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Abstract. If a group G is the union of finitely many left cosets a1G1, . . . ,

akGk of subgroups G1, . . . , Gk, then the system {asGs}k
i=1 is said to be

a cover of G. In this talk we give a survey of results on extremal prob-

lems concerning covers of groups, and introduce progress on the famous

Herzog-Schönheim conjecture which states that if {asGs}k
s=1 (1 < k <

∞) is a partition of a group G by left cosets then the (finite) indices

[G : G1], . . . , [G : Gk] cannot be distinct. We will also mention some new

challenging conjectures in the field.

1. Basic Concepts and a Fundamental Theorem

Let G be a multiplicative group with identity e. For a subgroup H of

G, the index of H in G is [G : H] = |{gH : g ∈ G}|. Note that a right

coset Hg of H is also a left coset g(g−1Hg) of the conjugate subgroup

g−1Hg, and [G : g−1Hg] = [G : H].

Let H be a subgroup of a group G with k = [G : H] < ∞. It is well

known that we can partition G into k left cosets a1H, . . . , akH of H (such

a partition is called a left coset decomposition of G by H). If G is the

additive group Z of integers, then H = nZ for some n ∈ Z+ = {1, 2, . . . }
1
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and {r + nZ}n−1
r=0 is a partition of Z into residue classes modulo n. Note

that Z is an infinite cyclic group generated by 1, and [Z : nZ] = |Z/nZ| = n

for all n ∈ Z+.

In the 1930s P. Erdős introduced covers of Z by residue classes when he

studied odd numbers not of the form 2n + p where p is a prime.

Definition of Covers of Z. Let A = {as + nsZ}k
s=1 be a finite system

of residue classes with as ∈ Z and ns ∈ Z+. If
⋃k

s=1(as + nsZ) = Z,

then we call A a cover of Z or a covering system. If A is a cover of Z but

{as + nsZ}s 6=t is not, then we say that A forms a cover of Z with at + ntZ

irredundant. A cover of Z with all the members irredundant is called a

minimal cover of Z. If A is a cover of Z and also the k residue classes in

A are pairwise disjoint, then A is said to be an exact cover or a disjoint

cover of Z. For system A we set

NA = lcm[n1, . . . , nk] =
[
Z :

k⋂
s=1

nsZ
]
.

Clearly, when x ≡ y (mod NA), A = {as +nsZ}k
s=1 covers x if and only

if A covers y.

Example 1.1. The system

A0 = {1 + 2Z, 2 + 22Z, . . . , 2k−2 + 2k−1Z, 2k−1Z}

is a disjoint cover of Z (by k residue classes) with NA0 = 2k, while

A1 = {2Z, 3Z, 1 + 4Z, 5 + 6Z, 7 + 12Z}

is a minimal cover of Z with the moduli distinct and NA1 = 12.
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Let G be a multiplicative group, and let

A = {asGs}k
s=1

be a finite system of left cosets in G (where a1, . . . , ak ∈ G, and G1, . . . , Gk

are subgroups of G). For any I ⊆ [1, k] = {1, . . . , k} we define the index

map I∗ from G to the power set of [1, k] as follows:

I∗(x) = {i ∈ I : x ∈ aiGi} (x ∈ G).

m(A) = infx∈G |[1, k]∗(x)| is said to be the covering multiplicity of A.

For a positive integer m, if m(A) > m (respectively, |[1, k]∗(x)| = m for

all x ∈ G) then we call A = {aiGi}k
i=1 an m-cover (resp. exact m-cover)

of G. If A forms an m-cover of G but none of its proper subsystems does,

then it is said to be a minimal (or an irredundant) m-cover of G. A cover

of G refers to a 1-cover of G, and a disjoint cover (or partition) of G means

an exact 1-cover of G. Obviously an exact m-cover is a minimal m-cover

and any minimal m-cover has covering multiplicity m.

