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Abstract. This is an introduction to the important aspects of covers of

Z by residue classes and covers of groups by cosets or subgroups. The field
is connected with number theory, combinatorics, algebra and analysis. It

is quite fascinating, and also very difficult (but the results can be easily

understood). Many problems and conjectures remain open, some nice
theorems and applications will be introduced.

Perhaps my favorite problem of all concerns covering systems.

—Paul Erdős (1995)

1. Main Problems and Related Results

For a ∈ Z and n ∈ Z+ = {1, 2, 3, . . . }, we let

a(n) = a+ nZ = {x ∈ Z : x ≡ a (mod n)}.

This is called a residue class (with modulus n) or an arithmetic sequence

(with common difference n).
1
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A finite system

A = {as(ns)}k
s=1 = {a1(n1), . . . , ak(nk)}

of residue classes is said to be a covering system (or a cover of Z in short)

if each integer lies in at least one of the members in A.

The concept of cover of Z was first introduced by P. Erdős in his solution

to a question of Romanoff given in 1934. Since the Chinese Remaider

Theorem tells us when
⋂k

s=1 as(ns) 6= ∅, it is fundamental to study when

we have
⋃k

s=1 as(ns) = Z.

Clearly A forms a cover of Z if and only if it covers 0, 1, · · · , NA − 1,

where NA is the least common multiple of the moduli n1, · · · , nk.

The first nontrivial cover of Z with distinct moduli is the following one

discovered by P. Erdős:

B = {0(2), 0(3), 1(4), 5(6), 7(12)}.

Note that NB = 12 and B covers 0, 1, . . . , 11.

If A covers every integer exactly once, then we call A an exact cover of

Z or a disjoint cover of Z.

As any integer can be written uniquely in the form nq + r with q ∈ Z

and r ∈ [0, n − 1] = {0, 1, · · · , n − 1}, the finite system {r(n)}n−1
r=0 is a

disjoint cover of Z. Since 0(2n) is a disjoint union of the residue classes

2n(2n+1) and 0(2n+1), the systems

A1 = {1(2), 0(2)}, A2 = {1(2), 2(4), 0(4)}, A3 = {1(2), 2(4), 4(8), 0(8)},

· · · · · · , Ak = {1(2), 2(22), . . . , 2k−1(2k), 0(2k)}, · · · · · ·
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are disjoint covers of Z.

Clearly each residue class as(ns) in system A covers exactly NA/ns

integers in [0, NA − 1]. Thus, if A is a cover of Z then

|[0, NA − 1]| 6
k∑

s=1

NA

ns
and hence

k∑
s=1

1
ns

> 1;

if A is a disjoint cover of Z then
∑k

s=1 1/ns = 1.

By Example 3 of Z. W. Sun [Trans. Amer. Math. Soc. 348(1996)], if

n > 1 is odd then

{1(2), 2(22), . . . , 2n−2(2n−1), 2n−1(n), 2n−12(2n), . . . , 2n−1n(2n−1n)}

forms a cover of Z with distinct moduli, and the sum of reciprocals of the

moduli is less than 1 + 2/n which tends to 1 as n→ +∞.

Now we introduce three main conjectures concerning covers of Z.

Erdős’ Conjecture. For any arbitrarily large c > 0, there exists a cover

of Z whose moduli are distinct and greater than c.

P. Erdős offers $1000 for a solution of this conjecture. Up to now, no

substantial progress has been made. Erdős’ conjecture implies the well-

known fact that
∑∞

n=1 1/n diverges, because we can construct infinitely

many covers

A(i) = {a(i)
s (n(i)

s )}ki
s=1 (i = 1, 2, 3, . . . )

such that

n
(1)
1 < · · · < n

(1)
k1

< n
(2)
1 < · · · < n

(2)
k2

< · · · · · ·
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and hence
m∑

i=1

ki∑
s=1

1

n
(i)
s

> m for m = 1, 2, 3, . . . .

