On Covers of Groups by Cosets

Zhi-Wei Sun

Nanjing University
Nanjing 210093, P. R. China
zwsun@nju.edu.cn
http://math.nju.edu.cn/~zwsun

Jan. 12, 2018
Abstract

If a group G is the union of finitely many left cosets a_1G_1, \ldots, a_kG_k of subgroups G_1, \ldots, G_k, then the system $\{a_sG_s\}_{s=1}^k$ is said to be a cover of G. We will give a survey of problems and results on extremal problems concerning covers of groups, and introduce progress on the famous Herzog-Schönheim conjecture which states that if $\{a_sG_s\}_{s=1}^k (k > 1)$ is a partition of a group G into finitely many left cosets then the (finite) indices $[G : G_1], \ldots, [G : G_k]$ cannot be distinct. We will also mention some new challenging conjectures in the field.
Part I. Basic Results on Covers of Groups
Disjoint covers of a group by left or right cosets

Let H be a subgroup of a group G with $[G : H] = k < \infty$. Then we can partition G into k left cosets g_1H, \ldots, g_kH, and $\{g_iH\}_{i=1}^k$ forms a disjoint cover of G by left cosets.

Let $\{Ha_i\}_{i=1}^k$ be a right coset decomposition of G. Then $\{a_iG_i\}_{i=1}^k$ is a disjoint cover of G where $G_i = a_i^{-1}Ha_i$. Observe that

$$\bigcap_{i=1}^k G_i = \bigcap_{i=1}^k \bigcap_{h \in H} a_i^{-1}h^{-1}Hha_i = \bigcap_{g \in G} g^{-1}Hg$$

is the normal core H_G of H in G which is the largest normal subgroup of G contained in H.

In group theory, it is known that G/H_G can be embedded into the symmetric group $S_{[G:H]} = S_k$ and thus

$$\left[G : \bigcap_{i=1}^k G_i \right] = |G/H_G| \leq k!.$$
A basic theorem on covers of groups

An Example of M. J. Tomkinson. Let \(k > 1 \) be a positive integer, and let \(G \) be the symmetric group \(S_k \) and \(H \) be the stabilizer of 1. Then \(G_i = (1i)^{-1}H(1i) \) is the stabilizer of \(i \) for each \(i = 1, \ldots, k \). Clearly,

\[
\{ G_1, (12)G_2, \ldots, (1k)G_k \} = \{ H, H(12), \ldots, H(1k) \}
\]

forms a disjoint cover of \(G \) with \(\bigcap_{i=1}^{k} G_i = H_G = \{ e \} \). Note that \([G : \bigcap_{i=1}^{k} G_i] = |G| = k! \).

A Basic Theorem on Covers of Groups. Let \(\mathcal{A} = \{ a_i G_i \}_{i=1}^{k} \) be a finite system of left cosets in a group \(G \) where \(G_1, \ldots, G_k \) are subgroups of \(G \). Suppose that \(\mathcal{A} \) forms a minimal cover of \(G \) (i.e. \(\mathcal{A} \) covers all the elements of \(G \) but none of its proper systems does).

(i) (B. H. Neumann, 1954) There is a constant \(c_k \) depending only on \(k \) such that \([G : G_i] \leq c_k \) for all \(i = 1, \ldots, k \).

(ii) (M. J. Tomkinson, 1987) We have \([G : \bigcap_{i=1}^{k} G_i] \leq k! \), where the upper bound \(k! \) is best possible.
Tomkinson’s proof of the second part

We show by induction that

\[
\left[\bigcap_{i \in l} G_i : \bigcap_{i=1}^k G_i \right] \leq (k - |l|)! \]

(*l)

for all \(l \subseteq \{1, \ldots, k\} \), where \(\bigcap_{i \in \emptyset} G_i \) is regarded as \(G \).

Clearly (*l) holds for \(l = \{1, \ldots, k\} \). Now let \(l \subset \{1, \ldots, k\} \) and assume (*j) for all \(J \subseteq \{1, \ldots, k\} \) with \(|J| > |l|\). Since \(\{a_i G_i\}_{i \in l} \) is not a cover of \(G \), there is an \(a \in G \) not covered by \(\{a_i G_i\}_{i \in l} \). Clearly \(a(\bigcap_{i \in l} G_i) \) is disjoint from the union \(\bigcup_{i \in l} a_i G_i \) and hence contained in \(\bigcup_{j \not\in l} a_j G_j \). Thus

\[
a\left(\bigcap_{i \in l} G_i\right) = \bigcup_{a_j G_j \cap a\left(\bigcap_{i \in l} G_i\right) \neq \emptyset} \left(a_j G_j \cap a\left(\bigcap_{i \in l} G_i\right)\right),
\]

\[
\left[\bigcap_{i \in l} G_i : H \right] \leq \sum_{j \not\in l} \left[G_j \cap \bigcap_{i \in l} G_i : H \right] \leq \sum_{j \not\in l} (k - (|l| + 1))! = (k - |l|)!
\]

where \(H = \bigcap_{i=1}^k G_i \). This concludes the induction proof.
m-covers and exactly m-covers

A right coset Ha in a group G is also a left coset $a(a^{-1}Ha)$. So we only consider left cosets.