Definition of Regular Covers (Sun, 2005). Let A = {asGs}k
s=1 be a

finite system of left cosets in a group G. If

I∗(G) = {I∗(g) : g ∈ G} 6⊆ [1, k]∗(G) = {[1, k]∗(x):x ∈ G}

for all I ⊂ [1, k] (i.e., whenever I ⊂ [1, k] there is a g ∈ G such that

I∗(g) 6= [1, k]∗(x) for all x ∈ G), then we call A a regular cover of G.

Note that a regular cover A = {asGs}k
s=1 of a group G must be a cover

of G since [1, k]∗(G) 6⊇ ∅∗(G) = {∅}.
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When A = {asGs}k
s=1 is a minimal m-cover of a group G, it forms a

regular cover of G because for any I ⊂ [1, k] there is a g ∈ G such that

|I∗(g)| < m while [1, k]∗(x) > m for all x ∈ G.

Let A = {asGs}k
s=1 be a minimal cover of a group G by left cosets. By

a geometric consideration, B. H. Neumann [Publ. Math. Debrecen, 1954]

showed that all the [G : Gs] are finite and that [G :
⋂k

s=1 Gs] 6 ck where

ck only depends on k. Later M. J. Tomkinson [Comm. Algebra, 1987]

proved that we can take ck = k! and the bound k! is best possible. In

2005 Z. W. Sun [Internat. J. Math., arXiv:math.GR/0501451] introduced

the concept of regular cover and extended Tomkinson’s result to regular

covers of groups.

A Fundamental Theorem due to Efforts of B. H. Neumann (1954),

M. J. Tomkinson (1987) and Z. W. Sun (2005). Let A = {asGs}k
s=1 be a

regular cover of a group G by left cosets of subgroups G1, . . . , Gk. Then

we have [
G :

k⋂
s=1

Gs

]
6 k! < ∞.

Proof. Let F =
⋂k

s=1 Gs. We use induction on |I| to show that[ ⋂
j∈Ī

Gj : F

]
6 |I|! for all I ⊆ [1, k],

where Ī = [1, k] \ I, and
⋂

j∈∅ Gj refers to G.

Clearly [
⋂

j∈∅̄ Gj : F ] = 1 = |∅|!.

Now let ∅ 6= I ⊆ [1, k], and assume that [
⋂

j∈Ī0
Gj : F ] 6 |I0|! for all

I0 ⊂ [1, k] with |I0| < |I|. Since A is regular and Ī 6= [1, k], there exists a
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g ∈ G such that

Ī∗(g) = {j ∈ Ī : g ∈ ajGj} 6∈ [1, k]∗(G).

For each x ∈
⋂

j∈Ī Gj , as Ī∗(gx) = Ī∗(g) 6= [1, k]∗(gx), we must have

gx ∈
⋃

i∈I aiGi. So

g

(⋂
j∈Ī

Gj

)
⊆
⋃
i∈I

aiGi.

For each i ∈ I, {i} ∪ Ī is the complement of I \ {i} in [1, k]; if aiGi ∩

g(
⋂

j∈Ī Gj) is nonempty then it contains exactly [Gi ∩
⋂

j∈Ī Gj : F ] left

cosets of F . As

g

(⋂
j∈Ī

Gj

)
=
⋃
i∈I

(
aiGi ∩ g

(⋂
j∈Ī

Gj

))
,

we have [ ⋂
j∈Ī

Gj : F

]
6
∑
i∈I

[ ⋂
j∈I\{i}

Gj : F

]
.

By the induction hypothesis,[ ⋂
j∈I\{i}

Gj : F

]
6 |I \ {i}|! = (|I| − 1)! for all i ∈ I.

Therefore [ ⋂
j∈Ī

Gj : F

]
6
∑
i∈I

(|I| − 1)! = |I|!.

This concludes the induction step. �

Example 1.2. Let H be any subgroup of a group G with k = [G : H] < ∞.