In 1981 R. Morikawa [Bull. Fac. Lib. Arts; MR 84j:10064] constructed

a cover {as(ns)}k
s=1 of Z with n1 = 24 < n2 < · · · < nk. On the other

hand, Z. W. Sun [J. Algebra 273(2004)] proved that for any M > 1 if

{as(ns)}k
s=1 covers every integer the same number of times and each of

the moduli occurs at most M times, then the smallest modulus n1 has an

upper bound in terms of M , namely,

log n1 6
eγ

log 2
M log2M +O(M logM log logM),

where γ is Euler’s constant and the O-constant is absolute.

Erdős-Selfridge Conjecture. Let A = {as(ns)}k
s=1 be a cover of Z with

1 < n1 < · · · < nk. Then n1, . . . , nk cannot be all odd.

P. Erdös offers $25 for a positive answer, and Selfridge offers $900 for

an counterexample.

Let A = {as(ns)}k
s=1 be a cover of Z with 1 < n1 < · · · < nk. Recently

S. Guo and Z. W. Sun [Adv. Appl. Math., to appear] showed that if

n1, . . . , nk are odd and squarefree, then NA = [n1, . . . , nk] has at least 22

prime divisors. In contrast with the Erdős-Selfridge conjecture, Z. W. Sun

[J. Number Theory, 111(2005), 190-196] proved that A cannot cover every

integer an odd number of times.

Schinzel’s Conjecture. If A = {as(ns)}k
s=1 is a cover of Z, then there

is a modulus nt dividing another modulus ns.



PROBLEMS AND RESULTS ON COVERING SYSTEMS 5

A. Schinzel [Acta Arith. 1967, MR 36#2596]: The Erdős-Selfridge

conjecture is stronger than and Schinzel’s conjecture is weaker than the

following proposition: For any polynomial P (x) ∈ Z[x] with P (0) 6= 0,

P (1) 6= −1 and P (x) 6= 1, there exists an infinite arithmetic progression of

positive integers such that xn + P (x) is irreducible over the rational field

Q for every n in the progression.

L. J. Stockmeyer and A. R. Meyer [Proc. 5th. Ann. ACM Symp. on

Theory of Computing, Assoc. for Computing Machinery, 1973]: The ques-

tion whether a given A = {as(ns)}k
s=1 is a cover of Z is co-NP-complete.

Thus, NP = P if and only if we can decide whether A = {as(ns)}k
s=1 is a

cover of Z in polynomial time.

Now we mention some curious applications of covers.

In 1934, by using the cover

{0(2), 0(3), 1(4), 3(8), 7(12), 23(24)},

Erdős [Summa Brasil. Math. 1950; MR 13,437] proved that there is an

infinite arithmetic progression of positive odd integers no term of which is

of the form 2n + p, where n is a positive integer and p is an odd prime.

Later R. Crocker [Pacific J. Math. 1971] proved further that there are

infinitely many positive odd integers not of the form 2a + 2b + p where

a, b ∈ Z+ and p is an odd prime.

In 2001 Z. W. Sun and M. H. Le [Acta Arith. 99(2001)] improved a

result of Schinzel and Crocker by showing that for each n = 4, 5, . . . the

number 22n − 1 cannot be written as the sum of two distinct powers of 2
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and a prime power.

On the basis of the work of Corcker, and Sun and Le, P. Z. Yuan [Acta

Arith. 2004] confirmed a conjecture of Sun.

Theorem 1.1 (conjectured by Z. W. Sun and proved by P. Z. Yuan).

For any positive integer c, there are infinitely many positive odd integers

not of the form c(2a + 2b) + pα where a, b, α ∈ N = {0, 1, 2, . . . } and p is

an odd prime.

Erdös [1952, Mat. Lapok; MR 17,14] observed that the positive solu-

tion of his conjecture implies that for every m > 1 there exists an infinite

arithmetic progression of positive odd integers no term of which is of the

form 2n + θm where θm has at most m distinct prime factors. In 1950 Yu.

