A talk given at Massachusetts Institute of Technology (April 21, 2006)

COMBINATORIAL ASPECTS OF COVERS
OF GROUPS BY COSETS OR SUBGROUPS

Zhi-Wei Sun

Department of Mathematics
Nanjing University
Nanjing 210093, P. R. China
zwsun@nju.edu.cn
http://pweb.nju.edu.cn/zwsun

Abstract. If a group G is the union of finitely many left cosets a_1G_1, \ldots, a_kG_k of subgroups G_1, \ldots, G_k, then the system $\{a_iG_i\}_{i=1}^k$ is said to be a cover of G. In this talk we give a survey of results on extremal problems concerning covers of groups, and introduce progress on the famous Herzog-Schönheim conjecture which states that if $\{a_iG_i\}_{i=1}^k (1 < k < \infty)$ is a partition of a group G by left cosets then the (finite) indices $[G : G_1], \ldots, [G : G_k]$ cannot be distinct. We will also mention some new challenging conjectures in the field.

1. Basic Concepts and a Fundamental Theorem

Let G be a multiplicative group with identity e. For a subgroup H of G, the index of H in G is $[G : H] = \{|gH : g \in G\}|$. Note that a right coset Hg of H is also a left coset $g(g^{-1}Hg)$ of the conjugate subgroup $g^{-1}Hg$, and $[G : g^{-1}Hg] = [G : H]$.

Let H be a subgroup of a group G with $k = [G : H] < \infty$. It is well known that we can partition G into k left cosets a_1H, \ldots, a_kH of H (such a partition is called a left coset decomposition of G by H). If G is the additive group \mathbb{Z} of integers, then $H = n\mathbb{Z}$ for some $n \in \mathbb{Z}^+ = \{1, 2, \ldots\}$.
and \(\{r + n\mathbb{Z}\}_{r=0}^{n-1} \) is a partition of \(\mathbb{Z} \) into residue classes modulo \(n \). Note that \(\mathbb{Z} \) is an infinite cyclic group generated by 1, and \([\mathbb{Z} : n\mathbb{Z}] = |\mathbb{Z}/n\mathbb{Z}| = n \) for all \(n \in \mathbb{Z}^+ \).

In the 1930s P. Erdős introduced covers of \(\mathbb{Z} \) by residue classes when he studied odd numbers not of the form \(2^n + p \) where \(p \) is a prime.

Definition of Covers of \(\mathbb{Z} \). Let \(A = \{a_s + n_s\mathbb{Z}\}_{s=1}^{k} \) be a finite system of residue classes with \(a_s \in \mathbb{Z} \) and \(n_s \in \mathbb{Z}^+ \). If \(\bigcup_{s=1}^{k} (a_s + n_s\mathbb{Z}) = \mathbb{Z} \), then we call \(A \) a cover of \(\mathbb{Z} \) or a covering system. If \(A \) is a cover of \(\mathbb{Z} \) but \(\{a_s + n_s\mathbb{Z}\}_{s \neq t} \) is not, then we say that \(A \) forms a cover of \(\mathbb{Z} \) with \(a_t + n_t\mathbb{Z} \) irredundant. A cover of \(\mathbb{Z} \) with all the members irredundant is called a minimal cover of \(\mathbb{Z} \). If \(A \) is a cover of \(\mathbb{Z} \) and also the \(k \) residue classes in \(A \) are pairwise disjoint, then \(A \) is said to be an exact cover or a disjoint cover of \(\mathbb{Z} \). For system \(A \) we set

\[
N_A = \text{lcm}[n_1, \ldots, n_k] = \left[\mathbb{Z} : \bigcap_{s=1}^{k} n_s\mathbb{Z} \right].
\]

Clearly, when \(x \equiv y \) (mod \(N_A \)), \(A = \{a_s + n_s\mathbb{Z}\}_{s=1}^{k} \) covers \(x \) if and only if \(A \) covers \(y \).

Example 1.1. The system

\[
A_0 = \{1 + 2\mathbb{Z}, 2 + 2^2\mathbb{Z}, \ldots, 2^{k-2} + 2^{k-1}\mathbb{Z}, 2^{k-1}\mathbb{Z}\}
\]

is a disjoint cover of \(\mathbb{Z} \) (by \(k \) residue classes) with \(N_{A_0} = 2^{k} \), while

\[
A_1 = \{2\mathbb{Z}, 3\mathbb{Z}, 1 + 4\mathbb{Z}, 5 + 6\mathbb{Z}, 7 + 12\mathbb{Z}\}
\]

is a minimal cover of \(\mathbb{Z} \) with the moduli distinct and \(N_{A_1} = 12 \).
Let G be a multiplicative group, and let

$$\mathcal{A} = \{a_s G_s\}_{s=1}^k$$

be a finite system of left cosets in G (where $a_1, \ldots, a_k \in G$, and G_1, \ldots, G_k are subgroups of G). For any $I \subseteq [1, k] = \{1, \ldots, k\}$ we define the index map I^* from G to the power set of $[1, k]$ as follows:

$$I^*(x) = \{i \in I : x \in a_i G_i\} \quad (x \in G).$$

$m(\mathcal{A}) = \inf_{x \in G} |[1, k]^*(x)|$ is said to be the covering multiplicity of \mathcal{A}.