Let $m \in \mathbb{Z}^+ = \{1, 2, 3, \ldots\}$, and let $A = \{a_i G_i\}_{i=1}^k$ be a finite system of left cosets in a group G. If each element of G is covered by A at least (resp., exactly) m times, then we call A an m-cover (resp., exact m-cover) of G. If A is an m-cover of G but none of its proper subsystems does, then A is said to be a minimal m-cover of G.

Part II. Extremal Problems for m-Covers
The Mycielski function $f : \mathbb{Z}^+ \to \mathbb{N} = \{0, 1, 2, \ldots\}$ is given by $f(1) = 0$ and $f(mn) = f(m) + f(n)$ for $m, n \in \mathbb{Z}^+$.

An Example of Š. Znám. Let $n > 1$ be an integer with the factorization $\prod_{t=1}^{r} p_t^{\alpha_t}$, where p_1, \ldots, p_r are distinct primes and $\alpha_1, \ldots, \alpha_r \in \mathbb{Z}^+$. Then $0(\text{mod} \ n)$ and the following $f(n) = \sum_{s=1}^{r} \alpha_s (p_s - 1)$ residue classes

$$jp_1^{\alpha_1} \cdots p_{s-1}^{\alpha_{s-1}} p_s^{\alpha-1}(\text{mod} \ p_1^{\alpha_1} \cdots p_{s-1}^{\alpha_{s-1}} p_s)$$

$$(\alpha = 1, \ldots, \alpha_s; \ j = 1, \ldots, p_s - 1; \ s = 1, \ldots, r)$$

form a disjoint cover of \mathbb{Z} whose moduli have the least common multiple n.

"My"cielski’s function and an example of Zná"m"
An extremal problem for exact m-covers of groups

Let $A = \{a_iG_i\}_{i=1}^k$ be an exact m-cover of a group G with $\bigcap_{i=1}^k G_i = H$. By the Neumann-Tomkinson theorem, $[G : H] \leq k!$. How to provide a sharp lower bound of k in terms of G and H?

An Example of Z.-W. Sun [Fund. Math. 134(1990)]. Let H be a subnormal subgroup of a group G with finite index. Let

$$H_0 = H \subset H_1 \subset \cdots \subset H_n = G$$

be a composition series from H to G. For $i = 0, \ldots, n-1$, write

$$H_{i+1} \setminus H_i = \bigcup_{j=1}^{[H_{i+1}:H_i]-1} b_j^{(i)} H_i.$$

Then the following $d(G, H) = \sum_{i=0}^{n-1} ([H_{i+1} : H_i] - 1)$ left cosets $b_j^{(i)} H_i$ ($0 \leq i < n; 1 \leq j < [H_{i+1} : H_i]$),

together with H and $m - 1$ copies of G, form an exact m-cover of G by $m + d(G, H)$ left cosets of subgroups whose intersection is H. (In the case $H = G$ we define $d(G, H) = 0$.)

$$d(G, H) \geq f([G : H]) \geq \log_2[G : H].$$

Also, $d(G, H) = f([G : H])$ if and only if G/H_G is solvable.
Mycielski’s conjecture and further extensions

Mycielski’s Conjecture (J. Mycielski, 1966). If \(\{a_i G_i\}_{i=1}^k \) is a disjoint cover of an abelian group \(G \), then \(k \geq 1 + f([G : G_i]) \) for all \(i = 1, \ldots, k \).

Related Results on Exact \(m \)-covers. Let \(A = \{a_i G_i\}_{i=1}^k \) be an exact \(m \)-cover of a group \(G \) with \(\bigcap_{i=1}^k G_i = H \).

(i) (I. Korec [Fund. Math., 1974]) If \(m = 1 \) and \(G_1, \ldots, G_k \) are normal in \(G \), then \(k \geq 1 + f([G : H]) \).

(ii) (Z.-W. Sun [European J. Combin., 2001]) If \(G_1, \ldots, G_k \) are subnormal in \(G \), then \(k \geq m + d(G, H) \), with the lower bound best possible.