V. Linnik proved that there is a positive integer l such that every large

even integer can be written a sum of two primes and at most l powers of

2, recently J. Pintz and I. Z. Ruzsa [Acta Arith. 109(2003)] (and indepen-

dently, D. R. Heath-Brown and J. C. Puchta [Asian J. Math. 6(2002)])

proved that one can take l = 7 under the Generalized Riemann Hypothesis,

they announced further that l = 8 is okay unconditionally.

With help of covers, F. Cohen and J. L. Selfridge [1975, Math. Com-

put.; MR 51#12758] proved that not every positive integer is the sum or

difference of two prime powers. By introducing a method to avoid a bunch

of extra congruences, Z. W. Sun was able to establish the following explicit

result.

Theorem 1.2 [Z. W. Sun, Proc. Amer. Math. Soc. 2000]. Let P be the
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26-digit prime 47867742232066880047611079, and let M be the 29-digit

number given by

∏
p619

p× 31× 37× 41× 61× 73× 97× 109× 151× 241× 257× 331

= 66483084961588510124010691590.

If x ≡ P (mod M), then x is not of the form ±pa ± qb, where p, q are

primes and a, b are nonnegative integers.

Here is another remarkable application of covers.

Theorem 1.3. (i) (W. Sierpinki, 1960) There are infinitely many positive

odd integers k such that k × 2n + 1 are composite for all n = 1, 2, 3, . . . .

(Such integers k is called Sierpinski numbers.)

(ii) (J. L. Selfridge) 78557 · 2n + 1 always has a prime divisor in the set

{3, 5, 7, 13, 17, 19, 73}, and perhaps 78557 is the smallest Sierpinski num-

ber.

After lots of computations, now it is known that Sierpinski numbers

less than 78557 can only be among the following candidates:

4847, 10223, 19249, 21181, 22699, 24737, 27653, 28433, 33661, 55459, 67607.

2. The Davenport-Mirsky-Newman-Rado

Result and its Generalizations

Let A = {as(ns)}k
s=1 be a cover of Z. Remember that

∑k
s=1 1/ns > 1,

and equality holds if and only if A is an exact cover of Z.
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Soon after his invention of the concept of covering system, Erdős made

the following conjecture: If A = {as(ns)}k
s=1 is a cover of Z with 1 < n1 <

· · · < nk, then
∑k

s=1 1/ns > 1, i.e. A covers some integer more than once.

Theorem 2.1 (H. Davenport, L. Mirsky, D. Newman, R. Rado, 1950s).

Let A = {as(ns)}k
s=1 be an exact cover of Z with 1 < n1 6 · · · 6 nk−1 6

nk. Then we must have nk−1 = nk.

Proof. Without loss of generality we assume that 0 6 as < ns for all

s ∈ [1, k]. For |z| < 1 we have

k∑
s=1

zas

1− zns
=

k∑
s=1

∞∑
q=0

zas+qns =
∞∑

n=0

zn =
1

1− z
.

If nk−1 < nk then

∞ = lim
z→e2πi/nk

|z|<1

zak

1− znk
= lim

z→e2πi/nk

|z|<1

(
1

1− z
−

k−1∑
s=1

zas

1− zns

)
<∞,

a contradiction!

Observe that {as(ns)}k
s=1 is an exact cover if and only if

∑k
s=1 χs(x) = 1

for all x ∈ Z, where χs(x) is the characteristic function [x ∈ as(ns)] of the

residue class as(ns).

Z. W. Sun [J. Nanjing Univ. (Nat. Sci. Edi.), 1991]: For s =

1, · · · , k let ψs be an arithmetical function periodic mod ns such that∑ns−1
r=0 ψs(r)ζr 6= 0 for some primitive ns-th root ζ of unity. If [n1, . . . , nk]

is not the smallest positive period of the function ψ = ψ1 + · · ·+ ψk, then

there must exist some s, t such that ns = nt and ψs 6= ψt.
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Clearly a residue class a(n) = a + nZ is a coset of the subgroup nZ of

the additive cyclic group Z, and the modulus n is just the index [Z : nZ]

of nZ in Z. Instead of finite covers of Z by residue classes, one may also

investigate covers of a general group by finitely many cosets. If {aiGi}k
i=1

is a cover of a group G by left cosets but none of its proper subsystems,

then ni = [G : Gi] <∞ for all i ∈ [1, k] (B. H. Neumann [J. London Math.