For a positive integer m, if $m(\mathcal{A}) \geq m$ (respectively, $|[1, k]^*(x)| = m$ for all $x \in G$) then we call $\mathcal{A} = \{a_i G_i\}_{i=1}^k$ an m-cover (resp. exact m-cover) of G. If \mathcal{A} forms an m-cover of G but none of its proper subsystems does, then it is said to be a minimal (or an irredundant) m-cover of G. A cover of G refers to a 1-cover of G, and a disjoint cover (or partition) of G means an exact 1-cover of G. Obviously an exact m-cover is a minimal m-cover and any minimal m-cover has covering multiplicity m.

Definition of Regular Covers (Sun, 2005). Let $\mathcal{A} = \{a_s G_s\}_{s=1}^k$ be a finite system of left cosets in a group G. If

$$I^*(G) = \{I^*(g) : g \in G\} \not\subseteq [1, k]^*(G) = \{[1, k]^*(x) : x \in G\}$$

for all $I \subset [1, k]$ (i.e., whenever $I \subset [1, k]$ there is a $g \in G$ such that $I^*(g) \neq [1, k]^*(x)$ for all $x \in G$), then we call \mathcal{A} a regular cover of G.

Note that a regular cover $\mathcal{A} = \{a_s G_s\}_{s=1}^k$ of a group G must be a cover of G since $[1, k]^*(G) \not\supseteq \emptyset^*(G) = \{\emptyset\}$.
When $\mathcal{A} = \{a_sG_s\}_{s=1}^k$ is a minimal m-cover of a group G, it forms a regular cover of G because for any $I \subset [1,k]$ there is a $g \in G$ such that $|I^*(g)| < m$ while $[1,k]^*(x) \geq m$ for all $x \in G$.

Let $\mathcal{A} = \{a_sG_s\}_{s=1}^k$ be a minimal cover of a group G by left cosets. By a geometric consideration, B. H. Neumann [Publ. Math. Debrecen, 1954] showed that all the $[G:G_s]$ are finite and that $[G:\bigcap_{s=1}^k G_s] \leq c_k$ where c_k only depends on k. Later M. J. Tomkinson [Comm. Algebra, 1987] proved that we can take $c_k = k!$ and the bound $k!$ is best possible. In 2005 Z. W. Sun [Internat. J. Math., arXiv:math.GR/0501451] introduced the concept of regular cover and extended Tomkinson’s result to regular covers of groups.

A Fundamental Theorem due to Efforts of B. H. Neumann (1954), M. J. Tomkinson (1987) and Z. W. Sun (2005). Let $\mathcal{A} = \{a_sG_s\}_{s=1}^k$ be a regular cover of a group G by left cosets of subgroups G_1, \ldots, G_k. Then we have

$$[G:\bigcap_{s=1}^k G_s] \leq k! < \infty.$$

Proof. Let $F = \bigcap_{s=1}^k G_s$. We use induction on $|I|$ to show that

$$\left[\bigcap_{j \in \bar{I}} G_j : F \right] \leq |I|! \quad \text{for all } I \subseteq [1,k],$$

where $\bar{I} = [1,k] \setminus I$, and $\bigcap_{j \in \emptyset} G_j$ refers to G.

Clearly $[\bigcap_{j \in \emptyset} G_j : F] = 1 = |\emptyset|!$.

Now let $\emptyset \neq I \subseteq [1,k]$, and assume that $[\bigcap_{j \in I_0} G_j : F] \leq |I_0|!$ for all $I_0 \subset [1,k]$ with $|I_0| < |I|$. Since \mathcal{A} is regular and $\bar{I} \neq [1,k]$, there exists a
For each $x \in \bigcap_{j \in I} g_j$, as $\bar{I}^*(gx) = \bar{I}^*(g) \neq [1, k]^*(gx)$, we must have $gx \in \bigcup_{i \in I} a_i G_i$. So
\[
g \left(\bigcap_{j \in I} G_j \right) \subseteq \bigcup_{i \in I} a_i G_i.
\]
For each $i \in I$, $\{i\} \cup \bar{I}$ is the complement of $I \setminus \{i\}$ in $[1, k]$; if $a_i G_i \cap g(\bigcap_{j \in I} G_j)$ is nonempty then it contains exactly $[G_i \cap \bigcap_{j \in I} G_j : F]$ left cosets of F. As
\[
g \left(\bigcap_{j \in I} G_j \right) = \bigcup_{i \in I} \left(a_i G_i \cap g \left(\bigcap_{j \in I} G_j \right) \right),
\]
we have
\[
\left[\bigcap_{j \in I} G_j : F \right] \leq \sum_{i \in I} \left[\bigcap_{j \in I \setminus \{i\}} G_j : F \right].
\]
By the induction hypothesis,
\[
\left[\bigcap_{j \in I \setminus \{i\}} G_j : F \right] \leq |I \setminus \{i\}|! = (|I| - 1)! \quad \text{for all } i \in I.
\]
Therefore
\[
\left[\bigcap_{j \in I} G_j : F \right] \leq \sum_{i \in I} (|I| - 1)! = |I|!.
\]
This concludes the induction step. □

