = —1, by
Theorem 1.1 we have
(—=d)P=1/4((p —1)/2)! (mod p) if p=1 (mod 4),

R(d,p) = { 1 (mod p) if p=3 (mod 4),

and hence (@) = 1 with the help if Lemma 2.2. Therefore (1.17) also holds.
We are done. U

Lemma 2.3. Let p be any odd prime. For any d € 7Z with (%) = —1, we have
the new congruence

(p—1)/2
I[[ &°-a=(=n»*/22 (modp). (2.4)

Proof. For any integer a, it is well known that

a?™V/2 =1 (mod p) <= (%) =1

-1
= a =2 (mod p) forsomez=1,... ,p?.
Therefore
(p—1)/2
H (z—22)=2P"D/2 1 (mod p)
=1
and hence
(p—1)/2
I[1 w+d—2*)=@w+d)®V?-1 (modp). (2.5)
=1

Comparing the constant terms of both sides of the congruence (2.5), we obtain

(p—1)/2
H (d—a2?)=d?P V2 _1=-2 (mod p)

=1

and hence (2.4 follows. [

Remark 2.1. Under the condition of Lemma 2.3, we could also prove the fol-
lowing congruences

(p—1)/2 1 1 (p—1)/2 1 5
= — d d - =2 d
; 7 _q= g (wodp) an ; oz = i (medp)
(2.6)
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by comparing coefficients of y and y? in the congruence (2.5).

Proof of Theorem 1.3. (i) Set n = (p — 1)/2. Clearly

(££L)
P =1(i+5)" 'h<ij<n (mod p).
L7 hii<po-1)/2
By Lemma 2.1,
s gy |
(01 hesen =T (", 1) < TT G-
k=0 1<i<j<n
(n—1)!" n(n—1)/2 SN2
=— (=1) I G-
r—o Kl(n —1—k)! 1<i<j<n
:(_1)n(n—1)/2(n _ 1>m
(p—1)/2 (p—1)/2
—(—1)®P- D=3/ 2 p—_1, .
p—1 2
Therefore
i+J (p—1)/2
1
&) = (p !) (mod p). (2.7)
v I hi<ii<p-1)/2 2

In the case p =1 (mod 4), this yields

itg
(i)
1+

= (—1)P~D/1 = (%) (mod p).

If p=3 (mod 4), then by (2.7) we have

itj 2(p—3)/4
-1 -1 -1
(.p,) =P '<p—> S (mod p).
L7 hi<ii<p-1)/2 2 2 2
So (1.20) always holds.
(ii) It is known (cf. [KO05, (5.5)]) that
1 _ H1<i<j<n(l'j —zi)(Y; — vi)
Ti tYjligij<n [T I (2 + )
Taking n = (p—1)/2 and x; = y; = i*> for i = 1,... ,n, we get
1 _ [Lcicicp1y20? =) (2.8)
PH 2 hcigce-ne TIEVPTIE 202 + 52)
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Observe that

(p—1)/2
I ¢=-®*= 11 (G-DG+D---@2i-1)
1<i<j<(p—1)/2 j=1
iy TS - 10 - 2)!
- 1 - 1/2P

_ (02 0)2) (pﬁm (p—1)!

= —1
(p—1t j=1 (2pj—1)
_ (p—1)/2
(—1)(p—1)/2 -1
= S
7 W et tede)

with the help of Wilson’s theorem. Also,

(p—1)/2(p—1)/2 (r—1)/2 ,(p—1)/2 9
I @em=10 (I #(1+%))
i=1 j=1

i=1 j=1
(p—1)/2 (p—1)/2
(¢

= H H (1+:z:2)> (mod p).