The proof is by induction, on the basis of the following key lemma.

A Lemma (Z.-W. Sun [European J. Combin., 2001]). Let \(A = \{a_i G_i\}_{i=1}^k \) be an exact \(m \)-cover of a group \(G \) by left cosets of subnormal subgroups \(G_1, \ldots, G_k \). For any maximal normal subgroup \(H \) of \(G \), we have

\[\{ C \in G/H : C \supseteq a_i G_i \text{ for some } i = 1, \ldots, k \} = \emptyset \text{ or } G/H. \]
On the core of a subnormal subgroup

Note that Korec’s result is stronger than Mycielski’s conjecture, and also Sun’s result has the following consequence.

Corollary (Sun [Fund. Math., 1990]). Let H be a subnormal subgroup of a group G with $[G : H] < \infty$. Then

$$[G : H] \geq 1 + d(G, H_G) \geq 1 + f([G : H_G])$$

and hence

$$|G/H_G| \leq 2^{[G:H]^{-1}}.$$

Proof. Let $\{Ha_i\}_{i=1}^k$ be a right coset decomposition of G where $k = [G : H]$. Then $\{a_i G_i\}_{i=1}^k$ is a disjoint cover of G where all the $G_i = a_i^{-1} H a_i$ are subnormal in G and $\bigcap_{i=1}^k G_i = H_G$. So the desired result follows.
On minimal m-covers

Korec's and Sun's results on exact m-covers can be extended to minimal m-covers of \mathbb{Z}, see R. J. Simpson [Acta Arith., 1985] for the case $m = 1$ and Z. W. Sun [Internat. J. Math. 17(2006)] for general $m \geq 1$. However, they cannot be extended to minimal m-covers of abelian groups as illustrated by the following example.

Example (G. Lettl and Z.-W. Sun [Acta Arith., 2008]). Let G be the abelian group $C_p \times C_p$ where p is a prime and C_p is the cyclic group of order p. Then any element $a \neq e$ of G has order p. Let G_1, \ldots, G_k be all the distinct subgroups of G with order p. If $1 \leq i < j \leq k$, then $G_i \cap G_j = \{e\}$. Thus $\{G_s\}_{s=1}^k$ forms a minimal cover of G with $\bigcap_{s=1}^k G_s = \{e\}$. As $1 + k(p - 1) = |\bigcup_{s=1}^k G_s| = |G| = p^2$, we have

$$k = p + 1 \geq 1 + f([G : G_s]) = 1 + f(p) = p.$$

However, if $p > 2$ then

$$k = p + 1 < 2p - 1 = 1 + f([G : \{e\}]) = 1 + d\left(G, \bigcap_{s=1}^k G_s\right).$$
On \(m \)-covers of abelian groups

Let \(m \) and \(n \) be positive integers. Is \(m + f(n) \) the smallest positive integer \(k \) such that for any abelian group having a subgroup of index \(n \) there is a minimal \(m \)-cover of \(G \) by \(k \) cosets of subgroups one of which has index \(n \)?

Theorem (G. Lettl and Z.-W. Sun [Acta Arith. 131(2008)]). Let \(A = \{a_sG_s\}_{s=1}^k \) be a minimal \(m \)-cover of an abelian group \(G \) by left cosets. Then

\[
k \geq m + f([G : G_t]) \quad \text{for any} \quad t = 1, \ldots, k.
\]

This theorem implies the following conjecture of W. D. Gao and A. Geroldinger [European J. Combin. 2003].

Gao-Geroldinger Conjecture. Let \(G \) be a finite abelian group with identity \(e \). If \(G \setminus \{e\} \) is a union of \(k \) cosets \(a_1G_1, \ldots, a_kG_k \), then we have \(k \geq f(|G|) \).

In fact, if we set \(a_0 = e \) and \(G_0 = \{e\} \) then \(\{a_sG_s\}_{s=0}^k \) forms a cover of \(G \) with \(a_0G_0 \) irredundant, hence \(k + 1 \geq 1 + f([G : G_0]) \) and thus \(k \geq f(|G|) \).
The Lettl-Sun result cannot be shown in the way that we prove Korec’s or Sun’s result because we don’t have the corresponding lemma for minimal m-covers of abelian groups. Thus, new ideas are needed!

The proof of the Lettl-Sun result was obtained via characters of abelian groups and algebraic number theory; below is a key lemma used in the proof.