Example 1.2. Let H be any subgroup of a group G with $k = |G : H| < \infty$.
Let $\{Ha_s\}_{s=1}^k$ be a right coset decomposition of G by H. Set $G_s = a_s^{-1} Ha_s$ for $s = 1, \ldots, k$. Then $\{a_s G_s\}_{s=1}^k$ is a disjoint cover of G with
\[
\bigcap_{s=1}^k G_s = \bigcap_{s=1}^k \bigcap_{h \in H} a_s^{-1} h^{-1} Ha_s = \bigcap_{g \in G} g^{-1} H g = H_G
\]
where \(H_G = \bigcap_{g \in G} g^{-1} H g \) (the core of \(H \) in \(G \)) is the largest normal subgroup of \(G \) contained in \(H \). By the Fundamental Theorem, \(|G/H_G| = [G : H_G] \leq k! = [G : H]!\). In fact, it is known in group theory that the quotient group \(G/H_G \) can be embedded into the symmetric group \(S_k \) on \(\{1, \ldots, k\} \).

If \(G = S_k \) and \(H = \{ \sigma \in G : \sigma(1) = 1 \} \) (the stabilizer of 1), then \(\{H, H(12), \ldots, H(1k)\} \) is a partition of \(G \), also \(H_G = \{e\} \) because \(G_i = (1i)^{-1} H(1i) \) is the stabilizer of \(i \); therefore \([G : \bigcap_{s=1}^k G_i] = |G/H_G| = k!\) as noted by Tomkinson in 1987. So the upper bound in the Fundamental Theorem is best possible.

2. Mycielski’s function and a group-theoretic function introduced by Korec and Sun

Definition of Mycielski’s Function. The Mycielski function \(f : \mathbb{Z}^+ \rightarrow \mathbb{N} = \{0, 1, \ldots\} \) is given by

\[
f(p_1^{\alpha_1} \cdots p_r^{\alpha_r}) = \sum_{t=1}^{r} \alpha_t(p_t - 1),
\]

where \(p_1, \ldots, p_r \) are distinct primes, and \(\alpha_1, \ldots, \alpha_r \in \mathbb{N} \).

Note that \(f(1) = 0, f(p) = p - 1 \) for any prime \(p \), and \(f(mn) = f(m) + f(n) \) for all \(m, n \in \mathbb{Z}^+ \).

If \(n \in \mathbb{Z}^+ \) has the primary factorization \(\prod_{t=1}^{r} p_t^{\alpha_t} \), then

\[
1 + f(n) = 1 + \sum_{t=1}^{r} \alpha_t(p_t - 1) \leq \prod_{t=1}^{r} (1 + \alpha_t(p_t - 1)) \leq \prod_{t=1}^{r} (1 + (p_t - 1))^{\alpha_t} = n
\]

and

\[
n = \prod_{t=1}^{r} p_t^{\alpha_t} \leq \prod_{t=1}^{r} (2^{p_t-1})^{\alpha_t} = 2^{f(n)}.
\]
So
\[n - 1 \geq f(n) \geq \log_2 n \quad \text{for all } n = 1, 2, 3, \ldots . \]

Let \(G \) be a group. A subgroup \(H \) of \(G \) is said to be subnormal if there is a chain \(H_0 = H \subseteq H_1 \subseteq \cdots \subseteq H_n = G \) of subgroups of \(G \) such that \(H_i \) is normal in \(H_{i+1} \) for all \(0 \leq i < n \).

Definition of a Group-theoretic Function (I. Korec and Z. W. Sun).

Let \(H \) be a subnormal subgroup of a group \(G \) with finite index, and
\[
H_0 = H \subset H_1 \subset \cdots \subset H_n = G
\]
be a composition series from \(H \) to \(G \) (i.e. \(H_i \) is maximal normal in \(H_{i+1} \) for each \(0 \leq i < n \)). If the length \(n \) is zero (i.e. \(H = G \)), then we set \(d(G, H) = 0 \), otherwise we put
\[
d(G, H) = \sum_{i=0}^{n-1} ([H_{i+1} : H_i] - 1).
\]

When \(H \) is a normal subgroup of a group with finite index, \(d(G, H) \) was first introduced by I. Korec [Fund. Math. 1974]. The current general notion is due to Z. W. Sun [Fund. Math. 1990], and he viewed \(d(G, H) \) as a ‘distance’.