=1 r=1

As —1 is a quadratic non-residue modulo p, applying (2.4) with d = —1 we get

(p—1)/2
I @+1)=En@P/22=2 (modp).
=1
Therefore
(p—1)/2 (p—-1)/2 (p—1)/2 9
H H (i + j%) = H 2 =20P~1/2 = (—) (mod p).
i=1 j=1 p

So the desired congruence (1.21) follows from (2.8). We are done. [

3. SOME OPEN CONJECTURES ON DETERMINANTS

Wilson’s theorem implies that

-1
P= - (mod p) for any prime p=3 (mod 4).
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Conjecture 3.1 (2013-08-05). Let p be an odd prime. Then we have

‘ <i2 —(p— 1)/2)!j)

p

=0 <= p=3 (mod4). (3.1)
1<s,j<(p—1)/2

Remark 3.1. See [Sul3, A226163] for the sequence
‘ (752 — ((pn — 1)/2)!j>

Pn

1<i7j<(pn_1)/2
where p,, denotes the nth prime. In 1961 L. J. Mordell [M61] proved that for
any prime p > 3 with p = 3 (mod 4) we have

-1
b 5 = (—1)rE=P+D/2 (1hod p), (3.2)
where h(—p) is the class number of the imaginary quadratic field Q(v/—p).

Conjecture 3.2 (2013-07-18). Let p be an odd prime. For d € Z let S(d,p)
be given by (1.12). Then

e e

S(d,p) =0 if (g) =1 (3.4)

and

Remark 3.2. See [Sul3, A227609] for the sequence S(1,p,) (n =2,3,...). Let
p be any odd prime and let d € Z with p 1 d. The sum of entries in each row
or column of the determinant S(d, p) actually equals —(1 + (%)) /2. Indeed, for
any ig,jo = 1,...,(p—1)/2 we have

(p—zli/z (z’%—l—djz) - (p—zli/z <z’+dj§) B { 0 if (%) =1,
= p — p —1 if (9) =1.

To see this we note that

(r=1)/2 , o .2 (p—1)/2
Z (zo—i—dj )E Z (2-(2)+dj2)(p—1)/2

p

Jj=1 Jj=1

The following conjecture can be viewed as a supplement to Conjecture 3.2.
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Conjecture 3.3 (2013-08-07). Let p be an odd prime, and let ¢,d € Z with
p1tecd. Define

| (P +dP+c
Seldir) = K p ) 1<ii<(r-1)/2 39
e L e =1 (G =1,
sy | G #EH==-1, y
() (2) i (5)=(4) =1, 30
(28) i (22) = —1& (&) =1

Remark 3.3. See [Sul3, A228005] for the sequence S1(1,p,) (n=2,3,...). Let
p be an odd prime and let b, ¢,d € Z with p1 bed. 1t is easy to see that

’(F +dj;+b2c) :’ ((bi)2+d(bj)2+b2c)

p

_‘ (i2 + dj? + c)
P

Conjecture 3.4 (2013-08-12). Let p be an odd prime. For c,d € Z define

i% + cij + dj?
o= (22524

1<i,j<(p—1)/2 1<i,j<(p—1)/2

(3.7)

1<e,55p—1

(i) If d is nonzero, then there are infinitely many odd primes q with (c,d), =
0. Also,

(C_l) =-1 = (c,d), =0. (3-8)

p

When (c, d), is nonzero, its p-adic valuation ( i.e., p-adic order) must be even.
(ii) We have

(6,1), =0 if p=3 (mod 4),
(3,2),=(4,2),=0 if p="7 (mod 8), (3.9)
(3,3), =0 if p=11 (mod 12), '
(10,9), =0 ifp="5 (mod 12).

Remark 3.4. See [Sul3, A225611] for the sequence (6,1),, (n=2,3,...). Itis
easy to see that (—c,d), = (_71)(0, d), for any odd prime p and integers ¢ and
d.
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Conjecture 3.5 (2013-08-12). Let p be an odd prime. For c¢,d € Z define

i% + cij + dj?
ey | ()

. (3.10)

0<s,j<p—1

(1) If d is nonzero, then there are infinitely many odd primes q with [c,d]; =
0. When [c,d], is nonzero, its p-adic valuation ( i.e., p-adic order) must be
even.