Let {Has}k
s=1 be a right coset decomposition of G by H. Set Gs = a−1

s Has

for s = 1, . . . , k. Then {asGs}k
s=1 is a disjoint cover of G with

k⋂
s=1

Gs =
k⋂

s=1

⋂
h∈H

a−1
s h−1Hhas =

⋂
g∈G

g−1Hg = HG
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where HG =
⋂

g∈G g−1Hg (the core of H in G) is the largest normal

subgroup of G contained in H. By the Fundamental Theorem, |G/HG| =

[G : HG] 6 k! = [G : H]!. In fact, it is known in group theory that the

quotient group G/HG can be embedded into the symmetric group Sk on

{1, . . . , k}.

If G = Sk and H = {σ ∈ G : σ(1) = 1} (the stabilizer of 1), then

{H,H(12), . . . , H(1k)} is a partition of G, also HG = {e} because Gi =

(1i)−1H(1i) is the stabilizer of i; therefore [G :
⋂k

s=1 Gi] = |G/HG| = k!

as noted by Tomkinson in 1987. So the upper bound in the Fundamental

Theorem is best possible.

2. Mycielski’s function and a group-theoretic

function introduced by Korec and Sun

Definition of Mycielski’s Function. The Mycielski function f : Z+ →

N = {0, 1, . . . } is given by

f(pα1
1 · · · pαr

r ) =
r∑

t=1

αt(pt − 1),

where p1, . . . , pr are distinct primes, and α1, . . . , αr ∈ N.

Note that f(1) = 0, f(p) = p − 1 for any prime p, and f(mn) =

f(m) + f(n) for all m,n ∈ Z+.

If n ∈ Z+ has the primary factorization
∏r

t=1 pαt
t , then

1+f(n) = 1+
r∑

t=1

αt(pt−1) 6
r∏

t=1

(1+αt(pt−1)) 6
r∏

t=1

(1+(pt−1))αt = n

and

n =
n∏

t=1

pαt
t 6

r∏
t=1

(
2pt−1

)αt = 2f(n).
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So

n− 1 > f(n) > log2 n for all n = 1, 2, 3, . . . .

Let G be a group. A subgroup H of G is said to be subnormal if there

is a chain H0 = H ⊆ H1 ⊆ · · · ⊆ Hn = G of subgroups of G such that Hi

is normal in Hi+1 for all 0 6 i < n.

Definition of a Group-theoretic Function (I. Korec and Z. W. Sun).

Let H be a subnormal subgroup of a group G with finite index, and

H0 = H ⊂ H1 ⊂ · · · ⊂ Hn = G

be a composition series from H to G (i.e. Hi is maximal normal in Hi+1

for each 0 6 i < n). If the length n is zero (i.e. H = G), then we set

d(G, H) = 0, otherwise we put

d(G, H) =
n−1∑
i=0

([Hi+1 : Hi]− 1).

When H is a normal subgroup of a group with finite index, d(G, H)

was first introduced by I. Korec [Fund. Math. 1974]. The current general

notion is due to Z. W. Sun [Fund. Math. 1990], and he viewed d(G, H)

as a ‘distance’.

Let H be a subnormal subgroup of a group G with [G : H] < ∞. By

the Jordan–Hölder theorem in group theory, the definition d(G, H) does

not depend on the choice of the composition series from H to G. Clearly

d(G, H) = 0 if and only if H = G. If K is a subnormal subgroup of H

with [H : K] < ∞, then

d(G, H) + d(H,K) = d(G, K).
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Connection between the Functions d and f [Z. W. Sun, Fund. Math.

1990; European J. Combin. 2001]. Let H be a subnormal subgroup of a

group G with [G : H] < ∞. Then

[G : H]− 1 > d(G, H) > f([G : H]) > log2[G : H].

Moreover, d(G, H) = f([G : H]) if and only if G/HG is solvable.

3. Inequalities of Mycielski’s Type

In a regular cover {asGs}k
s=1 of a group G by left cosets, if

⋂k
s=1 Gs

equals a given subgroup H of G with finite index, what is the lower bound

of k? (Of course, k! > [G : H] by the Fundamental Theorem.)