Lemma (G. Lettl and Z.-W. Sun [Acta Arith. 131(2008)]). Let $n > 1$ be an integer. Then $f(n)$ is the smallest positive integer k such that there are roots of unity ζ_1, \ldots, ζ_k different from 1 for which $\prod_{s=1}^{k}(1 - \zeta_s) \equiv 0 \pmod{n}$ in the ring $\overline{\mathbb{Z}}$ of algebraic integers.
On cyclotomic polynomials

The nth cyclotomic polynomial is given by

$$\Phi_n(x) = \prod_{m=1}^{n} \left(x - e^{2\pi i m/n} \right).$$

$$x^n - 1 = \prod_{m=1}^{n} \left(x - e^{2\pi i m/n} \right) = \prod_{d | n} \prod_{c=1 \atop (c,d)=1}^{d} \left(x - e^{2\pi i c/d} \right) = \prod_{d | n} \Phi_d(x).$$

Applying the Möbius inversion we obtain

$$\Phi_n(x) = \prod_{d | n} (x^d - 1)^{\mu(n/d)} \in \mathbb{Z}[x].$$

If $n > 1$, then $\sum_{d | n} \mu(n/d) = \sum_{d | n} \mu(d) = 0$, thus

$$\Phi_n(x) = \prod_{d | n} \left(\frac{x^d - 1}{x - 1} \right)^{\mu(n/d)} = \prod_{d | n} (1 + x + \cdots + x^{d-1})^{\mu(n/d)}$$

and hence $\Phi_n(1) = \prod_{d | n} d^{\mu(n/d)}$.
Using the Mangoldt function

Recall that the Mangoldt function is given by

\[\Lambda(n) = \begin{cases} \log p & \text{if } n = p^a \text{ for some prime } p \text{ and } a \in \mathbb{Z}^+, \\ 0 & \text{otherwise}. \end{cases} \]

If \(n \) has the primary factorization \(\prod_{i=1}^{r} p_i^{\alpha_i} \) where \(p_1, \ldots, p_r \) are distinct primes and \(\alpha_1, \ldots, \alpha_r \in \mathbb{N} \), then

\[\sum_{d|n} \Lambda(d) = \sum_{i=1}^{r} \sum_{\beta_i=0}^{\alpha_i} \Lambda(p_i^{\beta_i}) = \sum_{i=1}^{r} \alpha_i \log p_i = \log \prod_{i=1}^{r} p_i^{\alpha_i} = \log n. \]

Applying the Möbius inversion formula we get

\[\sum_{d|n} \mu\left(\frac{n}{d}\right) \log d = \Lambda(n). \]

Therefore

\[\log \Phi_n(1) = \sum_{d|n} \mu\left(\frac{n}{d}\right) \log d = \begin{cases} \log p & \text{if } n \text{ is a power of some prime } p, \\ 0 & \text{otherwise}. \end{cases} \]
Find roots $\zeta_1, \ldots, \zeta_{f(n)} \neq 1$ of unity with $n \mid \prod_{s=1}^{f(n)} (1 - \zeta_s)$

So we have

$$\prod_{m=1}^{n} (1 - e^{2\pi i m/n}) = \Phi_n(1) = \begin{cases} p & \text{if } n \text{ is a power of some prime } p, \\ 1 & \text{otherwise.} \end{cases}$$

In particular,

$$\prod_{m=1}^{p-1} (1 - e^{2\pi i m/p}) = p \quad \text{for any prime } p.$$

Note that

$$n = \prod_{p \mid n} p^{\operatorname{ord}_p(n)} = \prod_{p \mid n} \prod_{m=1}^{p-1} (1 - e^{2\pi i m/p})^{\operatorname{ord}_p(n)}.$$

So there exist $f(n) = \sum_{p \mid n} \operatorname{ord}_p(n)(p - 1)$ roots of unity $\zeta_1, \ldots, \zeta_{f(n)} \neq 1$ such that n divides $(1 - \zeta_1) \cdots (1 - \zeta_{f(n)})$ in the ring \mathbb{Z} of all algebraic integers.
Proof of the lemma of Lettl and Sun

Now suppose that \(\prod_{s=1}^{k}(1 - \zeta_s) \equiv 0 \pmod{n} \), where \(\zeta_s \) is a primitive \(n_s \)th root of unity with \(n_s > 1 \). Recall that

\[
\prod_{\substack{r=1 \atop (r,n_s)=1}}^{n_s} (1 - \zeta_r^r) = \prod_{\substack{m=1 \atop (m,n_s)=1}}^{n_s} (1 - e^{2\pi im/n_s})
\]

\[
eq \begin{cases}
 p & \text{if } n_s \text{ is a power of some prime } p, \\
 1 & \text{otherwise}.
\end{cases}
\]