(ii) If ptd and (c,d), # 0, then

le.dl, [ (p—1)/2 if ptc? —4d,
G Al A 31y
(iii) We have
6,1, =1[3,2], =0 ifp=3 (mod 4),
3,3, =0 ifp=>5 (mod 6),
4,2],=0 ifp=5,7 (mod 8), (3.12)
[5,5], =0 ifp=13,17 (mod 20).

Remark 3.5. See [Sul3, A228095] for the sequence [3,3],, (n =2,3,...). It is
easy to see that [—c,d], = (%)[c, d], for any odd prime p and integers ¢ and d.

Let p be any odd prime. For a,b,c € Z with p { a, it is known (cf. [BEW])
that

=0

If(aaﬂ—i—bx—i—c) B —(3) if p 1 b* — dac,

P (p—1)(2) if p | b2 — 4ac.

Thus, for any ¢,d € Z we can easily calculate the sum of all entries in a row or
a column of (¢,d), or [c,d],.

Conjecture 3.6 (2013-08-11). Let p > 5 be a prime with p = 1 (mod 4).

Define

D} = |(i+7) (HJ) and D, ::‘(j—i) <]_Z) .
p 1<i,j<(p—1)/2 p 1<17j<(p(—31>1/§)

Then

(%)- (%)

Remark 3.6. It is known that a skew-symmetric 2n X 2n determinant with
integer entries is always a square (cf. [St90] and [K99]).
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Conjecture 3.7 (2013-08-20). For any prime p > 3, we have

(i +5°) (ﬂ)

" =0 (mod p). (3.15)

0<i,j<(p—1)/2

Remark 3.7. This conjecture is somewhat curious.

Conjecture 3.8 (2013-08-12). Let p =5 (mod 6) be a prime. Then

1 _p+l

ord, | —— ,
P12 — 45 4+ 42 6

(3.16)

1<4,5<(p—1)/2
where ord, x denotes the p-adic order of a rational number x. Also, we have
-
i2 —ij + j2
for some z € {1,...,(p—1)/2}.

=222 (mod p) (3.17)
1<z,j<p—1

Remark 3.8. Compare this conjecture with Theorem 1.3(ii).

The (n+1) x (n+1) Hankel determinant associated with a sequence ag, a1, . . .
of numbers is defined by |a;1jlo<ij<n- The evaluation of this determinant

is known for some particular sequences including Catalan numbers and Bell
numbers (cf. [K99]).

Conjecture 3.9 (2013-08-17). (i) For any positive integers m and n, we have

(-0 |2 > 0, (3.18)

0<i,j<n

where H,gm) denotes the m-th order harmonic number Zoqgk /5™
(ii) For any prime p=1 (mod 4) and m = 2,4,6,... we have

(m) —
H: =0 d p). 3.19
‘ 7 logi,i<r-1)/2 (mod p) (3.19)
Remark 3.9. For any odd prime p and ¢,j € {0,...,(p — 1)/2}, the number
H Z(f]) is an p-adic integer for each positive integer m.

Conjecture 3.10. (i) (2013-08-14) For Franel numbers f, :== Y ;_, (2)3 (n=
0,1,...), the number 67"|fi1;lo<ij<n 15 always a positive odd integer. In
general, for any integer r > 1 and the r-th order Franel numbers fy(f) =
> r—o (Z)T (n = 0,1,...), the number 2_”|fi(12|0<i,j<n is always a positive
odd integer.

(ii) (2013-08-20) For any prime p = 1 (mod 4) with p Z 1 (mod 24), we have

|fivilo<ij<p—1)/2 =0 (mod p). (3.20)

Remark 3.10. See [Sul3, A225776] for the sequence | fitjlo<i,j<n (n =0,1,2,...).
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Conjecture 3.11. (i) (2013-08-14) For two kinds of Apéry numbers

b ::i (Z)2<"Zk) and A, ::i (Z)Q(";:k)z (n=0,1,2,...),

k=0 k=0

both i | A
i+ 10<4,5<n i+ 10<4,5<n
10" and 241
are always positive integers.
(ii) (2013-08-20) For any prime p with 21 |p/10] and p # 31,39 (mod 40),
we have
|bi+j|0<i,j<(p—1)/2 =0 (mod p) (321)