Let \(H \) be a subnormal subgroup of a group \(G \) with \([G : H] < \infty \). By the Jordan–Hölder theorem in group theory, the definition \(d(G, H) \) does not depend on the choice of the composition series from \(H \) to \(G \). Clearly \(d(G, H) = 0 \) if and only if \(H = G \). If \(K \) is a subnormal subgroup of \(H \) with \([H : K] < \infty \), then
\[
d(G, H) + d(H, K) = d(G, K).
\]

$$[G : H] - 1 \geq d(G, H) \geq f([G : H]) \geq \log_2[G : H].$$

Moreover, $d(G, H) = f([G : H])$ if and only if G/H_G is solvable.

3. Inequalities of Mycielski’s Type

In a regular cover $\{a_s G_s\}_{s=1}^k$ of a group G by left cosets, if $\bigcap_{s=1}^k G_s$ equals a given subgroup H of G with finite index, what is the lower bound of k? (Of course, $k! \geq [G : H]$ by the Fundamental Theorem.)

Mycielski’s Conjecture [Fund. Math. 1966]. Let G be an abelian group and G_1, \cdots, G_k be subgroups of G (with finite indices). If $A = \{a_s G_s\}_{s=1}^k$ forms an exact cover of G for some $a_1, \ldots, a_k \in G$, then

$$k \geq 1 + f([G : G_s]) \quad \text{for every } s = 1, \cdots, k.$$

Š. Znám [Colloq. Math. 1966]: Mycielski’s conjecture holds for the additive group \mathbb{Z} of integers. Equivalently, if $A = \{a_s + n_s \mathbb{Z}\}_{s=1}^k$ forms a disjoint cover of \mathbb{Z} by residue classes then $k \geq 1 + f(n_t)$ for each $t = 1, \ldots, k$.

Znám [Colloq. Math. 1969]: If $A = \{a_s + n_s \mathbb{Z}\}_{s=1}^k$ forms a cover of \mathbb{Z} and the residue class $a_t + n_t \mathbb{Z}$ is disjoint with all the remaining residue classes, then we have $k \geq 1 + f(n_t)$.
Znám [Acta Arith. 1975]: If $A = \{a_s + n_s \mathbb{Z}\}_{s=1}^k$ forms a cover of \mathbb{Z} with $a_t(n_t)$ irredundant, then there are $1 + f(n_t)$ integers no two of which belong to the same member of A.

Znám’s Conjecture [Coll. Math. Soc. János Bolyai, 1968; Acta Arith. 1975]. If $A = \{a_s + n_s \mathbb{Z}\}_{s=1}^k$ is a disjoint cover or just a minimal cover of \mathbb{Z} by residue classes, then

$$k \geq 1 + f(N_A) \quad \text{and hence} \quad N_A \leq 2^{k-1} \leq k!.$$

(Recall that $N_A = [n_1, \ldots, n_k] = [\mathbb{Z} : \bigcap_{s=1}^k n_s \mathbb{Z}]$.)

I. Korec [Fund. Math. 1974]: Let $\{a_s G_s\}_{s=1}^k$ be a partition of a group G into finitely many left cosets of normal subgroups G_1, \ldots, G_k. Then $[G : \bigcap_{s=1}^k G_s] < \infty$ and $k \geq 1 + f([G : \bigcap_{s=1}^k G_s])$.

Sun’s Further Extension [Fund. Math., 134(1990); European J. Combin. 22(2001)]. Let G be a group and $A = \{a_s G_s\}_{s=1}^k$ be an exact m-cover of G by left cosets with all the G_s subnormal in G. Then

$$k \geq m + d\left(G_1 \bigcap_{s=1}^k G_s\right) \quad \text{(*)}$$

where the lower bound can be attained. Moreover, for any subgroup K of G not contained in all the G_s we have

$$|\{1 \leq s \leq k : K \nsubseteq G_s\}| \geq 1 + d\left(K, K \cap \bigcap_{s=1}^k G_s\right).$$

A key step in Sun’s proof is to show that under the condition, for any maximal normal subgroup H of G, either any left coset of H contains one
of the k members in \mathcal{A} or none of the left cosets of H contains a member in \mathcal{A}.

The lower bound in (*) can be attained as shown by the following example.

Example 3.1. Let H be a subnormal subgroup of a group G with finite index, and let $H = H_0 \subset H_1 \subset \cdots \subset H_n = G$ be a composition series from H to G. Write

$$H_{i+1} \setminus H_i = \bigcup_{j=1}^{[H_{i+1}:H_i]-1} b_j^{(i)} H_i$$ for $i = 0, 1, \ldots, n - 1$.

Z. W. Sun [Fund. Math. 134(1990)] observed that the following $1+d(G,H)$ cosets

$$H_0, b_j^{(i)} H_i \quad (0 \leq i < n, \ 1 \leq j < [H_{i+1}:H_i])$$

form a partition of G (in fact, $G = H_0 \cup (H_1 \setminus H_0) \cup \cdots \cup (H_n \setminus H_{n-1})$).

These cosets, together with $m - 1$ copies of G, form an exact m-cover of G with the number k of cosets being $m + d(G,H)$ and the intersection of the k subnormal subgroups being H.