Let \(N \) be the least common multiple of \(n_1, \ldots, n_k \). Then

\[
n^{\varphi(N)} \Big| \prod_{s=1}^{k} \left((1 - \zeta_s)^{\varphi(n_s)} \right)^{\varphi(N)/\varphi(n_s)} \Big| \prod_{s=1}^{k} p(n_s)^{\varphi(N)/\varphi(n_s)},
\]

where \(p(n_s) \) is the least prime divisor of \(n_s \). So, for any prime \(p \),

\[
\text{ord}_p(n)^{\varphi(N)} \leq \sum_{\substack{s=1 \atop n_s \text{ is a power of } p}}^{k} \frac{\varphi(N)}{\varphi(n_s)}
\]
Proof of the lemma of Lettl and Sun

and hence

$$|\{1 \leq s \leq k : n_s \text{ is a power of } p\}| \geq \text{ord}_p(n)(p - 1).$$

It follows that

$$k \geq \sum_{p | n} |\{1 \leq s \leq k : n_s \text{ is a power of } p\}|$$

$$\geq \sum_{p | n} \text{ord}_p(n)(p - 1) = f(n).$$

This concludes the proof of the lemma.
Proof of the Lettl-Sun result

For a finite abelian group G, let \hat{G} denote the group of all complex-valued characters of G. One has $\hat{G} \cong G$. For any subgroup H of G let H^\perp denote the group of those characters $\chi \in \hat{G}$ with $\ker(\chi) = \{x \in G : \chi(x) = 1\}$ containing H. Then there is a canonical isomorphism $H^\perp \cong \hat{G}/H$ by putting $\chi(aH) = \chi(a)$ for any $a \in G$ and any $\chi \in H^\perp$. Furthermore, for each $a \in G \setminus H$ there exists some $\chi \in H^\perp$ with $\chi(a) \neq 1$.

Proof of the Lettl-Sun Result. As $H = \bigcap_{s=1}^{k} G_s$ is of finite index in G. Instead of the minimal m-cover $A = \{a_s G_s\}_{s=1}^{k}$ of G, we may consider the minimal m-cover $\tilde{A} = \{\tilde{a}_s \tilde{G}_s\}_{s=1}^{k}$ of the finite abelian group $\tilde{G} = G/H$, where $\tilde{a}_s = a_s H$ and $\tilde{G}_s = G_s/H$ (hence $[\tilde{G} : \tilde{G}_s] = [G : G_s]$). Therefore, without any loss of generality, we can assume that G is finite.
Proof of the Lettl-Sun result (continued)

Fix $1 \leq t \leq k$. As $\{a_s G_s\}_{s \neq t}$ is not an m-cover of G, there is an $a \in a_t G_t$ such that it is covered by exactly m cosets in A and hence $J = \{1 \leq j \leq k : a \not\in a_j G_j\}$ has cardinality $k - m$. For each $j \in J$ we may choose a $\chi_j \in G_j^\perp$ with $\zeta_j := \chi_j(a^{-1}a_j) \neq 1$. For any $x \in G \setminus G_t$ we have $ax \not\in a G_t = a_t G_t$. Since A is an m-cover of G, there exists some $j \in J$ such that $ax \in a_j G_j$, and therefore $\chi_j(x) = \chi_j(a^{-1}a_j) = \zeta_j$ by the choice of χ_j and the definition of ζ_j.

For $x \in G$ we define

$$\Psi(x) = \prod_{j \in J} (\chi_j(x) - \zeta_j).$$

If $\chi \in G_t^\perp$ and $\chi(x) \neq 1$, then $x \not\in G_t$ and hence $\Psi(x) = 0$ by the above. Thus $\Psi \chi = \Psi$ for all $\chi \in G_t^\perp$.
Observe that
\[\psi(x) = \sum_{I \subseteq J} \left(\prod_{j \in I} \chi_j(x) \right) \prod_{j \in J \setminus I} (-\zeta_j) = \sum_{\psi \in \hat{G}} c(\psi) \psi(x), \]
where
\[c(\psi) = \sum_{I \subseteq J} \prod_{j \in J \setminus I} (-\zeta_j) \in \mathbb{Z}. \]

Let \(\mathbb{C} \) be the complex field. As the set \(\hat{G} \) is a basis of the \(\mathbb{C} \)-vector space
\[\mathbb{C}^G = \{ g : g \text{ is a function from } G \text{ to } \mathbb{C} \}, \]
for any \(\chi \in G^\perp \) we have \(c(\psi \chi) = c(\psi) \) for all \(\psi \in \hat{G} \) because \(\psi \chi^{-1} = \psi \).
Proof of the Lettl-Sun result (continued)

