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Part A.

Hall’s theorem and two conjectures of Snevily



Cramer’s conjecture

Let n ∈ Z+ = {1, 2, 3, . . .}. Any cyclic group of order n is
isomorphic to the additive group Zn = Z/nZ of residue classes
modulo n. If n is odd, then

1 + 1, 2 + 2, . . . , n + n

are pairwise incongruent modulo n and hence they form a complete
system of residues modulo n.
Let a1, . . . , an ∈ Z. If a1 + 1, . . . , an + n form a complete system of
residues modulo n, then

n∑
i=1

(ai + i) ≡ 1 + · · ·+ n (mod n)

and hence
∑n

i=1 ai ≡ 0 (mod n).

Cramer’s Conjecture Let a1, . . . , an ∈ Z with n |
∑n

i=1 ai . Then
there is a permutation σ ∈ Sn such that aσ(1) + 1, . . . , aσ(n) + n
form a complete system of residues mod n.



Hall’s theorem

In 1952 M. Hall [Proc. Amer. Math. Soc.] obtained an extension
of Cramer’s conjecture.

M. Hall’s theorem Let G = {b1, . . . , bn} be an additive abelian
group, and let a1, . . . , an be elements of G with a1 + . . . + an = 0.
Then there exists a permutation σ ∈ Sn such that

{aσ(1) + b1, . . . , aσ(n) + bn} = G .

Remark. Hall used induction argument and his method is very
technique. Up to now there are no other proofs of this theorem.

Observation. If a1, . . . , an ∈ Z are incongruent modulo n with
a1 + · · ·+ an ≡ 0 (mod n), then n divides

0 + 1 + · · ·+ (n − 1) =
n(n − 1)

2

and hence n is odd.



A conjecture of Snevily

Snevily’s Conjecture for Abelian Groups [Amer. Math.
Monthly, 1999]. Let G be an additive abelian group of odd order.
Then for any two subsets A = {a1, . . . , ak} and B = {b1, . . . , bk}
of G with |A| = |B| = k, there is a permutation σ ∈ Sk such that
aσ(1) + b1, . . . , aσ(k) + bk are (pairwise) distinct.

Remark. The result does not hold for any group G of even order.
In fact, there is an element g ∈ G of order 2, and A = B = {0, g}
gives a counterexample.

Difficulty. No direct construction. Induction also does not work!

Snevily’s conjecture looks simple, beautiful and difficult!



Another Conjecture of Snevily

Snevily’s Conjecture on Addition modulo n [Amer. Math.
Monthly, 1999]. Let 0 < k < n and a1, . . . , ak ∈ Z. Then there
exists π ∈ Sk such that a1 + π(1), . . . , ak + π(k) are distinct
modulo n.

Remark. A. E. Kézdy and H. S. Snevily [Combin. Probab.
Comput. 2002] proved the conjecture for k 6 (n + 1)/2 and found
an application to tree embeddings.



Jäger-Alon-Tarsi Conjecture

In 1982, motivated by his study of graph theory, F. Jäger posed
the following conjecture in the case |F | = 5

Jäger-Alon-Tarsi Conjecture. Let F be a finite field with at least
4 elements, and let A be an invertible n × n matrix with entries in
F . There there exists a vector ~x ∈ F n such that both ~x and A~x
have no zero component.

In 1989 N. Alon and M. Tarsi [Combinarorica, 9(1989)] confirmed
the conjecture in the case when |F | is not a prime. Moreover
their method resulted in the initial form of the Combinatorial
Nullstellensatz which was refined by Alon in 1999.



Alon’s Combinatorial Nullstellensatz

Combinatorial Nullstellensatz [Combin. Probab. Comput.
8(1999)]. Let A1, . . . ,An be finite nonempty subsets of a field F
and let f (x1, . . . , xn) ∈ F [x1, . . . , xn]. Suppose that 0 6 ki < |Ai |
for i = 1, . . . , n, k1 + · · ·+ kn = deg f and

[xk1
1 · · · xkn

n ]f (x1, . . . , xn) (the coefficient of xk1
1 · · · xkn

n in f )

does not vanish. Then there are a1 ∈ A1, . . . , an ∈ An such that
f (a1, . . . , an) 6= 0.

Advantage: This advanced algebraic tool enables us to establish
existence via computation. It has many applications.



Alon’s Contribution

Alon’s Result [Israel J. Math. 2000]. Let p be an odd prime and
let A = {a1, . . . , ak} be a subset of Zp with cardinality k < p.
Given (not necessarily distinct) b1, . . . , bk ∈ Zp there is a
permutation σ ∈ Sk such that aσ(1) + b1, . . . , aσ(k) + bk are
distinct.