In view of Example 1.2 and Sun’s above result on exact m-covers of groups by cosets of subnormal subgroups, we have the following interesting application.

Inequalities on Cores of Subnormal Subgroups. Let H be a subnormal subgroup of a group G with $[G:H] < \infty$.

(i) [Z. W. Sun, Fund. Math. 134(1990)] We have

$$[G:H] - 1 \geq d(G,H_G) \geq f(|G/H_G|)$$
and hence \(|G/H_G| \leq 2^{[G:H]-1} \).

(ii) [Z. W. Sun, European J. Combin. 22(2001)] \(H \) is normal in \(G \) if and only if

\[
|N_G(H)/H| + d(H, H_G) \geq [G : H],
\]

where \(N_G(H) = \{ g \in G : gH = Hg \} \) is the normalizer of \(H \) in \(G \).

M. A. Berger, A. Felzenbaum and A. S. Fraenkel [Coll. Math. 1988]:
If \(\{a_sG_s\}_{s=1}^k \) is a disjoint cover of a finite solvable group \(G \) by left cosets, then \(k \geq 1 + f([G : G_t]) \) for \(t = 1, \ldots, k \).

Z. W. Sun [European J. Combin. 2001]: Let \(\{a_sG_s\}_{s=1}^k \) be an exact \(m \)-cover of a group \(G \). For any \(1 \leq t \leq k \), whenever \(G/(G_t)_G \) is solvable we have \(k \geq m + f([G : G_t]) \) and hence \([G : G_t] \leq 2^{k-m}\).

A Conjecture of Sun. Let \(\{a_sG_s\}_{s=1}^k \) be an exact \(m \)-cover of a group \(G \) with all the \(G_s \) \(G \)-solvable. Then \(k \geq m + f(N) \) where \(N \) is the least common multiple of the indices \([G : G_1], \ldots, [G : G_k]\).

R. J. Simpson [Acta Arith. 1985]: Let \(A = \{a_s + n_sZ\}_{s=1}^k \) be a minimal cover of \(Z \) with \(a_s \in Z \) and \(n_s \in Z^+ \). Then for any divisor \(d \) of \(N_A \) with \(0 < d < N_A \) we have

\[
|\{1 \leq s \leq k : n_s \nmid d\}| \geq 1 + f(N_A/d).
\]

Letting \(d = 1 \) we then obtain \(k \geq 1 + f(N_A) \).

M. A. Berger, A. Felzenbaum and A. S. Fraenkel [Coll. Math. 1988]:
Let \(\{a_sG_s\}_{s=1}^k \) be a minimal cover of a group \(G \) of squarefree order. If all the \(G_s \) are normal in \(G \) then \(k \geq 1 + f([G : \bigcap_{s=1}^k G_s]) \).
A Result of Sun on Regular Covers [Internat. J. Math., in press, arXiv:math.GR/0501451]. If \(\mathcal{A} = \{a_s G_s\}_{s=1}^k \) is a regular cover of a group \(G \) by left cosets, and for any \(i, j = 1, \ldots, k \) either \(G_i \) and \(G_j \) are subnormal in \(G \) with \([G : G_i] \) relatively prime to \([G_i : G_i \cap G_j] \), or \(G_i \) and \(G_j \) are normal in \(G \) with \(G/(G_i \cap G_j) \) cyclic, then we have the inequality

\[
k \geq m(\mathcal{A}) + d\left(G, \bigcap_{s=1}^k G_s\right).
\]

The conditions of this result are essentially indispensable as shown by the following example:

Example 3.2. Let \(G \) be the group \(C_p \times C_p \) where \(p \) is a prime and \(C_p \) is the cyclic group of order \(p \). Then any element \(a \neq e \) of \(G \) has order \(p \). Let \(G_1, \ldots, G_k \) be all the distinct subgroups of \(G \) with order \(p \). If \(1 \leq s < t \leq k \) then \(G_s \cap G_t = \{e\} \). Clearly \(\{G_s\}_{s=1}^k \) forms a minimal cover of \(G \) by normal subgroups whose intersection is \(H = \{e\} \). Since \(1 + k(p-1) = |\bigcup_{s=1}^k G_s| = |G| = p^2 \), we have

\[
k = p + 1 \leq 2p - 1 = 1 + f([G : H]) = 1 + d\left(G, \bigcap_{s=1}^k G_s\right).
\]

When \(p > 2 \) the last inequality becomes strict. We remark that both \(G/G_s \) and \(G_s/(G_s \cap G_t) \) \((t \neq s) \) have order \(p \).