Remark 3.11. See [Sul3, A228143] for the sequence |A;4;|o<ij<n (R =10,1,2,...).
Conjecture 3.12 (2013-08-20). Forn =0,1,2,... define

n 4 n 2
2k\ (2(n — k)
NS —lkn d d, = —lkn .
¢ Z;( ) (k) o Z;( ) (k k)\ n—k
Then, for any odd prime p we have

-1
|Civilo<iicp—1 = <?) (mod p) and [diyjlocij<p-1 =1 (mod p).

(3.22)

Remark 3.12. See [Sul3, A228304] for the sequence ¢, (n =0,1,2,...).
Conjecture 3.13. (i) (2013-08-14) For Catalan-Larcombe-French numbers

P, = i (zkk)z((z:’g:kk))z = on LRZ/QJ (;ﬂ) (2;;) ek (n=0,1,...),

k=0 k k=0

the number 27" 3| P,y o< i<n is always a positive odd integer.
(ii) (2013-08-20) For any odd prime p, we have the supercongruence

—1
| Pitjloij<p—1 = <?) (mod p?). (3.23)

Remark 3.13. See [S], A053175] for some basic properties of Catalan-Larcombe-
French numbers.
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Conjecture 3.14. (i) (2013-08-14) For Domb numbers

b3 () ()0 v

k=0
the number 127" D;j|o<i j<n 5 always a positive odd integer.
(ii) (2013-08-20) For any prime p, we have
(5)(da? = 2p) (mod p®) if p=2®+3y® (z,y € Z),
[ Ditjlo<ij<p-1 = ) .
0 (mod p*) if p=2 (mod 3).
(3.24)

Remark 3.14. See [S], A002895] for some basic properties of Domb numbers,
and [Sul3, A228289] for the sequence |D;yjlo<ij<pn—1 (0 = 1,2,3,...). It
is known that any prime p = 1 (mod 3) can be written uniquely in the form
22 + 3y? with x and y positive integers.

Conjecture 3.15 (2013-08-22). Forn =0,1,2,... let

n 2
n
Sp 1= Z (k) Cr and S(n)=si+jloc; j<n >
k=0

where Cy, denotes the Catalan number (Qkk)/(k +1) = (Qkk) - (szl)

(i) S(n) is always positive and odd, and not congruent to 7 modulo 8.

(i) Let p be an odd prime. If p=1 (mod 3) and p = 2 + 3y* with x,y € Z
and x =1 (mod 3), then

Sp—1)= (%1) (21’ - 2%) (mod p?). (3.25)
If p=2 (mod 3), then
s = (L) 2p d p?
(p—1)=- <?) m (mod p*). (3.26)

Remark 3.15. See [S], A086618] for the sequence s,, (n =0,1,2,...), and [Sul3,
A228456] for the sequence S(n) (n=0,1,2,...).

Conjecture 3.16 (2013-08-21). Forn =0,1,2,... let

[n/3]
e n\ (2k\ [ 3k
wy 1= Y (~1)R3 <3k> ( k ) < k ) and W(n) = |witsloi jn-

k=0
Then
n=1 (mod 3) = W(n)=0. (3.27)

When n = 0,2 (mod 3), the number (—1)L+D/3IT7 (n) /6™ is always a positive
odd integer.

Remark 3.16. See [Sl, A006077] for the sequence w,, (n =0,1,2,...).
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Conjecture 3.17 (2013-08-15). For any positive integer n, we have

2 2
}Biﬂ.\ow@ <0 and }EH]-}O@J@ >0, (3.28)
where By, By, B, ... are Bernoulli numbers and Ey, E1, Es, ... are Euler num-

bers.

Remark 3.17. We have many similar conjectures with Bernoulli or Euler num-
bers replaced by some other classical numbers.
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