Remark. This result is slightly stronger than Snevily’s conjecture
for cyclic groups of prime order.

Proof. Let A1 = · · · = Ak = {a1, . . . , ak}. We need to show that
there exist x1 ∈ A1, . . . , xk ∈ Ak such that∏

16i<j6k(xj − xi )(xj + bj − (xi + bi )) 6= 0. By the Combinatorial
Nullstellensatz, it suffices to prove

c := [xk−1
1 · · · xk−1

k ]
∏

16i<j6k

(xj − xi )(xj + bj − (xi + bi )) 6= 0.



For σ ∈ Sk let ε(σ) be the sign of σ which takes 1 or −1 according
as the permutation σ is even or odd.
Recall that

det(aij)16i ,j6k =
∑
σ∈Sk

ε(σ)
k∏

i=1

ai ,σ(i), per(aij)16i ,j6k =
∑
σ∈Sk

k∏
i=1

ai ,σ(i).

Now we have

c =[xk−1
1 · · · xk−1

k ]
∏

16i<j6k

(xj − xi )
2

=[xk−1
1 · · · xk−1

k ](det(x i−1
j )16i ,j6k)2

=[xk−1
1 · · · xk−1

k ]
∑
σ∈Sk

ε(σ)
k∏

j=1

x
σ(j)−1
j

∑
τ∈Sk

ε(τ)
k∏

j=1

x
τ(j)−1
j

=
∑
σ∈Sk

ε(σ)ε(σ′) =
∑
σ∈Sk

(−1)(
k
2) = k!(−1)(

k
2) 6= 0 (in Zp).

where σ′(j) = k − σ(j) + 1 for j = 1, . . . , k.



Snevily’s Conjecture for cyclic groups

For odd composite number n, Zn = Z/nZ is not a field. How to
prove Snevily’s conjecture for the cyclic group Zn?

Dasgupta, Károlyi, Serra and Szegedy [Israel J. Math., 2001]
Snevily’s conjecture holds for any cyclic group of odd order.

Their key observation is that a cyclic group of odd order n can
be viewed as a subgroup of the multiplicative group of the
finite field F2ϕ(n) . Thus, it suffices to show that

c := [xk−1
1 · · · xk−1

k ]
∏

16i<j6k

(xj − xi )(bjxj − bixi ) 6= 0.

Now c depends on b1, . . . , bk so that the condition∏
16i<j6k(bj − bi ) 6= 0 might be helpful.



Comuting c
For σ ∈ Sk let ε(σ) be the sign of σ. Then∏

16i<j6k

(xj − xi )(bjxj − bixi )

=(−1)(
n
2)|xk−j

i |16i ,j6k |bj−1
i x j−1

i |16i ,j6k

=(−1)(
n
2)

∑
σ∈Sk

ε(σ)
k∏

i=1

x
k−σ(i)
i

∑
τ∈Sk

ε(τ)
k∏

i=1

b
τ(i)−1
i x

τ(i)−1
i .

Therefore

(−1)(
k
2)c =

∑
σ∈Sk

ε(σ)2
k∏

i=1

b
σ(i)−1
i = per((bj−1

i )16i ,j6k)

=
∑
σ∈Sk

ε(σ)
k∏

i=1

b
σ(i)−1
i (because ch(F ) = 2)

=|bi−1
j |16i ,j6k =

∏
16i<j6k

(bj − bi ) 6= 0 (Vandermonde).



Attack Snevily’s conjecture on addition modulo n

A. E. Kézdy and H. S. Snevily [Combin. Probab. Comput.
2002] Let k and n be positive integers with k 6 (n + 1)/2. Then,
for any a1, . . . , ak ∈ Z, there exists π ∈ Sk such that
a1 + π(1), . . . , ak + π(k) are distinct modulo n.

Proof. Let A = {1, . . . , k}. For xi , xj ∈ A, since

|xi − xj | 6 k − 1 6
n − 1

2
<

n

2
,

we have

xi + ai 6≡ xj + aj (mod n)

⇐⇒ xj − xi 6≡ ai − aj (mod n)

⇐⇒ xj − xi 6= rij

where rij denotes the residue of ai − aj in the interval (−n/2, n/2].