Mycielski’s Conjecture [Fund. Math. 1966]. Let G be an abelian group

and G1, · · · , Gk be subgroups of G (with finite indices). If A = {asGs}k
s=1

forms an exact cover of G for some a1, . . . , ak ∈ G, then

k > 1 + f([G : Gs]) for every s = 1, · · · , k.

Š. Znám [Colloq. Math. 1966]: Mycielski’s conjecture holds for the

additive group Z of integers. Equivalently, if A = {as + nsZ}k
s=1 forms

a disjoint cover of Z by residue classes then k > 1 + f(nt) for each t =

1, . . . , k.

Znám [Colloq. Math. 1969]: If A = {as + nsZ}k
s=1 forms a cover of

Z and the residue class at + ntZ is disjoint with all the remaining residue

classes, then we have k > 1 + f(nt).
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Znám [Acta Arith. 1975]: If A = {as + nsZ}k
s=1 forms a cover of Z

with at(nt) irredundant, then there are 1 + f(nt) integers no two of which

belong to the same member of A.

Znám’s Conjecture [Coll. Math. Soc. János Bolyai, 1968; Acta Arith.

1975]. If A = {as + nsZ}k
s=1 is a disjoint cover or just a minimal cover of

Z by residue classes, then

k > 1 + f(NA) and hence NA 6 2k−1 6 k!.

(Recall that NA = [n1, . . . , nk] = [Z :
⋂k

s=1 nsZ].)

I. Korec [Fund. Math. 1974]: Let {asGs}k
s=1 be a partition of a group

G into finitely many left cosets of normal subgroups G1, . . . , Gk. Then

[G :
⋂k

s=1 Gs] < ∞ and k > 1 + f([G :
⋂k

s=1 Gs]).

Sun’s Further Extension [Fund. Math., 134(1990); European J. Com-

bin. 22(2001)]. Let G be a group and A = {asGs}k
s=1 be an exact m-cover

of G by left cosets with all the Gs subnormal in G. Then

k > m + d

(
G,

k⋂
s=1

Gs

)
, (∗)

where the lower bound can be attained. Moreover, for any subgroup K of

G not contained in all the Gs we have

|{1 6 s 6 k : K 6⊆ Gs}| > 1 + d

(
K, K ∩

k⋂
s=1

Gs

)
.

A key step in Sun’s proof is to show that under the condition, for any

maximal normal subgroup H of G, either any left coset of H contains one
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of the k members in A or none of the left cosets of H contains a member

in A.

The lower bound in (∗) can be attained as shown by the following

example.

Example 3.1. Let H be a subnormal subgroup of a group G with finite

index, and let H = H0 ⊂ H1 ⊂ · · · ⊂ Hn = G be a composition series

from H to G. Write

Hi+1 \Hi =
[Hi+1:Hi]−1⋃

j=1

b
(i)
j Hi for i = 0, 1, . . . , n− 1.

Z. W. Sun [Fund. Math. 134(1990)] observed that the following 1+d(G, H)

cosets

H0, b
(i)
j Hi (0 6 i < n, 1 6 j < [Hi+1 : Hi])

form a partition of G (in fact, G = H0 ∪ (H1 \H0) ∪ · · · ∪ (Hn \Hn−1)).

These cosets, together with m − 1 copies of G, form an exact m-cover of

G with the number k of cosets being m + d(G, H) and the intersection of

the k subnormal subgroups being H.

In view of Example 1.2 and Sun’s above result on exact m-covers of

groups by cosets of subnormal subgroups, we have the following interesting

application.

Inequalities on Cores of Subnormal Subgroups. Let H be a subnor-

mal subgroup of a group G with [G : H] < ∞.

(i) [Z. W. Sun, Fund. Math. 134(1990)] We have

[G : H]− 1 > d(G, HG) > f(|G/HG|)
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and hence |G/HG| 6 2[G:H]−1.

(ii) [Z. W. Sun, European J. Combin. 22(2001)] H is normal in G if

and only if

|NG(H)/H|+ d(H,HG) > [G : H],

where NG(H) = {g ∈ G : gH = Hg} is the normalizer of H in G.