Soc. 1954]), and N = [G :
⋂k

i=1Gi] 6 k! (M. J. Tomkinson [Comm.

Algebra 1987]) where the bound k! is best possible.

Here is a nice generalization of the above conjecture of Erdős suggested

by M. Herzog and J. Schönheim [Canad. Math. Bull. 1974].

Herzog-Schönheim Conjecture. Let {aiGi}k
i=1 (k > 1) be a partition

of a group G into left cosets of subgroups G1, . . . , Gk. Then the indices

n1 = [G : G1], . . . , nk = [G : Gk] cannot be distinct.

M. A. Berger, A. Felzenbaum and A. S. Fraenkel [Canad. Math. Bull.

1986; Fund. Math. 1987] proved that the Herzog-Schönheim conjecture

holds for finite nilpotent groups and supersolvable groups.

Here is a recent progress on the Herzog-Schönheim conjecture.

Theorem 2.2 [Z. W. Sun, J. Algebra 273(2004)]. Let G be a group, and

let a1G1, . . . , akGk be left cosets of subgroups of G such that {aiGi}k
i=1

covers all the elements of G the same number of times but not all the Gi

equal G. Let p be the largest prime divisor of N = [[G : G1], . . . , [G : Gk]],

If all those Gi with [G : Gi] > p are subnormal in G, or G/(
⋂k

i=1Gi)G

is a solvable group having a normal Sylow p-subgroup (where HG denotes
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the largest normal subgroup of G contained in a subgroup H of G). Then

there is a pair {i, j} with 1 6 i < j 6 k such that [G : Gi] = [G : Gj ] ≡

0 (mod p).

The following refinement of the Davenport-Mirsky-Newman-Rado re-

sult was first conjectured by Š. Znám in 1969 and then confirmed by M.

Newman [Math. Ann. 191(1971)]: If A = {as(ns)}k
s=1 is an exact cover

of Z with n1 6 · · · 6 nk−1 < nk−l+1 = · · · = nk, then l > p(nk) where

p(nk) is the least prime divisor of nk.

Here is a further result in this direction.

Theorem 2.3. Let A = {as(ns)}k
s=1 and w(x) =

∑
x∈as(ns) λs where

λs ∈ C.

(i) [Z. W. Sun, Chin. Quart. J. Math. 6(1991)] Let n0 ∈ Z+ be the

smallest period of the function w(x). If d ∈ Z+ does not divide n0 and∑
16s6k

d|ns

λs/ns 6= 0, then

|{as mod d : 1 6 s 6 k & d | ns}| > min
06s6k

d-ns

d

(d, ns)
> p(d), (∗)

where (d, ns) is the greatest common divisor of d and ns. In particular, if

n1 6 · · · 6 nk−l < nk−l+1 = · · · = nk and nk - n0, then

l > min
06s6k−l

nk

(ns, nk)
> p(nk).

(ii) [Z. W. Sun, J. Number Theory 111(2005), 190-196] Let n0 ∈ Z+

be the smallest positive period of w(x) mod m ∈ Z. Suppose that d ∈ Z+

does not divide n0 but I(d) = {1 6 s 6 k : d | ns} 6= ∅. If λ1, . . . , λk ∈
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Z, and m does not divide [n1, . . . , nk]
∑

s∈I(d) λs/ns, then (∗) also holds.

Consequently, if k > 1 and n1, . . . , nk are distinct, then the range of the

function wA(x) = |{1 6 s 6 k : x ∈ as(ns)}| is not contained in any

residue class with modulus greater than one.

3. m-covers of Z and Unit fractions

The covering function of A = {as(ns)}k
s=1 defined by

wA(x) = |{1 6 s 6 k:x ∈ as(ns)}|,

is obviously periodic modulo NA = [n1, · · · , nk]. The arithmetic average

of the covering function in a period equals the sum
∑k

s=1 1/ns. In fact,

NA−1∑
x=0

wA(x) =
NA−1∑
x=0

k∑
s=1

[x ≡ as (mod ns)]

=
k∑

s=1

NA−1∑
x=0

[x ≡ as (mod ns)] =
k∑

s=1

NA

ns
.

