A talk given at Massachusetts Institute of Technology (April 21, 2006)

COMBINATORIAL ASPECTS OF COVERS OF GROUPS BY COSETS OR SUBGROUPS

Zhi-Wei Sun

Department of Mathematics Nanjing University Nanjing 210093, P. R. China zwsun@nju.edu.cn http://pweb.nju.edu.cn/zwsun

ABSTRACT. If a group G is the union of finitely many left cosets a_1G_1, \ldots, a_kG_k of subgroups G_1, \ldots, G_k , then the system $\{a_sG_s\}_{i=1}^k$ is said to be a cover of G. In this talk we give a survey of results on extremal problems concerning covers of groups, and introduce progress on the famous Herzog-Schönheim conjecture which states that if $\{a_sG_s\}_{s=1}^k$ $(1 < k < \infty)$ is a partition of a group G by left cosets then the (finite) indices $[G:G_1], \ldots, [G:G_k]$ cannot be distinct. We will also mention some new challenging conjectures in the field.

1. BASIC CONCEPTS AND A FUNDAMENTAL THEOREM

Let G be a multiplicative group with identity e. For a subgroup H of G, the *index* of H in G is $[G : H] = |\{gH : g \in G\}|$. Note that a right coset Hg of H is also a left coset $g(g^{-1}Hg)$ of the conjugate subgroup $g^{-1}Hg$, and $[G : g^{-1}Hg] = [G : H]$.

Let H be a subgroup of a group G with $k = [G : H] < \infty$. It is well known that we can partition G into k left cosets a_1H, \ldots, a_kH of H (such a partition is called a left coset decomposition of G by H). If G is the additive group \mathbb{Z} of integers, then $H = n\mathbb{Z}$ for some $n \in \mathbb{Z}^+ = \{1, 2, \ldots\}$

and $\{r + n\mathbb{Z}\}_{r=0}^{n-1}$ is a partition of \mathbb{Z} into residue classes modulo n. Note that \mathbb{Z} is an infinite cyclic group generated by 1, and $[\mathbb{Z} : n\mathbb{Z}] = |\mathbb{Z}/n\mathbb{Z}| = n$ for all $n \in \mathbb{Z}^+$.

In the 1930s P. Erdős introduced covers of \mathbb{Z} by residue classes when he studied odd numbers not of the form $2^n + p$ where p is a prime.

Definition of Covers of \mathbb{Z} . Let $A = \{a_s + n_s\mathbb{Z}\}_{s=1}^k$ be a finite system of residue classes with $a_s \in \mathbb{Z}$ and $n_s \in \mathbb{Z}^+$. If $\bigcup_{s=1}^k (a_s + n_s\mathbb{Z}) = \mathbb{Z}$, then we call A a cover of \mathbb{Z} or a covering system. If A is a cover of \mathbb{Z} but $\{a_s + n_s\mathbb{Z}\}_{s\neq t}$ is not, then we say that A forms a cover of \mathbb{Z} with $a_t + n_t\mathbb{Z}$ irredundant. A cover of \mathbb{Z} with all the members irredundant is called a minimal cover of \mathbb{Z} . If A is a cover of \mathbb{Z} and also the k residue classes in A are pairwise disjoint, then A is said to be an exact cover or a disjoint cover of \mathbb{Z} . For system A we set

$$N_A = \operatorname{lcm}[n_1, \dots, n_k] = \left[\mathbb{Z} : \bigcap_{s=1}^k n_s \mathbb{Z}\right].$$

Clearly, when $x \equiv y \pmod{N_A}$, $A = \{a_s + n_s \mathbb{Z}\}_{s=1}^k$ covers x if and only if A covers y.

Example 1.1. The system

$$A_0 = \{1 + 2\mathbb{Z}, 2 + 2^2\mathbb{Z}, \dots, 2^{k-2} + 2^{k-1}\mathbb{Z}, 2^{k-1}\mathbb{Z}\}\$$

is a disjoint cover of \mathbb{Z} (by k residue classes) with $N_{A_0} = 2^k$, while

$$A_1 = \{2\mathbb{Z}, 3\mathbb{Z}, 1+4\mathbb{Z}, 5+6\mathbb{Z}, 7+12\mathbb{Z}\}$$

is a minimal cover of \mathbb{Z} with the moduli distinct and $N_{A_1} = 12$.

Let G be a multiplicative group, and let

$$\mathcal{A} = \{a_s G_s\}_{s=1}^k$$

be a finite system of left cosets in G (where $a_1, \ldots, a_k \in G$, and G_1, \ldots, G_k are subgroups of G). For any $I \subseteq [1, k] = \{1, \ldots, k\}$ we define the *index* map I^* from G to the power set of [1, k] as follows:

$$I^*(x) = \{i \in I : x \in a_i G_i\} \ (x \in G).$$

 $m(\mathcal{A}) = \inf_{x \in G} |[1,k]^*(x)|$ is said to be the *covering multiplicity* of \mathcal{A} .