M. A. Berger, A. Felzenbaum and A. S. Fraenkel [Coll. Math. 1988]:

If {asGs}k
s=1 is a disjoint cover of a finite solvable group G by left cosets,

then k > 1 + f([G : Gt]) for t = 1, . . . , k.

Z. W. Sun [European J. Combin. 2001]: Let {asGs}k
s=1 be an exact

m-cover of a group G. For any 1 6 t 6 k, whenever G/(Gt)G is solvable

we have k > m + f([G : Gt]) and hence [G : Gt] 6 2k−m.

A Conjecture of Sun. Let {asGs}k
s=1 be an exact m-cover of a group G

with all the G/(Gs)G solvable. Then k > m + f(N) where N is the least

common multiple of the indices [G : G1], . . . , [G : Gk].

R. J. Simpson [Acta Arith. 1985]: Let A = {as +nsZ}k
s=1 be a minimal

cover of Z with as ∈ Z and ns ∈ Z+. Then for any divisor d of NA with

0 < d < NA we have

|{1 6 s 6 k : ns - d}| > 1 + f(NA/d).

Letting d = 1 we then obtain k > 1 + f(NA).

M. A. Berger, A. Felzenbaum and A. S. Fraenkel [Coll. Math. 1988]:

Let {asGs}k
s=1 be a minimal cover of a group G of squarefree order. If all

the Gs are normal in G then k > 1 + f([G :
⋂k

s=1 Gs]).
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A Result of Sun on Regular Covers [Internat. J. Math., in press,

arXiv:math.GR/0501451]. If A = {asGs}k
s=1 is a regular cover of a group

G by left cosets, and for any i, j = 1, . . . , k either Gi and Gj are subnormal

in G with [G : Gi] relatively prime to [Gi : Gi ∩ Gj ], or Gi and Gj are

normal in G with G/(Gi ∩Gj) cyclic, then we have the inequality

k > m(A) + d

(
G,

k⋂
s=1

Gs

)
.

The conditions of this result are essentially indispensable as shown by

the following example:

Example 3.2. Let G be the group Cp × Cp where p is a prime and Cp

is the cyclic group of order p. Then any element a 6= e of G has order

p. Let G1, . . . , Gk be all the distinct subgroups of G with order p. If

1 6 s < t 6 k then Gs ∩ Gt = {e}. Clearly {Gs}k
s=1 forms a minimal

cover of G by normal subgroups whose intersection is H = {e}. Since

1 + k(p− 1) = |
⋃k

s=1 Gs| = |G| = p2, we have

k = p + 1 6 2p− 1 = 1 + f([G : H]) = 1 + d

(
G,

k⋂
s=1

Gs

)
.

When p > 2 the last inequality becomes strict. We remark that both

G/Gs and Gs/(Gs ∩Gt) (t 6= s) have order p.

Let G be a finite multiplicative abelian group with identity e. If aH

is a left coset in G with e 6∈ aH (i.e. a 6∈ H), then aH is called a proper

coset in G. During their study of zero-sum problems on abelian groups,

W. D. Gao and A. Geroldinger [European J. Combin. 24(2003)] defined
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s(G) to be the smallest number of proper cosets that can cover G\{e}. For

left cosets a1G1, . . . , akGk in group G, the system {asGs}k
s=1 is a cover of

G \ {e} if and only if {asGs}k
s=0 forms a cover of G with the coset a0G0

irredundant where a0 = e and G0 = {e} (and hence
⋂k

s=0 Gs = {e}).

Thus, by the previous results on covers of groups, we have s(G) 6 f(|G|),

and s(G) = f(|G|) if G is cyclic or of squarefree order.

By using algebraic number theory and characters of abelian groups,

G. Lettl and Z. W. Sun [arXiv:math.GR/0411144] obtained in 2004 the

following result for minimal m-covers of a general abelian group.