Let \(G \) be a finite multiplicative abelian group with identity \(e \). If \(aH \) is a left coset in \(G \) with \(e \not\in aH \) (i.e. \(a \not\in H \)), then \(aH \) is called a proper coset in \(G \). During their study of zero-sum problems on abelian groups, W. D. Gao and A. Geroldinger [European J. Combin. 24(2003)] defined
$s(G)$ to be the smallest number of proper cosets that can cover $G \setminus \{e\}$. For left cosets a_1G_1, \ldots, a_kG_k in group G, the system $\{a_sG_s\}_{s=1}^k$ is a cover of $G \setminus \{e\}$ if and only if $\{a_sG_s\}_{s=0}^k$ forms a cover of G with the coset a_0G_0 irredundant where $a_0 = e$ and $G_0 = \{e\}$ (and hence $\bigcap_{s=0}^k G_s = \{e\}$). Thus, by the previous results on covers of groups, we have $s(G) \leq f(|G|)$, and $s(G) = f(|G|)$ if G is cyclic or of squarefree order.

By using algebraic number theory and characters of abelian groups, G. Lettl and Z. W. Sun [arXiv:math.GR/0411144] obtained in 2004 the following result for minimal m-covers of a general abelian group.

A Result of Lettl and Sun on Covers of Abelian Groups. Let $\mathcal{A} = \{a_sG_s\}_{s=1}^k$ be a minimal m-cover of an abelian group G by left cosets.

Then $k \geq m + f([G : G_t])$ for any $t = 1, \ldots, k$.

By Example 3.2, even for $G = C_p \times C_p$ we cannot replace $f([G : G_t])$ in the above result by $f([G : \bigcap_{s=1}^k G_s])$. But the speaker believes that $f([G : G_t])$ in the lower bound of k can be replaced by $f(N)$ where N is the least common multiple of $[G : G_1], \ldots, [G : G_k]$.

Another Conjecture of Sun. Let $\mathcal{A} = \{a_sG_s\}_{s=1}^k$ be an m-cover of a group G by left cosets. For any $s = 1, \ldots, k$ with a_sG_s irredundant, if G_s is subnormal in G then $k \geq m + d(G, G_s)$; if $G/(G_s)G$ is solvable then $k \geq m + f([G : G_s])$.

4. Covering a group by subgroups

Any finite non-cyclic group G can be covered by finitely many proper
subgroups because $G = \bigcup_{x \in G} \langle x \rangle$, but no field can be covered by finitely many proper subfields as shown by A. Bialynicki-Birula, J. Browkin and A. Schinzel [Colloq. Math. 7(1959)].

Example 4.1. Let G be a group with $G/Z(G)$ finite, where $Z(G)$ is the center of G. For $x, y \in G$, if $xy \neq yx$ then $(x^{-1}y)x \neq x(x^{-1}y)$ and hence $xZ(G) \neq yZ(G)$. Let $X = \{x_1, \ldots, x_k\}$ be a maximal set of pairwise non-commuting elements of G. Then $k = |X| \leq |G/Z(G)|$, and $\{C_G(x_i)\}_{i=1}^k$ forms a minimal cover of G by centralizers with $\bigcap_{i=1}^k C_G(x_i) = Z(G)$ (recall that $C_G(x) = \{g \in G : gx = xg\}$), and $|G/Z(G)| \leq c^k$ for some absolute constant $c > 0$ [L. Pyber, J. London Math. Soc. 35(1987)]. D. R. Mason [Math. Proc. Cambridge Philos. Soc. 83(1978)] proved that $|G| \geq 2k - 2$, which was conjectured by Erdős and E. G. Straus in 1975.

Recall that a group G is said to be **perfect** if it coincides with its derived group $G' = \langle x^{-1}y^{-1}xy : x, y \in G \rangle$.

M. A. Brodie, R. F. Chamberlain and L.-C. Kappe [Proc. Amer. Math. Soc. 104(1998)]: If $\{G_{s}\}_{s=1}^k$ is a minimal cover of a group G by finitely many normal subgroups, then $G/\bigcap_{s=1}^k G_s$ is solvable and all perfect normal subgroups of G are contained in each of G_1, \ldots, G_k.

Z. W. Sun [Internat. J. Math., arxiv:math.GR/0501451] **Suppose that** $\{G_{s}\}_{s=1}^k$ **is a minimal m-cover of a group G by subnormal subgroups. Then there is a composition series from $\bigcap_{s=1}^k G_s$ to G whose factors are of prime orders (equivalently, $G/\bigcap_{s=1}^k G_s)_G$ is solvable), and all the G_s contain every perfect subgroup of G.**
Concerning covers of a group by subnormal subgroups, the speaker and his student Song Guo made the following conjecture in 2004.

A Conjecture of S. Guo and Z. W. Sun. Let \(\{G_s\}_{s=1}^k \) be a minimal \(m \)-cover of a group \(G \) by finitely many subnormal subgroups. Assume that \([G : \bigcap_{i=1}^k G_s] = \prod_{t=1}^r p_t^{\alpha_t} \) where \(p_1, \ldots, p_r \) are distinct primes and \(\alpha_1, \ldots, \alpha_r \) are positive integers. Then

\[
k > m + \sum_{t=1}^r (\alpha_t - 1)(p_t - 1).
\]

5. Unions of Cosets and Disjoint Cosets

In number theory, a theorem of C. A. Rogers asserts that if \(a_s \in \mathbb{Z} \) and \(n_s \in \mathbb{Z}^+ \) for \(s = 1, \ldots, k \) then

\[
\left| \left\{ 0 \leq x < N : x \in \bigcup_{s=1}^k a_s + n_s \mathbb{Z} \right\} \right| \geq \left| \left\{ 0 \leq x < N : x \in \bigcup_{s=1}^k n_s \mathbb{Z} \right\} \right|,
\]

where \(N = [n_1, \ldots, n_k] \) is the least common multiple of \(n_1, \ldots, n_k \).