Clearly

$$\prod_{j \in J} (1 - \zeta_j) = \Psi(e) = \sum_{\psi \in \hat{G}} c(\psi)\psi(e) = \sum_{\psi \in \hat{G}} c(\psi).$$

Let $$\psi_1 G_t \perp \cdots \perp \psi_l G_t \perp$$ be a coset decomposition of $$\hat{G}$$ where $$l = [\hat{G} : G_t \perp]$$. Then

$$\sum_{\psi \in \hat{G}} c(\psi) = \sum_{r=1}^{l} \sum_{\chi \in G_t \perp} c(\psi_r \chi) = \sum_{r=1}^{l} |G_t \perp| c(\psi_r) = [G : G_t] \sum_{r=1}^{l} c(\psi_r).$$

Therefore $$[G : G_t]$$ divides $$\prod_{j \in J} (1 - \zeta_j)$$ in the ring $$\overline{\mathbb{Z}}$$ of all algebraic integers, and the lemma of Lettl and Sun gives

$$k - m = |J| \geq f([G : G_t]).$$
Covering a group by subnormal subgroups

Recall that a group G is said to be **perfect** if it coincides with its derived group $G' = \langle x^{-1}y^{-1}xy : x, y \in G \rangle$.

Theorem (Z.-W. Sun [Internat. J. Math. 17(2006)]). Suppose that $\{G_i\}_{i=1}^k$ is a minimal m-cover of a group G by subnormal subgroups. Then there is a composition series from $\bigcap_{i=1}^k G_i$ to G whose factors are of prime orders, and all the G_i contain every perfect subgroup of G.

This extends the following result of M. A. Brodie, R. F. Chamberlain and L.-C. Kappe [Proc. Amer. Math. Soc. 104(1988)]: If $\{G_i\}_{i=1}^k$ is a minimal cover of a group G by finitely many normal subgroups, then $G/\bigcap_{i=1}^k G_i$ is solvable and all perfect normal subgroups of G are contained in each of G_1, \ldots, G_k.
Two conjectures

Conjecture (Z.-W. Sun) (i) (2008) Whenever $A = \{a_i G_i\}_{i=1}^k$ forms an m-cover of a group G by left cosets with $a_t G_t$ irredundant, we have the inequality $k \geq m + f([G : G_t])$ and hence $[G : G_t] \leq 2^{k-m}$.

(ii) (2004) If $A = \{a_i G_i\}_{i=1}^k$ forms a minimal m-cover of an abelian group G by left cosets or an exact m-cover of a solvable group G by left cosets, then we have $k \geq m + f(N)$, where N is the least common multiple of the indices $[G : G_1], \ldots, [G : G_k]$.

When $\{a_i G_i\}_{i=1}^k$ forms an exact m-cover of a solvable group G, the inequality $k \geq m + f([G : G_t])$ was shown by Berger, Felzenbaum and Fraenkel [Colloq. Math. 1988] in the case $m = 1$ and proved by the speaker [European J. Combin. 2003] for general m.

Conjecture (S. Guo and Z.-W. Sun, 2004). If $\{G_i\}_{i=1}^k$ forms a minimal m-cover of an abelian group G with $[G : \bigcap_{i=1}^k G_i] = \prod_{t=1}^r p_t^{\alpha_t}$, where p_1, \ldots, p_r are distinct primes and $\alpha_1, \ldots, \alpha_r \in \mathbb{Z}^+$, then $k > m + \sum_{t=1}^r (\alpha_t - 1)(p_t - 1)$.
Part III. On the Herzog-Schönheim conjecture
The Davenport-Mirsky-Newman-Rado result

Soon after his invention of covers of \mathbb{Z}, P. Erdős conjectured that if \(\{a_s(\text{mod } n_s)\}_{s=1}^{k} \) \((k > 1)\) is a system of residue classes with the moduli \(n_1, \ldots, n_k\) distinct, then it cannot be a disjoint cover of \mathbb{Z}.

Theorem (H. Davenport, L. Mirsky, D. Newman and R. Rado, 1960s). If \(A = \{a_s(\text{mod } n_s)\}_{s=1}^{k} \) is a disjoint cover of \mathbb{Z} with \(1 < n_1 \leq n_2 \leq \cdots \leq n_{k-1} \leq n_k\), then we must have \(n_{k-1} = n_k\).