For a positive integer m, if $m(\mathcal{A}) \ge m$ (respectively, $|[1, k]^*(x)| = m$ for all $x \in G$) then we call $\mathcal{A} = \{a_i G_i\}_{i=1}^k$ an *m*-cover (resp. exact *m*-cover) of G. If \mathcal{A} forms an *m*-cover of G but none of its proper subsystems does, then it is said to be a *minimal* (or an *irredundant*) *m*-cover of G. A cover of G refers to a 1-cover of G, and a *disjoint cover* (or *partition*) of G means an exact 1-cover of G. Obviously an exact *m*-cover is a minimal *m*-cover and any minimal *m*-cover has covering multiplicity m.

Definition of Regular Covers (Sun, 2005). Let $\mathcal{A} = \{a_s G_s\}_{s=1}^k$ be a finite system of left cosets in a group G. If

$$I^*(G) = \{I^*(g) : g \in G\} \not\subseteq [1,k]^*(G) = \{[1,k]^*(x) : x \in G\}$$

for all $I \subset [1, k]$ (i.e., whenever $I \subset [1, k]$ there is a $g \in G$ such that $I^*(g) \neq [1, k]^*(x)$ for all $x \in G$), then we call \mathcal{A} a regular cover of G.

Note that a regular cover $\mathcal{A} = \{a_s G_s\}_{s=1}^k$ of a group G must be a cover of G since $[1, k]^*(G) \not\supseteq \emptyset^*(G) = \{\emptyset\}.$

When $\mathcal{A} = \{a_s G_s\}_{s=1}^k$ is a minimal *m*-cover of a group *G*, it forms a regular cover of *G* because for any $I \subset [1, k]$ there is a $g \in G$ such that $|I^*(g)| < m$ while $[1, k]^*(x) \ge m$ for all $x \in G$.

Let $\mathcal{A} = \{a_s G_s\}_{s=1}^k$ be a minimal cover of a group G by left cosets. By a geometric consideration, B. H. Neumann [Publ. Math. Debrecen, 1954] showed that all the $[G:G_s]$ are finite and that $[G:\bigcap_{s=1}^k G_s] \leq c_k$ where c_k only depends on k. Later M. J. Tomkinson [Comm. Algebra, 1987] proved that we can take $c_k = k!$ and the bound k! is best possible. In 2005 Z. W. Sun [Internat. J. Math., arXiv:math.GR/0501451] introduced the concept of regular cover and extended Tomkinson's result to regular covers of groups.

A Fundamental Theorem due to Efforts of B. H. Neumann (1954), M. J. Tomkinson (1987) and Z. W. Sun (2005). Let $\mathcal{A} = \{a_s G_s\}_{s=1}^k$ be a regular cover of a group G by left cosets of subgroups G_1, \ldots, G_k . Then we have

$$\left[G:\bigcap_{s=1}^k G_s\right] \leqslant k! < \infty.$$

Proof. Let $F = \bigcap_{s=1}^{k} G_s$. We use induction on |I| to show that

$$\left[\bigcap_{j\in\bar{I}}G_j:F\right]\leqslant |I|! \qquad \text{for all } I\subseteq[1,k],$$

where $\overline{I} = [1, k] \setminus I$, and $\bigcap_{j \in \emptyset} G_j$ refers to G.

Clearly $\left[\bigcap_{j\in\bar{\emptyset}}G_j:F\right] = 1 = |\emptyset|!.$

Now let $\emptyset \neq I \subseteq [1, k]$, and assume that $[\bigcap_{j \in \overline{I}_0} G_j : F] \leq |I_0|!$ for all $I_0 \subset [1, k]$ with $|I_0| < |I|$. Since \mathcal{A} is regular and $\overline{I} \neq [1, k]$, there exists a

 $g \in G$ such that

$$\bar{I}^*(g) = \{j \in \bar{I} : g \in a_j G_j\} \notin [1,k]^*(G).$$

For each $x \in \bigcap_{j \in \overline{I}} G_j$, as $\overline{I}^*(gx) = \overline{I}^*(g) \neq [1,k]^*(gx)$, we must have $gx \in \bigcup_{i \in I} a_i G_i$. So

$$g\left(\bigcap_{j\in\bar{I}}G_j\right)\subseteq\bigcup_{i\in I}a_iG_i.$$

For each $i \in I$, $\{i\} \cup \overline{I}$ is the complement of $I \setminus \{i\}$ in [1,k]; if $a_i G_i \cap g(\bigcap_{j \in \overline{I}} G_j)$ is nonempty then it contains exactly $[G_i \cap \bigcap_{j \in \overline{I}} G_j : F]$ left cosets of F. As

$$g\left(\bigcap_{j\in\bar{I}}G_j\right) = \bigcup_{i\in\bar{I}}\left(a_iG_i\cap g\left(\bigcap_{j\in\bar{I}}G_j\right)\right),$$

we have

$$\left[\bigcap_{j\in\bar{I}}G_j:F\right]\leqslant\sum_{i\in I}\left[\bigcap_{j\in\overline{I\setminus\{i\}}}G_j:F\right].$$