Inspired by this, the speaker conjectured in 1990 that for any finitely many left cosets \(a_1 G_1, \ldots, a_k G_k \) in a finite group \(G \) we always have the inequality \(|\bigcup_{s=1}^k a_s G_s| \geq |\bigcup_{s=1}^k G_s| \). When \(G \) is a finite cyclic group this reduces to Rogers’ result. But soon Tomkinson pointed out that the conjecture is not true for the Klein group \(C_2 \times C_2 \). In fact, if \(G = \{1, -1\} \times \{1, -1\} \),

\[
G_1 = \{ e = (1,1) \}, \ G_2 = \{ e, (1, -1) \}, \ G_3 = \{ e, (-1, 1) \}, \ G_4 = \{ e, (-1, -1) \},
\]
then

\[G_1 \cup G_2 \cup G_3 \cup (1, -1)G_4 = \{ e, (1, -1), (-1, 1) \} \subset \bigcup_{s=1}^{4} G_s = G. \]

For a subgroup \(H \) of a finite group \(G \), if \(|H|\) is relatively prime to \([G : H]\) (i.e., \(\gcd(|H|, [G : H]) = 1 \)) then \(H \) is called a Hall subgroup of \(G \). A Sylow \(p \)-subgroup of a finite group \(G \) is just a Hall \(p \)-subgroup of \(G \).

A Result of Sun on Unions of Cosets [Internat. J. Math., in press]. Let \(G \) be a finite group and let \(G_1, \ldots, G_k \) be normal Hall subgroups of \(G \). Then, for any \(a_1, \ldots, a_k \in G \), we have

\[\left| \bigcup_{s=1}^{k} a_s G_s \right| \geq \left| \bigcup_{s=1}^{k} G_s \right|. \]

The following conjecture seems very challenging.

A Conjecture of Sun on Disjoint Cosets [Internat. J. Math., in press]. Let \(a_1 G_1, \ldots, a_k G_k \) \((k > 1)\) be finitely many pairwise disjoint left cosets in a group \(G \) with \([G : G_s] < \infty\) for all \(s = 1, \ldots, k \). Then we have \(\gcd([G : G_i], [G : G_j]) \geq k \) for some \(1 \leq i < j \leq k \).

This conjecture is true when \(G \) is a \(p \)-group with \(p \) a prime. In fact, under the condition of the above conjecture, clearly

\[[G : \bigcap_{s=1}^{k} G_s] \geq \left[\bigcup_{i=1}^{k} a_i G_i : \bigcap_{s=1}^{k} G_s \right] = \sum_{i=1}^{k} [G_i : \bigcap_{s=1}^{k} G_s] \]

and hence \(\sum_{i=1}^{k} [G : G_i]^{-1} \leq 1 \). Suppose that \([G : G_1] \leq \cdots \leq [G : G_k]\).

Since \(\sum_{i=1}^{k-1} [G : G_i]^{-1} < 1 \), there is an \(i \in [1, k-1] \) such that \([G : G_i] \leq \cdots \leq [G : G_k] \)
$k - 1$ and hence $[G : G_k] \geq [G : G_i] \geq k$. If $[G : G_k]$ is divisible by all those $[G : G_1], \ldots, [G : G_{k-1}]$ (this happens if G is a p-group with p a prime), then $\gcd([G : G_i], [G : G_k]) = [G : G_i] \geq k$.

The conjecture is also true for $k = 2$. In fact, when H and K are two subgroups of a group G with finite index, it is easy to see that

$$\gcd([G : H], [G : K]) = 1 \implies HK = G \iff xH \cap yK \neq \emptyset \text{ for all } x, y \in G.$$

The conjecture for the infinite cyclic group \mathbb{Z} has been proved to be true for $k < 5$ by the speaker [Chinese Ann. Math. Ser. A 13(1992)], and for $k \leq 20$ by K. O'Bryant [arXiv:math.NT/0604347] quite recently.

6. On extended Herzog-Schönheim Conjecture

Soon after his invention of the concept of cover of \mathbb{Z}, Erdős made the following conjecture: If $A = \{a_s + n_s\mathbb{Z}\}_{s=1}^k$ and $1 < n_1 < \cdots < n_k$, then A cannot be a partition of \mathbb{Z}.

This conjecture of Erdős was soon confirmed independently by H. Davenport, L. Mirsky, D. Newman and R. Rado in the 1950s.

The Davenport-Mirsky-Newman-Rado Result. Let $A = \{a_s + n_s\mathbb{Z}\}_{s=1}^k$ be an exact cover of \mathbb{Z} with $1 \leq n_1 \leq \cdots \leq n_{k-1} \leq n_k$. Then we must have $n_{k-1} = n_k$.