Proof. Without loss of generality we assume \(0 \leq a_s < n_s\) \((1 \leq s \leq k)\). For \(|z| < 1\) we have

\[
\sum_{s=1}^{k} \frac{z^{a_s}}{1 - z^{n_s}} = \sum_{s=1}^{k} \sum_{q=0}^{\infty} z^{a_s + qn_s} = \sum_{n=0}^{\infty} z^n = \frac{1}{1 - z}.
\]

If \(n_{k-1} < n_k\), then

\[
\infty = \lim_{z \to e^{2\pi i/n_k}}_{|z| < 1} \frac{z^{a_k}}{1 - z^{n_k}} = \lim_{z \to e^{2\pi i/n_k}}_{|z| < 1} \left(\frac{1}{1 - z} - \sum_{s=1}^{k-1} \frac{z^{a_s}}{1 - z^{n_s}} \right) < \infty,
\]

which leads a contradiction!
Burshtein’s conjecture

Let \(A = \{ a_s(n_s) \}^{k}_{s=1} \) be a disjoint cover of \(\mathbb{Z} \) with each modulus occurring at most \(M \) times. Write \([n_1, \ldots, n_k] = \prod_{t=1}^{r} p_t^{\alpha_t} \), where \(p_1 < \cdots < p_r \) are distinct primes and \(\alpha_1, \ldots, \alpha_r \) are positive integers. N. Burshtein [Discrete Math. 14(1976)] conjectured that

\[
p_r \leq M \prod_{p \leq p_r} \frac{p}{p-1}.
\]

R. J. Simpson [Discrete Math. 59(1986)] proved further that

\[
p_r \leq M \prod_{t=1}^{r-1} \frac{p_t}{p_t - 1}.
\]

The last inequality implies that \(M \geq p_1 > 1 \); in fact, if \(r \geq 2 \) then

\[
M > p_r \prod_{t=1}^{r-1} \frac{p_t - 1}{p_t} \geq p_{r-1} \prod_{t=1}^{r-2} \frac{p_t - 1}{p_t} \geq \cdots \geq p_2 \frac{p_1 - 1}{p_1} > p_1 - 1.
\]

This gives a combinatorial approach to the Erdős conjecture.
The Herzog-Schönheim Conjecture

The following conjecture extends the conjecture of P. Erdős to disjoint covers of groups.

Let \(\{a_i G_i\}_{i=1}^k \) be a partition of a group \(G \) into left cosets of subgroups \(G_1, \ldots, G_k \). Then the (finite) indices

\[
n_1 = [G : G_1], \ldots, n_k = [G : G_k]
\]

cannot be distinct.

It is known that any finite nilpotent group is the direct product of its Sylow subgroups. Using this fact and lattice parallelotopes, Berger, Felzenbaum and Fraenkel [Canad. Bull. Math. 1986] confirmed the above conjecture for **finite nilpotent groups**.
A result of Z.-W. Sun

Theorem (Z.-W. Sun [J. Algebra 273(2004)]). Let \(\mathcal{A} = \{a_iG_i\}_{i=1}^k \) be a finite system of left cosets in a group \(G \) with not all the \(G_i \) equal to \(G \). Suppose that \(\mathcal{A} \) covers all the elements of \(G \) the same number of times, and that among the indices

\[
 n_1 = [G : G_1] \leq \ldots \leq n_k = [G : G_k].
\]

each occurs at most \(M \in \mathbb{Z}^+ \) times. Let \(p_* \) and \(p^* \) be the smallest and the largest prime divisors of \(N = [n_1, \ldots, n_k] \) respectively. Suppose that all the \(G_i \) with \(n_i \geq p^* \) are subnormal in \(G \), or \(G/H \) is a solvable group having a normal Sylow \(p' \)-subgroup where \(H \) is the core \(\bigcap_{i=1}^k G_i \) and \(p' \) is the greatest prime divisor of \(|G/H| \). Then we have the following (i)–(iv) with the \(O \)-constants absolute.

(i) \(M \geq p_* \), moreover among the \(k \) indices \(n_1, \ldots, n_k \) there exists a multiple of \(p^* \) occurring at least \(1 + \left\lfloor p^* \prod_{p | N} (p - 1)/p \right\rfloor \geq p_* \) times.
(ii) All prime divisors of n_1, \ldots, n_k are smaller than $e^{-\gamma} M \log M + O(M \log \log M)$.

(iii) The number of distinct prime divisors of n_1, \ldots, n_k does not exceed $e^{-\gamma} M + O(M / \log M)$.

(iv) For the least index n_1, we have $\log n_1 \leq \frac{e^{-\gamma}}{\log 2} M \log^2 M + O(M \log M \log \log M)$.