Here is a uniqueness theorem.

Theorem 3.1 (S. K. Stein, Š. Znám, Z. W. Sun). If A = {as(ns)}k
s=1 and

B = {bt(mt)}l
t=1 are both systems with distinct moduli, and that wA(x) ≡

wB(x) (mod m) for all x ∈ Z where m is an integer not dividing N =

[n1, . . . , nk,m1, . . . ,ml], then systems A and B are identical.

In the case m = 0, this was proved by Stein [Math. Ann. 1958] under

the condition that both A and B are disjoint. The case m = 0 was showed

by Znám [Acta Arith. 1975], and the current general version is due to Z.

W. Sun [J. Number Theory 111(2005), 190-196].
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Let m be a positive integer. If wA(x) > m for all x ∈ Z, then we call

system A an m-cover of Z; if wA(x) = m for all x ∈ Z, then we call system

A an exact m-cover of Z. It is easy to see that
∑k

s=1 1/ns > m for any

m-cover A = {as(ns)}k
s=1, and

∑k
s=1 1/ns = m if A = {as(ns)}k

s=1 is an

exact m-cover of Z.

In 1976 Š. Porubský asked whether every exact m-cover is a union of

m disjoint covers. S. G. Choi supplied the following exact 2-cover

{1(2); 0(3); 2(6); 0, 4, 6, 8(10); 1, 2, 4, 7, 10, 13(15); 5, 11, 12, 22, 23, 29(30)},

which is not a union of two exact covers. In 1991, using a graph-theoretic

argument M. Z. Zhang [J. Sichuan Univ. (Nat. Sci. Ed.)] proved that

for each m = 2, 3, · · · there are infinitely many exact m-covers of Z which

cannot be a union of an n-cover and an (m− n)-cover with 0 < n < m.

In 1989, by using the Riemann zeta function, M. Z. Zhang [J. Sichuan

Univ. (Nat. Sci. Ed.)] showed the following surprising result: If A =

{as(ns)}k
s=1 is a cover of Z then

∑
s∈I 1/ns ∈ Z+ for some I ⊆ [1, k],

which is stronger than the inequality
∑k

s=1 1/ns > 1. The starting point

of Zhang is that A = {as(ns)}k
s=1 forms a cover of Z if any only if

k∏
s=1

(
1− e2πi(n+as)/ns

)
= 0 for all n = 1, 2, 3, · · · .

The crucial trick in Zhang’s proof is that for a real number c the series∑+∞
n=1 e

2πicn/n diverges if and only if c is an integer.

Let A = {as(ns)}k
s=1 be an exact m-cover of Z. Then

∑k
s=1 1/ns =

m ∈ Z+. In 1992 Z. W. Sun [Israel J. Math.] proved that for every n =
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0, 1, · · · ,m there are at least
(
m
n

)
subsets I of [1, k] with

∑
s∈I 1/ns = n.

The initial idea of the proof is the identity

k∏
s=1

(
1− r1/nse2πias/ns

)
= (1− r)m (r > 0).

Here is a result of Z. W. Sun concerning exact m-covers of Z.

Theorem 3.1 [Z. W. Sun, Acta Arith. 1995, 1997]. Let A = {as(ns)}k
s=1

be an exact m-cover of Z. If ∅ 6= J ⊂ [1, k], then there is an I ⊆ [1, k] with

I 6= J such that
∑

s∈I 1/ns =
∑

s∈J 1/ns. Also, for any a = 0, 1, 2, . . . we

have ∣∣∣∣{I ⊆ [1, k − 1] :
∑
s∈I

1
ns

=
a

nk

}∣∣∣∣ > (m− 1
ba/nkc

)
where the lower bound is best possible.

Further results appeared in Z. W. Sun [arXiv:math.NT/0403271].