By the induction hypothesis,

$$\left[\bigcap_{j\in\overline{I\setminus\{i\}}}G_j:F\right]\leqslant |I\setminus\{i\}|!=(|I|-1)! \quad \text{for all } i\in I.$$

Therefore

$$\left[\bigcap_{j\in\bar{I}}G_j:F\right]\leqslant\sum_{i\in I}(|I|-1)!=|I|!$$

This concludes the induction step. $\hfill\square$

Example 1.2. Let H be any subgroup of a group G with $k = [G : H] < \infty$. Let $\{Ha_s\}_{s=1}^k$ be a right coset decomposition of G by H. Set $G_s = a_s^{-1}Ha_s$ for $s = 1, \ldots, k$. Then $\{a_s G_s\}_{s=1}^k$ is a disjoint cover of G with

$$\bigcap_{s=1}^{k} G_{s} = \bigcap_{s=1}^{k} \bigcap_{h \in H} a_{s}^{-1} h^{-1} H h a_{s} = \bigcap_{g \in G} g^{-1} H g = H_{G}$$

where $H_G = \bigcap_{g \in G} g^{-1} Hg$ (the *core* of H in G) is the largest normal subgroup of G contained in H. By the Fundamental Theorem, $|G/H_G| =$ $[G: H_G] \leq k! = [G: H]!$. In fact, it is known in group theory that the quotient group G/H_G can be embedded into the symmetric group S_k on $\{1, \ldots, k\}.$

If $G = S_k$ and $H = \{\sigma \in G : \sigma(1) = 1\}$ (the stabilizer of 1), then $\{H, H(12), \ldots, H(1k)\}$ is a partition of G, also $H_G = \{e\}$ because $G_i = (1i)^{-1}H(1i)$ is the stabilizer of i; therefore $[G : \bigcap_{s=1}^k G_i] = |G/H_G| = k!$ as noted by Tomkinson in 1987. So the upper bound in the Fundamental Theorem is best possible.

2. Mycielski's function and a group-theoretic function introduced by Korec and Sun

Definition of Mycielski's Function. The Mycielski function $f : \mathbb{Z}^+ \to \mathbb{N} = \{0, 1, ...\}$ is given by

$$f(p_1^{\alpha_1}\cdots p_r^{\alpha_r}) = \sum_{t=1}^r \alpha_t (p_t - 1),$$

where p_1, \ldots, p_r are distinct primes, and $\alpha_1, \ldots, \alpha_r \in \mathbb{N}$.

Note that f(1) = 0, f(p) = p - 1 for any prime p, and f(mn) = f(m) + f(n) for all $m, n \in \mathbb{Z}^+$.

If $n \in \mathbb{Z}^+$ has the primary factorization $\prod_{t=1}^r p_t^{\alpha_t}$, then

$$1 + f(n) = 1 + \sum_{t=1}^{r} \alpha_t(p_t - 1) \leqslant \prod_{t=1}^{r} (1 + \alpha_t(p_t - 1)) \leqslant \prod_{t=1}^{r} (1 + (p_t - 1))^{\alpha_t} = n$$

and

$$n = \prod_{t=1}^{n} p_t^{\alpha_t} \leqslant \prod_{t=1}^{r} \left(2^{p_t - 1}\right)^{\alpha_t} = 2^{f(n)}$$

So

$$n-1 \ge f(n) \ge \log_2 n$$
 for all $n = 1, 2, 3, \dots$

Let G be a group. A subgroup H of G is said to be *subnormal* if there is a chain $H_0 = H \subseteq H_1 \subseteq \cdots \subseteq H_n = G$ of subgroups of G such that H_i is normal in H_{i+1} for all $0 \leq i < n$.

Definition of a Group-theoretic Function (I. Korec and Z. W. Sun). Let H be a subnormal subgroup of a group G with finite index, and

$$H_0 = H \subset H_1 \subset \cdots \subset H_n = G$$

be a composition series from H to G (i.e. H_i is maximal normal in H_{i+1} for each $0 \leq i < n$). If the length n is zero (i.e. H = G), then we set d(G, H) = 0, otherwise we put

$$d(G,H) = \sum_{i=0}^{n-1} ([H_{i+1}:H_i] - 1).$$

When H is a normal subgroup of a group with finite index, d(G, H) was first introduced by I. Korec [Fund. Math. 1974]. The current general notion is due to Z. W. Sun [Fund. Math. 1990], and he viewed d(G, H) as a 'distance'.