The above theorem was established by a combined use of tools from combinatorics, group theory and number theory. The basic idea is to extend Burshtein’s conjecture to exact m-covers of groups by cosets.
A lemma on subnormal subgroups

One of the key lemmas is the following one which is the main reason why covers involving subnormal subgroups are better behaved than general covers.

A Lemma on Indices of Subnormal Subgroups (Z. W. Sun).
Let G be a group, and let $P(n)$ denote the set of prime divisors of a positive integer n.

(i) [European J. Combin. 2001] If G_1, \ldots, G_k are subnormal subgroups of G with finite index, then

$$
\left[\frac{G}{\bigcap_{i=1}^{k} G_i} \right] \Bigg| \prod_{i=1}^{k} \left[\frac{G}{G_i} \right] \quad \text{and} \quad P\left(\left[\frac{G}{\bigcap_{i=1}^{k} G_i} \right] \right) = \bigcup_{i=1}^{k} P([G : G_i]).
$$

(ii) [J. Algebra, 2004] Let H be a subnormal subgroup of G with finite index. Then

$$
P\left(\left| \frac{G}{H_G} \right| \right) = P([G : H]).$$
A lemma on unions of cosets

Here is another useful lemma of combinatorial nature.

A Lemma on Unions of Cosets (Z. W. Sun [J. Algebra, 2004]). Let G be a group and H its subgroup with finite index N. Let $a_1, \ldots, a_k \in G$, and let G_1, \ldots, G_k be subnormal subgroups of G containing H. Then the union $\bigcup_{i=1}^{k} a_i G_i$ contains at least $|\bigcup_{i=1}^{k} a_i G_i \cap \{0,1,\ldots,N-1\}|$ left cosets of H, where $n_i = [G : G_i]$.

This lemma implies the following result of Z. W. Sun [Internat. J. Math. 2006]: If G_1, \ldots, G_k are normal Hall subgroups of a finite group G, then

$$\left| \bigcup_{i=1}^{k} a_i G_i \right| \geq \left| \bigcup_{i=1}^{k} G_i \right|.$$

(A subgroup H of a finite group G is called a *Hall subgroup* of G if $|H|$ is relatively prime to $[G : H]$.)
Tools from analytic number theory

We also need the following theorems in analytic number theory.

The Prime Number Theorem with Error Terms For $x \geq 2$ we have

$$\pi(x) = \frac{x}{\log x} + O \left(\frac{x}{\log^2 x} \right),$$

where $\pi(x) = \sum_{p \leq x} 1$ is the number of primes not exceeding x.

Mertens’ Theorem. For $x \geq 2$ we have

$$\prod_{p \leq x} \left(1 - \frac{1}{p}\right) = \frac{e^{-\gamma}}{\log x} + O \left(\frac{1}{\log^2 x} \right).$$

Using the above two theorems we can deduce the following lemma.

An Analytic Lemma (Z. W. Sun [J. Algebra, 2004]). For $M \geq 2$, if $q > 1$ is an integer with $q < M \prod_{p \leq q} \frac{p}{(p - 1)}$ then

$q < e^{\gamma} M \log M + O(M \log \log M)$ and $\pi(q) \leq e^{\gamma} M + O(M / \log M)$, where the O-constants are absolute.
Finally we mention a challenging conjecture arising from the speaker’s study of Huhn-Megyesi problems and covers of groups.

A Conjecture on Disjoint Cosets (Z.-W. Sun, [Internat. J. Math., 2006]). Let G be a group, and $a_1 G_1, \ldots, a_k G_k$ $(k > 1)$ be pairwise disjoint left cosets of G with all the indices $[G : G_i]$ finite. Then, for some $1 \leq i < j \leq k$ we have $\gcd([G : G_i], [G : G_j]) \geq k$.

Z.-W. Sun [Internat. J. Math. 2006] noted that this conjecture holds for p-groups as well as the special case $k = 2$. If G_1 and G_2 are subgroups of G with $[G : G_1]$ and $[G : G_2]$ finite and relatively prime, then $G_1 G_2 = G$ and $a_1 G_1 \cap a_2 G_2 \neq \emptyset$ for all $a_1, a_2 \in G$.

W.-J. Zhu [Int. J. Mod. Math. 3(2008)] proved the conjecture for $k = 3, 4$ via several sophisticated lemmas. K. O’Bryant [Integers 2007] confirmed the conjecture for $G = \mathbb{Z}$ in the case $k \leq 20$.

A challenging conjecture on disjoint cosets
Thank you!