In 1995, by a mixed use of tools from analysis, linear algebra, num-

ber theory and combinatorics, Z. W. Sun obtained the first substantial

characterization of m-covers.

Theorem 3.2 [Z. W. Sun, Acta Arith. 1995]. A = {as(ns)}k
s=1 forms an

m-cover of Z if and only if we have

∑
I⊆[1,k]

{
∑

s∈I 1/ns}=θ

(−1)|I|
(
b
∑

s∈I 1/nsc
n

)
e2πi

∑
s∈I as/ns = 0

for all θ ∈ [0, 1) and n = 0, 1, · · · ,m− 1.

By the way, Sun’s approach made him obtain the following local-global

result: A = {as(ns)}k
s=1 forms an m-cover of Z if and only if it covers



14 ZHI-WEI SUN

|S(A)| consecutive integers at least m times, where

S(A) =
{{∑

s∈I

1
ns

}
: I ⊆ [1, k]

}

and {α} stands for the fractional part of a real number α. This is stronger

than a conjecture of P. Erdős which says that A = {as(ns)}k
s=1 is a cover

of Z if it covers integers from 1 to 2k.

Theorem 3.3. Let A = {as(ns)}k
s=1 be an m-cover of Z and m1, . . . ,mk

be any positive integers.

(i) [Z. W. Sun, Trans. Amer. Math. Soc. 348(1996)] There are at least

m positive integers in the form
∑

s∈I ms/ns with I ⊆ [1, k].

(ii) [Z. W. Sun, Proc. Amer. Math. Soc. 127(1999] For any J ⊆ [1, k]

we have ∣∣∣∣{I ⊆ [1, k] : I 6= J &
∑
s∈I

ms

ns
−
∑
s∈J

ms

ns
∈ Z

}∣∣∣∣ > m.

(iii) [Z. W. Sun, Electron. Res. Announc. Amer. Math. Soc. 9(2003)]

If m is a prime power, then for any J ⊆ [1, k] there is an I ⊆ [1, k] with

I 6= J such that
∑

s∈I ms/ns −
∑

s∈J ms/ns ∈ mZ.

(iv) [Z. W. Sun, Trans. Amer. Math. Soc. 348(1996)] If n1 6 · · · 6

nk−l < nk−l+1 = · · · = nk, then either
∑k−l

s=1 1/ns > m or l > nk/nk−l.

Here parts (i)–(iii) are different extensions of Zhang’s result in 1989.

We conjecture that the condition in part (iii) is unnecessary. Part (iv)

in the case l = 1 is stronger than the Davenport-Mirsky-Newman-Radó

result.
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An improvement of Theorem 3.3(ii) can be extended to integral rings of

certain algebraic number fields including cyclotomic fields and quadratic

fields.

Theorem 3.4 [H. Pan and Z. W. Sun, arXiv:math.NT/0504413]. Let K

be an algebraic number field and OK be the ring of algebraic integers in

K. Suppose that K has an integral basis 1, γ, . . . , γn−1 with γ ∈ OK and

n = [K : Q], and A = {αs + βsOK}k
s=1 forms an m-cover of OK with

αs, βs ∈ OK . Then, for any µ ∈ K, either the set{
I ⊆ {1, . . . , k} :

∑
s∈I

1
βs

∈ µ+OK

}
is empty or it has at least 2m elements.

Theorem 3.5. Let A = {as(ns)}k
s=1 be an m-cover of Z with ak(nk)

irredundant.

(i) [Z. W. Sun, Proc. AMS 127(1999); arXiv:math.NT/0305369] Let

m1, · · · ,mk−1 be positive integers relatively prime to n1, · · · , nk−1 respec-

tively. Then there is an α ∈ [0, 1) such that for any r = 0, 1, . . . , nk − 1

we have∣∣∣∣{⌊∑
s∈I

ms

ns

⌋
: I ⊆ [1, k − 1] and

{∑
s∈I

ms

ns

}
=
α+ r

nk

}∣∣∣∣ > m.