Continue the proof

Thus, we only need to show that there are distinct
x1, . . . , xk ∈ A = {1, . . . , k} such that xj − xi 6= rij for all
1 6 i < j 6 k. By the Combinatorial Nullstellensatz for the real
field R, it suffices to note that

[xk−1
1 · · · xk−1

k ]
∏

16i<j6k

(xj − xi )(xj − xi − rij)

=[xk−1
1 · · · xk−1

k ]
∏

16i<j6k

(xj − xi )
2

=[xk−1
1 · · · xk−1

k ](det(x i−1
j )16i ,j6k)2

=[xk−1
1 · · · xk−1

k ]
∑
σ∈Sk

ε(σ)
k∏

j=1

x
σ(j)−1
j

∑
τ∈Sk

ε(τ)
k∏

j=1

x
τ(j)−1
j

=
∑
σ∈Sk

ε(σ)ε(σ′) =
∑
σ∈Sk

(−1)(
k
2) = k!(−1)(

k
2) 6= 0.

where σ′(j) = k − σ(j) + 1 for j = 1, . . . , k.

xi + ai 6≡ xj + aj (mod n)

⇐⇒ xj − xi 6≡ ai − aj (mod n)

⇐⇒ xj − xi 6= rij

where rij denotes the residue of ai − aj in the interval (−n/2, n/2].



Part B.

The DKSS technique and the DKSS conjecture



A new technique of DKSS

DKSS found a new technique which allows them to prove Snevily’s
conjecture for cyclic groups of odd order without use of the
Combinatorial Nullstellensatz.

Let F a field of characteristic 2 and let A = {a1, . . . , ak} and
B = {b1, . . . , k} be two subsets of F ∗ = F \ {0} with cardinality
k. To show that there exists σ ∈ Sk such that
aσ(1)b1, . . . , . . . , aσ(k)bk are distinct, we try to prove that

Σ :=
∑
σ∈sk

ε(σ)
∏

16i<j6k

(aσ(j)bj − aσ(i)bi ) 6= 0.



A new technique of DKSS

Σ =
∑
σ∈Sk

ε(σ)|(aσ(j)bj)
i−1|16i ,j6k

=
∑
σ∈Sk

ε(σ)
∑
τ∈Sk

ε(τ)
k∏

i=1

(aσ(τ(i))bτ(i))
i−1

=
∑
τ∈Sk

k∏
i=1

bi−1
τ(i)

∑
σ∈Sk

ε(στ)
k∏

i=1

ai−1
στ(i)

=
∑
τ∈Sk

ε(τ)
k∏

i=1

bi−1
τ(i)

∑
π∈Sk

ε(π)
k∏

i=1

ai−1
π(i) (ch(F ) = 2)

=|bi−1
j |16i ,j6k × |ai−1

j |16i ,j6k

=
∏

16i<j6k

(bj − bi )×
∏

16i<j6k

(aj − ai ) 6= 0.



An extension by Sun

Lemma [Z. W. Sun, Math. Res. Lett., 115(2008)] Let R be a
commutative ring with identity, and let aij ∈ R for i = 1, . . . ,m
and j = 1, . . . , n, where m ∈ {3, 5, . . .}. The we have the identity

∑
σ1,...,σm−1∈Sn

ε(σ1 · · ·σm−1)
∏

16i<j6n

(
amj

m−1∏
s=1

asσs(j) − ami

m−1∏
s=1

asσs(i)

)
=

∏
16i<j6n

(a1j − a1i ) · · · (amj − ami ).

Via this lemma we can give a simple proof of the following result.

Theorem [Z. W. Sun, Math. Res. Lett., 115(2008)] Let F be
a field and let m > 0 be an odd integer. Suppose that A1, . . . ,Am

are subsets of F with cardinality n ∈ Z+. Then, the elements of
Ai (1 6 i 6 m) can be listed in a suitable order ai1, . . . , ain, so
that all the products

∏m
i=1 aij (1 6 j 6 n) are distinct.



The DKSS Conjecture

The DKSS Conjecture (Dasgupta, Károlyi, Serra and Szegedy
[Israel J. Math., 2001]). Let G be a finite abelian group with
|G | > 1, and let p(G ) be the smallest prime divisor of |G |. Let
k < p(G ) be a positive integer. Assume that A = {a1, a2, . . . , ak}
is a k-subset of G and b1, b2, . . . , bk are (not necessarily distinct)
elements of G . Then there is a permutation π ∈ Sk such that
a1bπ(1), . . . , akbπ(k) are distinct.

Remark. When G = Zp, the DKSS conjecture reduces to Alon’s
result. DKSS proved their conjecture for Zpn and Zn

p via the
Combinatorial Nullstellensatz.

W. D. Gao and D. J. Wang [Israel J. Math. 2004]: The
DKSS conjecture holds when k <

√
p(G ), or G is an abelian

p-group and k <
√

2p.

Tool of Gao and Wang: The DKSS method combining with
group rings.



A Recent Result of Feng, Sun and Xiang

Theorem (T. Feng, Z. W. Sun & Q. Xiang, Israel J. Math., to
appear). Let G be a finite abelian group with |G | > 1. Let
A = {a1, . . . , ak} be a k-subset of G and let b1, . . . , bk ∈ G , where
k < p = p(G ). Then there is a permutation π ∈ Sk such that
a1bπ(1), . . . , akbπ(k) are distinct, provided either of (i)-(iii).