A Result of Lettl and Sun on Covers of Abelian Groups. Let

A = {asGs}k
s=1 be a minimal m-cover of an abelian group G by left cosets.

Then k > m + f([G : Gt]) for any t = 1, . . . , k.

By Example 3.2, even for G = Cp × Cp we cannot replace f([G : Gt])

in the above result by f([G :
⋂k

s=1 Gs]). But the speaker believes that

f([G : Gt]) in the lower bound of k can be replaced by f(N) where N is

the least common multiple of [G : G1], . . . , [G : Gk].

Another Conjecture of Sun. Let A = {asGs}k
s=1 be an m-cover of a

group G by left cosets. For any s = 1, . . . , k with asGs irredundant, if Gs

is subnormal in G then k > m + d(G, Gs); if G/(Gs)G is solvable then

k > m + f([G : Gs]).

4. Covering a group by subgroups

Any finite non-cyclic group G can be covered by finitely many proper
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subgroups because G =
⋃

x∈G〈x〉, but no field can be covered by finitely

many proper subfields as shown by A. Bialynicki-Birula, J. Browkin and

A. Schinzel [Colloq. Math. 7(1959)].

Example 4.1. Let G be a group with G/Z(G) finite, where Z(G) is the

center of G. For x, y ∈ G, if xy 6= yx then (x−1y)x 6= x(x−1y) and hence

xZ(G) 6= yZ(G). Let X = {x1, . . . , xk} be a maximal set of pairwise non-

commuting elements of G. Then k = |X| 6 |G/Z(G)|, and {CG(xi)}k
i=1

forms a minimal cover of G by centralizers with
⋂k

i=1 CG(xi) = Z(G)

(recall that CG(x) = {g ∈ G : gx = xg}), and |G/Z(G)| 6 ck for some

absolute constant c > 0 [L. Pyber, J. London Math. Soc. 35(1987)]. D.

R. Mason [Math. Proc. Cambridge Philos. Soc. 83(1978)] proved that

|G| > 2k − 2, which was conjectured by Erdös and E. G. Straus in 1975.

Recall that a group G is said to be perfect if it coincides with its derived

group G′ = 〈x−1y−1xy : x, y ∈ G〉.

M. A. Brodie, R. F. Chamberlain and L.-C. Kappe [Proc. Amer. Math.

Soc. 104(1998)]: If {Gs}k
s=1 is a minimal cover of a group G by finitely

many normal subgroups, then G/
⋂k

s=1 Gs is solvable and all perfect normal

subgroups of G are contained in each of G1, . . . , Gk.

Z. W. Sun [Internat. J. Math., arxiv:math.GR/0501451] Suppose that

{Gs}k
s=1 is a minimal m-cover of a group G by subnormal subgroups. Then

there is a composition series from
⋂k

s=1 Gs to G whose factors are of prime

orders (equivalently, G/(
⋂k

s=1 Gs)G is solvable), and all the Gs contain

every perfect subgroup of G.
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Concerning covers of a group by subnormal subgroups, the speaker and

his student Song Guo made the following conjecture in 2004.

A Conjecture of S. Guo and Z. W. Sun. Let {Gs}k
s=1 be a minimal

m-cover of a group G by finitely many subnormal subgroups. Assume

that [G :
⋂k

i=1 Gs] =
∏r

t=1 pαt
t where p1, . . . , pr are distinct primes and

α1, . . . , αr are positive integers. Then

k > m +
r∑

t=1

(αt − 1)(pt − 1).

5. Unions of cosets and Disjoint Cosets

In number theory, a theorem of C. A. Rogers asserts that if as ∈ Z and

ns ∈ Z+ for s = 1, . . . , k then

∣∣∣∣{0 6 x < N : x ∈
k⋃

s=1

as + nsZ
}∣∣∣∣ > ∣∣∣∣{0 6 x < N : x ∈

k⋃
s=1

nsZ
}∣∣∣∣,

where N = [n1, . . . , nk] is the least common multiple of n1, . . . , nk.