(ii) [Z. W. Sun, arXiv:math.NT/0411305] If nk is a period of the cov-

ering function wA(x), then for any r = 0, 1, . . . , nk − 1 we have∣∣∣∣{⌊∑
s∈I

1
ns

⌋
: I ⊆ [1, k − 1] and

{∑
s∈I

1
ns

}
=

r

nk

}∣∣∣∣ > m.

The following result concerning covering function is also remarkable.
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Theorem 3.6 [Z. W. Sun, Combinatorica 2003]. Let A = {as(ns)}k
s=1.

(i) M(A) = maxx∈Z wA(x) can be written in the form
∑k

s=1ms/ns with

m1, . . . ,mk ∈ Z+.

(ii) If wA(x) is periodic modulo n0 ∈ Z+, then{∑
s∈I

1
ns

: I ⊆ [1, k − 1]
}
⊇
{
r

nk
: r ∈ N & r <

nk

(n0, nk)

}
.

The following theorem is related to zero-sum problems.

Theorem 3.7 [Z. W. Sun, Electron. Res. Announc. Amer. Math. Soc.

9(2003); arXiv:math.NT/0305369]. Let A = {as(ns)}k
s=1 and let q be a

prime power.

(i) If {wA(x) : x ∈ Z} ⊆ {2q − 1, 2q}, then for any c1, · · · , ck ∈ Zq =

Z/qZ there exists an I ⊆ [1, k] such that
∑

s∈I 1/ns = q and
∑

s∈I cs = 0.

(ii) If A is an exact 3q-cover of Z, then for any c1, · · · , ck ∈ Zq ⊕ Zq

with c1 + · · ·+ ck = 0, there exists an I ⊆ [1, k] such that
∑

s∈I 1/ns = q

and
∑

s∈I cs = 0.

Z. W. Sun conjectured that we can replace the prime power q in Theo-

rem 3.7 by a general positive integer.

Part (i) in the case n1 = · · · = nk = 1, reduces to the famous Erdős-

Ginzburg-Ziv theorem [Bull. Research Council. Israel, 1961]: For any

c1, · · · , c2n−1 ∈ Z, there is an I ⊆ [1, 2n − 1] with |I| = n such that∑
s∈I cs ≡ 0 (mod n). Part (ii) in the case n1 = · · · = nk = 1 reduces to

the following result of N. Alon and Dubiner: Let q be a prime power, and

let c1, · · · , c3q be elements of Zq ⊕ Zq with c1 + · · ·+ c3q = 0. Then there

is an I ⊆ [1, 3q] with |I| = q such that
∑

s∈I cs = 0.
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4. Covers of Groups by Cosets or Subgroups

In a cover {aiGi}k
i=1 of a group G by left cosets, if

⋂k
i=1Gi equals a

given subgroup H of G with finite index, what is the lower bound of k?

In this direction we need two functions.

In 1966 J. Mycielski [Fund. Math.] introduced the following function

f : Z+ → N which is now called Mycielski’s function.

f(p) = p−1 for any prime p and f(mn) = f(m)+f(n) for all m,n ∈ Z+.

Evidently

f(pα1
1 · · · pαr

r ) =
r∑

t=1

αt(pt − 1),

where p1, · · · , pr are distinct primes, and α1, · · · , αr ∈ N.

Let G be a group. A subgroup H of G is said to be subnormal if there

is a chain H0 = H ⊆ H1 ⊆ · · · ⊆ Hn = G of subgroups of G such that Hi

is normal in Hi+1 for all 0 6 i < n.

Let H be a subnormal subgroup of a group G with finite index, and

H0 = H ⊂ H1 ⊂ · · · ⊂ Hn = G

be a composition series from H to G (i.e. Hi is maximal normal in Hi+1

for each 0 6 i < n). If the length n is zero (i.e. H = G), then we set

d(G,H) = 0, otherwise we put

d(G,H) =
n−1∑
i=0

([Hi+1 : Hi]− 1).

When H is normal in G, the ‘distance’ d(G,H) was first introduced by I.

Korec [Fund. Math. 1974]. The current general notion is due to Z. W.
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Sun [Fund. Math. 1990]. Z. W. Sun [Fund. Math. 1990; European J.