Let H be a subnormal subgroup of a group G with $[G : H] < \infty$. By the Jordan–Hölder theorem in group theory, the definition d(G, H) does not depend on the choice of the composition series from H to G. Clearly d(G, H) = 0 if and only if H = G. If K is a subnormal subgroup of Hwith $[H:K] < \infty$, then

$$d(G,H) + d(H,K) = d(G,K).$$

Connection between the Functions d and f [Z. W. Sun, Fund. Math. 1990; European J. Combin. 2001]. Let H be a subnormal subgroup of a group G with $[G:H] < \infty$. Then

$$[G:H] - 1 \ge d(G,H) \ge f([G:H]) \ge \log_2[G:H].$$

Moreover, d(G, H) = f([G : H]) if and only if G/H_G is solvable.

3. Inequalities of Mycielski's Type

In a regular cover $\{a_sG_s\}_{s=1}^k$ of a group G by left cosets, if $\bigcap_{s=1}^k G_s$ equals a given subgroup H of G with finite index, what is the lower bound of k? (Of course, $k! \ge [G:H]$ by the Fundamental Theorem.)

Mycielski's Conjecture [Fund. Math. 1966]. Let G be an abelian group and G_1, \dots, G_k be subgroups of G (with finite indices). If $A = \{a_s G_s\}_{s=1}^k$ forms an exact cover of G for some $a_1, \dots, a_k \in G$, then

$$k \ge 1 + f([G:G_s])$$
 for every $s = 1, \cdots, k$.

S. Znám [Colloq. Math. 1966]: Mycielski's conjecture holds for the additive group \mathbb{Z} of integers. Equivalently, if $A = \{a_s + n_s \mathbb{Z}\}_{s=1}^k$ forms a disjoint cover of \mathbb{Z} by residue classes then $k \ge 1 + f(n_t)$ for each $t = 1, \ldots, k$.

Znám [Colloq. Math. 1969]: If $A = \{a_s + n_s \mathbb{Z}\}_{s=1}^k$ forms a cover of \mathbb{Z} and the residue class $a_t + n_t \mathbb{Z}$ is disjoint with all the remaining residue classes, then we have $k \ge 1 + f(n_t)$.

Znám [Acta Arith. 1975]: If $A = \{a_s + n_s \mathbb{Z}\}_{s=1}^k$ forms a cover of \mathbb{Z} with $a_t(n_t)$ irredundant, then there are $1 + f(n_t)$ integers no two of which belong to the same member of A.

Znám's Conjecture [Coll. Math. Soc. János Bolyai, 1968; Acta Arith. 1975]. If $A = \{a_s + n_s \mathbb{Z}\}_{s=1}^k$ is a disjoint cover or just a minimal cover of \mathbb{Z} by residue classes, then

$$k \ge 1 + f(N_A)$$
 and hence $N_A \le 2^{k-1} \le k!$.

(Recall that $N_A = [n_1, \dots, n_k] = [\mathbb{Z} : \bigcap_{s=1}^k n_s \mathbb{Z}].$)

I. Korec [Fund. Math. 1974]: Let $\{a_sG_s\}_{s=1}^k$ be a partition of a group G into finitely many left cosets of normal subgroups G_1, \ldots, G_k . Then $[G:\bigcap_{s=1}^k G_s] < \infty$ and $k \ge 1 + f([G:\bigcap_{s=1}^k G_s])$.

Sun's Further Extension [Fund. Math., 134(1990); European J. Combin. 22(2001)]. Let G be a group and $\mathcal{A} = \{a_s G_s\}_{s=1}^k$ be an exact m-cover of G by left cosets with all the G_s subnormal in G. Then

$$k \ge m + d\left(G, \bigcap_{s=1}^{k} G_s\right),\tag{*}$$

where the lower bound can be attained. Moreover, for any subgroup K of G not contained in all the G_s we have

$$|\{1 \leq s \leq k : K \not\subseteq G_s\}| \ge 1 + d\left(K, K \cap \bigcap_{s=1}^k G_s\right).$$

A key step in Sun's proof is to show that under the condition, for any maximal normal subgroup H of G, either any left coset of H contains one

of the k members in \mathcal{A} or none of the left cosets of H contains a member in \mathcal{A} .

The lower bound in (*) can be attained as shown by the following example.

Example 3.1. Let H be a subnormal subgroup of a group G with finite index, and let $H = H_0 \subset H_1 \subset \cdots \subset H_n = G$ be a composition series from H to G. Write

$$H_{i+1} \setminus H_i = \bigcup_{j=1}^{[H_{i+1}:H_i]-1} b_j^{(i)} H_i \text{ for } i = 0, 1, \dots, n-1.$$

Z. W. Sun [Fund. Math. 134(1990)] observed that the following 1+d(G, H) cosets

$$H_0, \ b_j^{(i)} H_i \ (0 \le i < n, \ 1 \le j < [H_{i+1} : H_i])$$

form a partition of G (in fact, $G = H_0 \cup (H_1 \setminus H_0) \cup \cdots \cup (H_n \setminus H_{n-1})$). These cosets, together with m - 1 copies of G, form an exact m-cover of G with the number k of cosets being m + d(G, H) and the intersection of the k subnormal subgroups being H.