Proof. Without loss of generality we assume that $0 \leq a_s < n_s$ for all $s \in [1, k]$. For $|z| < 1$ we have

$$\sum_{s=1}^{k} \frac{z^{a_s}}{1 - z^{n_s}} = \sum_{s=1}^{k} \sum_{q=0}^{\infty} z^{a_s + q n_s} = \sum_{n=0}^{\infty} z^n = \frac{1}{1 - z}.$$
If \(n_{k-1} < n_k \) then

\[
\infty = \lim_{|z| < 1} \frac{z^{a_k}}{1 - z^{n_k}} = \lim_{|z| < 1} \left(\frac{1}{1 - z} - \sum_{s=1}^{k-1} \frac{z^{a_s}}{1 - z^{n_s}} \right) < \infty,
\]
a contradiction! □

Recall that \(\{1(2), 2(2^2), \ldots, 2^{k-2}(2^{k-1}), 0(2^{k-1})\} \) is a disjoint cover of \(\mathbb{Z} \) by \(k \) residue classes whose first \(k - 1 \) moduli are distinct.

Herzog-Schönheim Conjecture. Let \(A = \{a_s G_s\}_{s=1}^k \) be a partition of a group \(G \) into \(k > 1 \) left cosets of subgroups \(G_1, \ldots, G_k \). Then the finite indices \([G : G_1], \ldots, [G : G_k] \) cannot be distinct.

M. A. Berger, A. Felzenbaum and A. S. Fraenkel [Canad. Math. Bull. 29(1986); Fund. Math. 128(1987)] proved the Herzog-Schönheim conjecture for finite nilpotent groups and pyramidal groups. (A finite group \(G \) is said to be *pyramidal* if it contains a chain \(\{e\} = H_0 \subset H_1 \subset \cdots \subset H_n = G \) of subgroups such that \([H_1 : H_0] \geq \cdots \geq [H_n : H_{n-1}] \) are primes in non-ascending order, such a group must be solvable.)

A finite system \(A = \{a_s G_s\}_{s=1}^k \) of left cosets in a group \(G \) is called a *uniform cover* of \(G \) if it covers all elements of \(G \) the same number of times. Note that \(A \) is a uniform cover of \(G \) if and only if it is an exact \(m \)-cover of \(G \) for some \(m = 1, 2, \ldots \).

Here is recent progress [Z. W. Sun, J. Algebra 273(2004)] on the extended Herzog-Schönheim conjecture for uniform covers of groups.
Sun’s Result on Herzog-Schönheim Conjecture for Uniform Covers. Let $\mathcal{A} = \{a_s G_s\}_{s=1}^k$ be a uniform cover of a group G with G_1, \ldots, G_k not all equal to G and

$$n_1 = [G : G_1] \leq \cdots \leq n_k = [G : G_k].$$

Suppose that all the G_i are subnormal in G, or G/H is a solvable group having a normal Sylow p-subgroup where $H = (\bigcap_{s=1}^k G_s)_G$, and p is the largest prime divisor of $|G/H|$. Then the indices n_1, \ldots, n_k cannot be pairwise distinct. Moreover, if $|\{1 \leq i \leq k : n_i = n\}| \leq M$ for all $n \in \mathbb{Z}^+$, then we have

$$\log n_1 \leq \frac{e^\gamma}{\log 2} M \log^2 M + O(M \log M \log \log M),$$

where the logarithm has the natural base $e = 2.718...$, $\gamma = 0.577...$ is the Euler constant and the O-constant is absolute.

The proof of this result is long and sophisticated; it involves combinatorics and group theory, as well as analytic number theory. One of the basic lemma used in the proof is the following arithmetical property of indices.

A Lemma on Divisibility of Indices [Z. W. Sun, European J. Combin. 22(2001)]. Let G_1, \ldots, G_k be subnormal subgroups of a group G with finite index. Then

$$\left[G : \bigcap_{s=1}^k G_s \right] \bigg| \prod_{s=1}^k [G : G_s]$$

and hence

$$P\left(\left[G : \bigcap_{s=1}^k G_s \right] \right) = \bigcup_{s=1}^k P([G : G_s]),$$
where $P(n)$ denotes the set of prime divisors of n.

If G_1, \ldots, G_k are subgroups of a group G with finite index, then $[G : \bigcap_{s=1}^k G_s] \leq \prod_{s=1}^k [G : G_s] < \infty$ by Poincaré’s theorem. The above lemma can be viewed as an important number-theoretic property of subnormality, it is the main reason why covers involving subnormal subgroups are better behaved than general covers.

In view of Example 1.2 and the above lemma, if H is a subnormal subgroup of a group G with $[G : H] < \infty$ then

$$P(|G/H_G|) = P([G : H]).$$

It should be mentioned that this result and the divisibility lemma are quite useful but could not been found in group theory references before the speaker worked them out.