Combin. 2001] showed that

[G : H]− 1 > d(G,H) > f([G : H]) > log2[G : H],

and d(G,H) = f([G : H]) if and only if G/HG is solvable.

Here is a conjecture of Mycielski posed in [Fund. Math. 1966].

Mycielski’s Conjecture. Let A = {aiGi}k
i=1 be a disjoint cover of an

abelian group G by left cosets. Then

k > 1 + f([G : Gi]) for every i = 1, · · · , k.

In the case G = Z, this was confirmed by Š. Znám [Colloq. Math.] in

1966.

Theorem 4.1 (I. Korec, Z. W. Sun). Let G be a group and {aiGi}k
i=1 be

an exact m-cover of G with all the Gi subnormal in G. Then

k > m+ d

(
G,

k⋂
i=1

Gi

)
,

where the lower bound can be attained.

When m = 1 and all the Gi are normal in G, this was proved by I.

Korec [Fund. Math. 1974] and conjectured by Š. Znám in 1969. The

current version is due to Z. W. Sun [European J. Combin. 22(2001)].

Theorem 4.2 [G. Lettl & Z. W. Sun, 2004, arXiv:math.GR/0411144].

Let G be an abelian group and {aiGi}k
i=1 be an m-cover of G with akGk

irredundant. Then we have k > m+ f([G : Gk]).
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In the case Gk = {e}, this was conjectured by W. D. Gao and A.

Geroldinger in 2003.

For a subgroup H of a group G, if (|H|, [G : H]) = 1 then H is called a

Hall subgroup of G.

Theorem 4.3 [Z. W. Sun, 2005, arXiv:math.GR/0501451]. Let G be a

group and a1G1, . . . , akGk be left cosets in G such that {aiGi}k
i=1 forms

a minimal cover of G (i.e., it is an m-cover of G but none of its proper

subsystems is). If G is cyclic, or G is finite and G1, . . . , Gk are normal

Hall subgroups of G, then we have

k > m+ d

(
G,

k⋂
i=1

Gi

)
.

Recall that a group G is said to be perfect if it coincides with its derived

group G′.

Theorem 4.4 [Z. W. Sun, 2005, arXiv:math.GR/0501451]. If {Gi}k
i=1

forms a minimal m-cover of a group G by subnormal subgroups, then there

is a composition series from
⋂k

i=1Gi to G whose factors are of prime

orders, and all the Gi contain every perfect subgroup of G.

When m = 1 and all the Gi are normal in G, this was essentially

obtained by M. A. Brodie, R. F. Chamberlain and L.-C. Kappe [Proc.

Amer. Math. Soc. 1988].

Theorem 4.5 [Z. W. Sun, arXiv:math.GR/0501451]. Let G1, . . . , Gk be

normal Hall subgroups of a finite group G. Then, for any a1, . . . , ak ∈ G,
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we have ∣∣∣∣ k⋃
i=1

aiGi

∣∣∣∣ > ∣∣∣∣ k⋃
i=1

Gi

∣∣∣∣.
Finally we mention two open conjectures.

Conjecture 4.1 (S. Guo and Z. W. Sun, 2004). Let {Gi}k
i=1 be a minimal

m-cover of a group G by finitely many subnormal subgroups. Assume

that [G :
⋂k

i=1Gi] =
∏r

t=1 p
αt
t where p1, . . . , pr are distinct primes and

α1, . . . , αr are positive integers. Then

k > m+
r∑

t=1

(αt − 1)(pt − 1).

Conjecture 4.2 (Z. W. Sun, 2004). Let a1G1, . . . , akGk be pairwise dis-

joint left cosets of a group G with [G : Gi] <∞ for all i = 1, . . . , k. Then

([G : Gi], [G : Gj ]) > k for some 1 6 i < j 6 k.

Conjecture 4.2 is known true for k = 2 and for p-groups, but it remains

open even for the additive cyclic group Z. I’d like to offer a prize of $200

for a proof of Conjecture 4.2.