In view of Example 1.2 and Sun's above result on exact m-covers of groups by cosets of subnormal subgroups, we have the following interesting application.

Inequalities on Cores of Subnormal Subgroups. Let H be a subnormal subgroup of a group G with $[G:H] < \infty$.

(i) [Z. W. Sun, Fund. Math. 134(1990)] We have

$$[G:H] - 1 \ge d(G, H_G) \ge f(|G/H_G|)$$

and hence $|G/H_G| \leq 2^{[G:H]-1}$.

(ii) [Z. W. Sun, European J. Combin. 22(2001)] H is normal in G if and only if

$$|N_G(H)/H| + d(H, H_G) \ge [G:H],$$

where $N_G(H) = \{g \in G : gH = Hg\}$ is the normalizer of H in G.

M. A. Berger, A. Felzenbaum and A. S. Fraenkel [Coll. Math. 1988]: If $\{a_sG_s\}_{s=1}^k$ is a disjoint cover of a finite solvable group G by left cosets, then $k \ge 1 + f([G:G_t])$ for t = 1, ..., k.

Z. W. Sun [European J. Combin. 2001]: Let $\{a_sG_s\}_{s=1}^k$ be an exact m-cover of a group G. For any $1 \leq t \leq k$, whenever $G/(G_t)_G$ is solvable we have $k \geq m + f([G:G_t])$ and hence $[G:G_t] \leq 2^{k-m}$.

A Conjecture of Sun. Let $\{a_sG_s\}_{s=1}^k$ be an exact m-cover of a group G with all the $G/(G_s)_G$ solvable. Then $k \ge m + f(N)$ where N is the least common multiple of the indices $[G:G_1], \ldots, [G:G_k]$.

R. J. Simpson [Acta Arith. 1985]: Let $A = \{a_s + n_s \mathbb{Z}\}_{s=1}^k$ be a minimal cover of \mathbb{Z} with $a_s \in \mathbb{Z}$ and $n_s \in \mathbb{Z}^+$. Then for any divisor d of N_A with $0 < d < N_A$ we have

$$|\{1 \leqslant s \leqslant k : n_s \nmid d\}| \ge 1 + f(N_A/d).$$

Letting d = 1 we then obtain $k \ge 1 + f(N_A)$.

M. A. Berger, A. Felzenbaum and A. S. Fraenkel [Coll. Math. 1988]: Let $\{a_sG_s\}_{s=1}^k$ be a minimal cover of a group G of squarefree order. If all the G_s are normal in G then $k \ge 1 + f([G:\bigcap_{s=1}^k G_s])$.

A Result of Sun on Regular Covers [Internat. J. Math., in press, arXiv:math.GR/0501451]. If $\mathcal{A} = \{a_s G_s\}_{s=1}^k$ is a regular cover of a group G by left cosets, and for any $i, j = 1, \ldots, k$ either G_i and G_j are subnormal in G with $[G : G_i]$ relatively prime to $[G_i : G_i \cap G_j]$, or G_i and G_j are normal in G with $G/(G_i \cap G_j)$ cyclic, then we have the inequality

$$k \ge m(\mathcal{A}) + d\left(G, \bigcap_{s=1}^{k} G_s\right).$$

The conditions of this result are essentially indispensable as shown by the following example:

Example 3.2. Let G be the group $C_p \times C_p$ where p is a prime and C_p is the cyclic group of order p. Then any element $a \neq e$ of G has order p. Let G_1, \ldots, G_k be all the distinct subgroups of G with order p. If $1 \leq s < t \leq k$ then $G_s \cap G_t = \{e\}$. Clearly $\{G_s\}_{s=1}^k$ forms a minimal cover of G by normal subgroups whose intersection is $H = \{e\}$. Since $1 + k(p-1) = |\bigcup_{s=1}^k G_s| = |G| = p^2$, we have

$$k = p + 1 \leq 2p - 1 = 1 + f([G:H]) = 1 + d\left(G, \bigcap_{s=1}^{k} G_s\right).$$

When p > 2 the last inequality becomes strict. We remark that both G/G_s and $G_s/(G_s \cap G_t)$ $(t \neq s)$ have order p.

Let G be a finite multiplicative abelian group with identity e. If aHis a left coset in G with $e \notin aH$ (i.e. $a \notin H$), then aH is called a *proper coset* in G. During their study of zero-sum problems on abelian groups, W. D. Gao and A. Geroldinger [European J. Combin. 24(2003)] defined $\mathbf{s}(G)$ to be the smallest number of proper cosets that can cover $G \setminus \{e\}$. For left cosets a_1G_1, \ldots, a_kG_k in group G, the system $\{a_sG_s\}_{s=1}^k$ is a cover of $G \setminus \{e\}$ if and only if $\{a_sG_s\}_{s=0}^k$ forms a cover of G with the coset a_0G_0 irredundant where $a_0 = e$ and $G_0 = \{e\}$ (and hence $\bigcap_{s=0}^k G_s = \{e\}$). Thus, by the previous results on covers of groups, we have $\mathbf{s}(G) \leq f(|G|)$, and $\mathbf{s}(G) = f(|G|)$ if G is cyclic or of squarefree order.