Inspired by this, the speaker conjectured in 1990 that for any finitely

many left cosets a1G1, . . . , akGk in a finite group G we always have the

inequality |
⋃k

s=1 asGs| > |
⋃k

s=1 Gs|. When G is a finite cyclic group

this reduces to Rogers’ result. But soon Tomkinson pointed out that

the conjecture is not true for the Klein group C2 × C2. In fact, if G =

{1,−1} × {1,−1},

G1 = {e = (1, 1)}, G2 = {e, (1,−1)}, G3 = {e, (−1, 1)}, G4 = {e, (−1,−1)},
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then

G1 ∪G2 ∪G3 ∪ (1,−1)G4 = {e, (1,−1), (−1, 1)} ⊂
4⋃

s=1

Gs = G.

For a subgroup H of a finite group G, if |H| is relatively prime to [G : H]

(i.e., gcd(|H|, [G : H]) = 1) then H is called a Hall subgroup of G. A Sylow

p-subgroup of a finite group G is just a Hall p-subgroup of G.

A Result of Sun on Unions of Cosets [Internat. J. Math., in press]. Let

G be a finite group and let G1, . . . , Gk be normal Hall subgroups of G.

Then, for any a1, . . . , ak ∈ G, we have∣∣∣∣ k⋃
s=1

asGs

∣∣∣∣ > ∣∣∣∣ k⋃
s=1

Gs

∣∣∣∣.
The following conjecture seems very challenging.

A Conjecture of Sun on Disjoint Cosets [Internat. J. Math., in

press]. Let a1G1, . . . , akGk (k > 1) be finitely many pairwise disjoint left

cosets in a group G with [G : Gs] < ∞ for all s = 1, . . . , k. Then we have

gcd([G : Gi], [G : Gj ]) > k for some 1 6 i < j 6 k.

This conjecture is true when G is a p-group with p a prime. In fact,

under the condition of the above conjecture, clearly[
G :

k⋂
s=1

Gs

]
>

[ k⋃
i=1

aiGi :
k⋂

s=1

Gs

]
=

k∑
i=1

[
Gi :

k⋂
s=1

Gs

]

and hence
∑k

i=1[G : Gi]−1 6 1. Suppose that [G : G1] 6 · · · 6 [G : Gk].

Since
∑k−1

i=1 [G : Gi]−1 < 1, there is an i ∈ [1, k − 1] such that [G : Gi] 66
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k−1 and hence [G : Gk] > [G : Gi] > k. If [G : Gk] is divisible by all those

[G : G1], . . . , [G : Gk−1] (this happens if G is a p-group with p a prime),

then gcd([G : Gi], [G : Gk]) = [G : Gi] > k.

The conjecture is also true for k = 2. In fact, when H and K are two

subgroups of a group G with finite index, it is easy to see that

gcd([G : H], [G : K]) = 1 =⇒ HK = G ⇐⇒ xH∩yK 6= ∅ for all x, y ∈ G.

The conjecture for the infinite cyclic group Z has been proved to be

true for k < 5 by the speaker [Chinese Ann. Math. Ser. A 13(1992)], and

for k 6 20 by K. O’Bryant [arXiv:math.NT/0604347] quite recently.

6. On extended Herzog-Schönheim Conjecture

Soon after his invention of the concept of cover of Z, Erdős made the

following conjecture: If A = {as + nsZ}k
s=1 and 1 < n1 < · · · < nk, then

A cannot be a partition of Z.

This conjecture of Erdős was soon confirmed independently by H. Dav-

enport, L. Mirsky, D. Newman and R. Rado in the 1950s.

The Davenport-Mirsky-Newman-Rado Result. Let A = {as +

nsZ}k
s=1 be an exact cover of Z with 1 6 n1 6 · · · 6 nk−1 6 nk. Then we

must have nk−1 = nk.