By using algebraic number theory and characters of abelian groups, G. Lettl and Z. W. Sun [arXiv:math.GR/0411144] obtained in 2004 the following result for minimal *m*-covers of a general abelian group.

A Result of Lettl and Sun on Covers of Abelian Groups. Let $\mathcal{A} = \{a_s G_s\}_{s=1}^k$ be a minimal m-cover of an abelian group G by left cosets. Then $k \ge m + f([G:G_t])$ for any t = 1, ..., k.

By Example 3.2, even for $G = C_p \times C_p$ we cannot replace $f([G : G_t])$ in the above result by $f([G : \bigcap_{s=1}^k G_s])$. But the speaker believes that $f([G : G_t])$ in the lower bound of k can be replaced by f(N) where N is the least common multiple of $[G : G_1], \ldots, [G : G_k]$.

Another Conjecture of Sun. Let $\mathcal{A} = \{a_s G_s\}_{s=1}^k$ be an m-cover of a group G by left cosets. For any s = 1, ..., k with $a_s G_s$ irredundant, if G_s is subnormal in G then $k \ge m + d(G, G_s)$; if $G/(G_s)_G$ is solvable then $k \ge m + f([G:G_s])$.

4. Covering a group by subgroups

Any finite non-cyclic group G can be covered by finitely many proper

subgroups because $G = \bigcup_{x \in G} \langle x \rangle$, but no field can be covered by finitely many proper subfields as shown by A. Bialynicki-Birula, J. Browkin and A. Schinzel [Colloq. Math. 7(1959)].

Example 4.1. Let G be a group with G/Z(G) finite, where Z(G) is the center of G. For $x, y \in G$, if $xy \neq yx$ then $(x^{-1}y)x \neq x(x^{-1}y)$ and hence $xZ(G) \neq yZ(G)$. Let $X = \{x_1, \ldots, x_k\}$ be a maximal set of pairwise noncommuting elements of G. Then $k = |X| \leq |G/Z(G)|$, and $\{C_G(x_i)\}_{i=1}^k$ forms a minimal cover of G by centralizers with $\bigcap_{i=1}^k C_G(x_i) = Z(G)$ (recall that $C_G(x) = \{g \in G : gx = xg\}$), and $|G/Z(G)| \leq c^k$ for some absolute constant c > 0 [L. Pyber, J. London Math. Soc. 35(1987)]. D. R. Mason [Math. Proc. Cambridge Philos. Soc. 83(1978)] proved that $|G| \geq 2k - 2$, which was conjectured by Erdös and E. G. Straus in 1975.

Recall that a group G is said to be *perfect* if it coincides with its derived group $G' = \langle x^{-1}y^{-1}xy : x, y \in G \rangle$.

M. A. Brodie, R. F. Chamberlain and L.-C. Kappe [Proc. Amer. Math. Soc. 104(1998)]: If $\{G_s\}_{s=1}^k$ is a minimal cover of a group G by finitely many normal subgroups, then $G/\bigcap_{s=1}^k G_s$ is solvable and all perfect normal subgroups of G are contained in each of G_1, \ldots, G_k .

Z. W. Sun [Internat. J. Math., arxiv:math.GR/0501451] Suppose that $\{G_s\}_{s=1}^k$ is a minimal m-cover of a group G by subnormal subgroups. Then there is a composition series from $\bigcap_{s=1}^k G_s$ to G whose factors are of prime orders (equivalently, $G/(\bigcap_{s=1}^k G_s)_G$ is solvable), and all the G_s contain every perfect subgroup of G.

Concerning covers of a group by subnormal subgroups, the speaker and his student Song Guo made the following conjecture in 2004.

A Conjecture of S. Guo and Z. W. Sun. Let $\{G_s\}_{s=1}^k$ be a minimal m-cover of a group G by finitely many subnormal subgroups. Assume that $[G:\bigcap_{i=1}^k G_s] = \prod_{t=1}^r p_t^{\alpha_t}$ where p_1, \ldots, p_r are distinct primes and $\alpha_1, \ldots, \alpha_r$ are positive integers. Then

$$k > m + \sum_{t=1}^{r} (\alpha_t - 1)(p_t - 1).$$

5. Unions of cosets and Disjoint Cosets

In number theory, a theorem of C. A. Rogers asserts that if $a_s \in \mathbb{Z}$ and $n_s \in \mathbb{Z}^+$ for $s = 1, \ldots, k$ then

$$\left| \left\{ 0 \leqslant x < N : x \in \bigcup_{s=1}^{k} a_s + n_s \mathbb{Z} \right\} \right| \ge \left| \left\{ 0 \leqslant x < N : x \in \bigcup_{s=1}^{k} n_s \mathbb{Z} \right\} \right|,$$

where $N = [n_1, \ldots, n_k]$ is the least common multiple of n_1, \ldots, n_k .

Inspired by this, the speaker conjectured in 1990 that for any finitely many left cosets a_1G_1, \ldots, a_kG_k in a finite group G we always have the inequality $|\bigcup_{s=1}^k a_sG_s| \ge |\bigcup_{s=1}^k G_s|$. When G is a finite cyclic group this reduces to Rogers' result. But soon Tomkinson pointed out that the conjecture is not true for the Klein group $C_2 \times C_2$. In fact, if G = $\{1, -1\} \times \{1, -1\},$

$$G_1 = \{e = (1,1)\}, G_2 = \{e, (1,-1)\}, G_3 = \{e, (-1,1)\}, G_4 = \{e, (-1,-1)\}, G_4 = \{$$

then

$$G_1 \cup G_2 \cup G_3 \cup (1, -1)G_4 = \{e, (1, -1), (-1, 1)\} \subset \bigcup_{s=1}^4 G_s = G_s$$

For a subgroup H of a finite group G, if |H| is relatively prime to [G : H](i.e., gcd(|H|, [G : H]) = 1) then H is called a *Hall subgroup* of G. A Sylow p-subgroup of a finite group G is just a Hall p-subgroup of G.

A Result of Sun on Unions of Cosets [Internat. J. Math., in press]. Let G be a finite group and let G_1, \ldots, G_k be normal Hall subgroups of G. Then, for any $a_1, \ldots, a_k \in G$, we have

$$\Big|\bigcup_{s=1}^k a_s G_s\Big| \ge \Big|\bigcup_{s=1}^k G_s\Big|.$$

The following conjecture seems very challenging.

A Conjecture of Sun on Disjoint Cosets [Internat. J. Math., in press]. Let a_1G_1, \ldots, a_kG_k (k > 1) be finitely many pairwise disjoint left cosets in a group G with $[G:G_s] < \infty$ for all $s = 1, \ldots, k$. Then we have $gcd([G:G_i], [G:G_j]) \ge k$ for some $1 \le i < j \le k$.

This conjecture is true when G is a p-group with p a prime. In fact, under the condition of the above conjecture, clearly

$$\left[G:\bigcap_{s=1}^{k}G_{s}\right] \geqslant \left[\bigcup_{i=1}^{k}a_{i}G_{i}:\bigcap_{s=1}^{k}G_{s}\right] = \sum_{i=1}^{k}\left[G_{i}:\bigcap_{s=1}^{k}G_{s}\right]$$

and hence $\sum_{i=1}^{k} [G:G_i]^{-1} \leq 1$. Suppose that $[G:G_1] \leq \cdots \leq [G:G_k]$. Since $\sum_{i=1}^{k-1} [G:G_i]^{-1} < 1$, there is an $i \in [1, k-1]$ such that $[G:G_i] \leq C_i$. k-1 and hence $[G:G_k] \ge [G:G_i] \ge k$. If $[G:G_k]$ is divisible by all those $[G:G_1], \ldots, [G:G_{k-1}]$ (this happens if G is a p-group with p a prime), then $gcd([G:G_i], [G:G_k]) = [G:G_i] \ge k$.

The conjecture is also true for k = 2. In fact, when H and K are two subgroups of a group G with finite index, it is easy to see that

$$\gcd([G:H],[G:K]) = 1 \Longrightarrow HK = G \iff xH \cap yK \neq \emptyset \text{ for all } x, y \in G.$$

The conjecture for the infinite cyclic group \mathbb{Z} has been proved to be true for k < 5 by the speaker [Chinese Ann. Math. Ser. A 13(1992)], and for $k \leq 20$ by K. O'Bryant [arXiv:math.NT/0604347] quite recently.

6. On extended Herzog-Schönheim Conjecture

Soon after his invention of the concept of cover of \mathbb{Z} , Erdős made the following conjecture: If $A = \{a_s + n_s \mathbb{Z}\}_{s=1}^k$ and $1 < n_1 < \cdots < n_k$, then A cannot be a partition of \mathbb{Z} .

This conjecture of Erdős was soon confirmed independently by H. Davenport, L. Mirsky, D. Newman and R. Rado in the 1950s.

The Davenport-Mirsky-Newman-Rado Result. Let $A = \{a_s + n_s \mathbb{Z}\}_{s=1}^k$ be an exact cover of \mathbb{Z} with $1 \leq n_1 \leq \cdots \leq n_{k-1} \leq n_k$. Then we must have $n_{k-1} = n_k$.