Proof. Without loss of generality we assume that 0 6 as < ns for all

s ∈ [1, k]. For |z| < 1 we have

k∑
s=1

zas

1− zns
=

k∑
s=1

∞∑
q=0

zas+qns =
∞∑

n=0

zn =
1

1− z
.
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If nk−1 < nk then

∞ = lim
z→e2πi/nk

|z|<1

zak

1− znk
= lim

z→e2πi/nk

|z|<1

(
1

1− z
−

k−1∑
s=1

zas

1− zns

)
< ∞,

a contradiction! �

Recall that {1(2), 2(22), . . . , 2k−2(2k−1), 0(2k−1)} is a disjoint cover of

Z by k residue classes whose first k − 1 moduli are distinct.

In 1974 M. Herzog and J. Schönheim [Canad. Math. Bull. 17(1974)]

extended Erdős’ conjecture to partitions of groups.

Herzog-Schönheim Conjecture. Let A = {asGs}k
s=1 be a partition of

a group G into k > 1 left cosets of subgroups G1, . . . , Gk. Then the finite

indices [G : G1], . . . , [G : Gk] cannot be distinct.

M. A. Berger, A. Felzenbaum and A. S. Fraenkel [Canad. Math. Bull.

29(1986); Fund. Math. 128(1987)] proved the Herzog-Schönheim conjec-

ture for finite nilpotent groups and pyramidal groups. (A finite group G is

said to be pyramidal if it contains a chain {e} = H0 ⊂ H1 ⊂ · · · ⊂ Hn = G

of subgroups such that [H1 : H0] > · · · > [Hn : Hn−1] are primes in

non-ascending order, such a group must be solvable.)

A finite system A = {asGs}k
s=1 of left cosets in a group G is called a

uniform cover of G if it covers all elements of G the same number of times.

Note that A is a uniform cover of G if and only if it is an exact m-cover

of G for some m = 1, 2, . . . .

Here is recent progress [Z. W. Sun, J. Algebra 273(2004)] on the ex-

tended Herzog-Schönheim conjecture for uniform covers of groups.
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Sun’s Result on Herzog-Schönheim Conjecture for Uniform Cov-

ers. Let A = {asGs}k
s=1 be a uniform cover of a group G with G1, . . . , Gk

not all equal to G and

n1 = [G : G1] 6 · · · 6 nk = [G : Gk].

Suppose that all the Gi are subnormal in G, or G/H is a solvable group

having a normal Sylow p-subgroup where H = (
⋂k

s=1 Gs)G, and p is the

largest prime divisor of |G/H|. Then the indices n1, . . . , nk cannot be

pairwise distinct. Moreover, if |{1 6 i 6 k : ni = n}| 6 M for all n ∈ Z+,

then we have

log n1 6
eγ

log 2
M log2 M + O(M log M log log M),

where the logarithm has the natural base e = 2.718..., γ = 0.577... is the

Euler constant and the O-constant is absolute.

The proof of this result is long and sophisticated; it involves combina-

torics and group theory, as well as analytic number theory. One of the

basic lemma used in the proof is the following arithmetical property of

indices.

A Lemma on Divisibility of Indices [Z. W. Sun, European J. Combin.

22(2001)]. Let G1, . . . , Gk be subnormal subgroups of a group G with finite

index. Then [
G :

k⋂
s=1

Gs

] ∣∣∣∣ k∏
s=1

[G : Gs]

and hence

P

([
G :

k⋂
s=1

Gs

])
=

k⋃
s=1

P ([G : Gs]),
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where P (n) denotes the set of prime divisors of n.

If G1, . . . , Gk are subgroups of a group G with finite index, then [G :⋂k
s=1 Gs] 6

∏k
s=1[G : Gs] < ∞ by Poincaré’s theorem. The above lemma

can be viewed as an important number-theoretic property of subnormality,

it is the main reason why covers involving subnormal subgroups are better

behaved than general covers.

In view of Example 1.2 and the above lemma, if H is a subnormal

subgroup of a group G with [G : H] < ∞ then

P (|G/HG|) = P ([G : H]).

It should be mentioned that this result and the divisibility lemma are

quite useful but could not been found in group theory references before

the speaker worked them out.