Proof. Without loss of generality we assume that $0 \leq a_s < n_s$ for all $s \in [1, k]$. For |z| < 1 we have

$$\sum_{s=1}^{k} \frac{z^{a_s}}{1-z^{n_s}} = \sum_{s=1}^{k} \sum_{q=0}^{\infty} z^{a_s+qn_s} = \sum_{n=0}^{\infty} z^n = \frac{1}{1-z}.$$

If $n_{k-1} < n_k$ then

$$\infty = \lim_{\substack{z \to e^{2\pi i/n_k} \\ |z| < 1}} \frac{z^{a_k}}{1 - z^{n_k}} = \lim_{\substack{z \to e^{2\pi i/n_k} \\ |z| < 1}} \left(\frac{1}{1 - z} - \sum_{s=1}^{k-1} \frac{z^{a_s}}{1 - z^{n_s}} \right) < \infty,$$

a contradiction! \Box

Recall that $\{1(2), 2(2^2), \ldots, 2^{k-2}(2^{k-1}), 0(2^{k-1})\}$ is a disjoint cover of \mathbb{Z} by k residue classes whose first k-1 moduli are distinct.

In 1974 M. Herzog and J. Schönheim [Canad. Math. Bull. 17(1974)] extended Erdős' conjecture to partitions of groups.

Herzog-Schönheim Conjecture. Let $\mathcal{A} = \{a_s G_s\}_{s=1}^k$ be a partition of a group G into k > 1 left cosets of subgroups G_1, \ldots, G_k . Then the finite indices $[G:G_1], \ldots, [G:G_k]$ cannot be distinct.

M. A. Berger, A. Felzenbaum and A. S. Fraenkel [Canad. Math. Bull. 29(1986); Fund. Math. 128(1987)] proved the Herzog-Schönheim conjecture for finite nilpotent groups and pyramidal groups. (A finite group G is said to be *pyramidal* if it contains a chain $\{e\} = H_0 \subset H_1 \subset \cdots \subset H_n = G$ of subgroups such that $[H_1 : H_0] \ge \cdots \ge [H_n : H_{n-1}]$ are primes in non-ascending order, such a group must be solvable.)

A finite system $\mathcal{A} = \{a_s G_s\}_{s=1}^k$ of left cosets in a group G is called a uniform cover of G if it covers all elements of G the same number of times. Note that \mathcal{A} is a uniform cover of G if and only if it is an exact m-cover of G for some $m = 1, 2, \ldots$

Here is recent progress [Z. W. Sun, J. Algebra 273(2004)] on the extended Herzog-Schönheim conjecture for uniform covers of groups. Sun's Result on Herzog-Schönheim Conjecture for Uniform Covers. Let $\mathcal{A} = \{a_s G_s\}_{s=1}^k$ be a uniform cover of a group G with G_1, \ldots, G_k not all equal to G and

$$n_1 = [G:G_1] \leqslant \cdots \leqslant n_k = [G:G_k].$$

Suppose that all the G_i are subnormal in G, or G/H is a solvable group having a normal Sylow p-subgroup where $H = (\bigcap_{s=1}^k G_s)_G$, and p is the largest prime divisor of |G/H|. Then the indices n_1, \ldots, n_k cannot be pairwise distinct. Moreover, if $|\{1 \leq i \leq k : n_i = n\}| \leq M$ for all $n \in \mathbb{Z}^+$, then we have

$$\log n_1 \leqslant \frac{e^{\gamma}}{\log 2} M \log^2 M + O(M \log M \log \log M),$$

where the logarithm has the natural base $e = 2.718..., \gamma = 0.577...$ is the Euler constant and the O-constant is absolute.

The proof of this result is long and sophisticated; it involves combinatorics and group theory, as well as analytic number theory. One of the basic lemma used in the proof is the following arithmetical property of indices.

A Lemma on Divisibility of Indices [Z. W. Sun, European J. Combin. 22(2001)]. Let G_1, \ldots, G_k be subnormal subgroups of a group G with finite index. Then

$$\left[G:\bigcap_{s=1}^k G_s\right] \ \left| \ \prod_{s=1}^k [G:G_s] \right.$$

 $and\ hence$

$$P\left(\left[G:\bigcap_{s=1}^{k}G_{s}\right]\right) = \bigcup_{s=1}^{k}P([G:G_{s}]),$$

where P(n) denotes the set of prime divisors of n.

If G_1, \ldots, G_k are subgroups of a group G with finite index, then $[G : \bigcap_{s=1}^k G_s] \leq \prod_{s=1}^k [G : G_s] < \infty$ by Poincaré's theorem. The above lemma can be viewed as an important number-theoretic property of subnormality, it is the main reason why covers involving subnormal subgroups are better behaved than general covers.

In view of Example 1.2 and the above lemma, if H is a subnormal subgroup of a group G with $[G:H] < \infty$ then

$$P(|G/H_G|) = P([G:H]).$$

It should be mentioned that this result and the divisibility lemma are quite useful but could not been found in group theory references before the speaker worked them out.