(i) A or B is contained in a p-subgroup of G .

(ii) Any prime divisor of |G | other than p is greater than k!.

(iii) There is an a ∈ G such that ai = ai for all i = 1, . . . , k.

Remark. By this result, the DKSS conjecture holds for any abelian
p-group!

Tools: Characters of abelian groups, exterior algebras.

Below I’ll introduce the work of Feng-Sun-Xiang by avoiding
exterior algebra.



Characterize the distinction of elements

a1, . . . , ak (in a field) are distinct ⇐⇒
∏

16i<j6k

(aj − ai ) 6= 0.

Let a1, . . . , ak be elements of a finite abelian group G . How to
characterize that a1, . . . , ak are distinct ?
We need the character group

Ĝ = {χ : G → K \ {0} : χ(ab) = χ(a)χ(b) for any a, b ∈ G},

where K is a field having an element of multiplicative order |G |. It
is well known that Ĝ ∼= G .

Lemma 1 (Feng-Sun-Xiang) a1, . . . , ak ∈ G are distinct if and
only if there are χ1, . . . , χk ∈ Ĝ such that det(χi (aj))1≤i ,j≤k 6= 0.

Proof. If as = at for some 1 ≤ s < t ≤ k, then for any
χ1, . . . , χk ∈ Ĝ the determinant det(χi (aj))1≤i ,j≤k vanishes since
the sth column and tth column of the matrix (χi (aj))1≤i ,j≤k are
identical.



Continue the proof

Now suppose that a1, . . . , ak are distinct. If the characteristic of K
is a prime p dividing |G |, then

(x |G |/p − 1)p = x |G | − 1 for all x ∈ K ,

which contradicts the assumption that K contains an element of
multiplicative order |G |. So we have |G |1 6= 0, where 1 is the
identity of the field K . It is well known that

∑
χ∈Ĝ

χ(a) =

{
0, if a ∈ G \ {e},
|G |1, if a = e.

To show that there are χ1, . . . , χk ∈ Ĝ such that
det(χi (aj))1≤i ,j≤k 6= 0, we make the following observation.



Continue the proof

∑
χ1,...,χk∈Ĝ

χ1(a
−1
1 ) · · ·χk(a−1

k ) det(χi (aj))1≤i ,j≤k

=
∑

χ1,...,χk∈Ĝ

χ1(a
−1
1 ) · · ·χk(a−1

k )
∑
π∈Sk

ε(π)
k∏

i=1

χi (aπ(i))

=
∑

χ1,...,χk∈Ĝ

∑
π∈Sk

ε(π)
k∏

i=1

χi (aπ(i)a
−1
i )

=
∑
π∈Sk

ε(π)
k∏

i=1

∑
χi∈Ĝ

χi (aπ(i)a
−1
i )

=ε(I )
k∏

i=1

(|G |1) = (|G |1)k 6= 0,

where I is the identity permutation in Sk .



A Remark

Remark If we apply Lemma 1 with k = |G | then we obtain the
following classical result: The matrix T =

(
χ(g)

)
χ∈Ĝ , g∈G

is

nonsingular; in other words, all the characters in Ĝ are linearly
independent over the field K . It is well known that all the
characters in Ĝ actually form a basis of the vector space

KG = {f : f is a function from G to K}

over the field K .



Another Lemma
Lemma 2 (Feng-Sun-Xiang). Let a1, . . . , ak , b1, . . . , bk ∈ G and
χ1, . . . , χk ∈ Ĝ . If det(χi (aj))16i ,j6k) and per(χi (bj))16i ,j6k) are
nonzero, then for some π ∈ Sk the products a1bπ(1), . . . , akbπ(k)

are distinct.

Proof. By Lemma 1 it suffice to show that
det(χi (ajbπ(j)))16i ,j6k 6= 0 for some π ∈ Sk . Note that∑

π∈Sk

det(χi (ajbπ(j)))16i ,j6k

=
∑
π∈Sk

∑
σ∈Sk

ε(σ)
k∏

i=1

χi (aσ(i)bπ(σ(i)))

=
∑
σ∈Sk

ε(σ)
k∏

i=1

χi (aσ(i))
∑
π∈Sk

k∏
i=1

χi (bπσ(i))

= det(χi (aj))16i ,j6kper(χ(bj))16i ,j6k 6= 0.



One more lemma

Lemma 3 (Z. W. Sun, Trans. AMS 1996; Combinatorica, 2003)
Let λ1, . . . , λk be complex nth roots of unity. Suppose that

c1λ1 + · · ·+ ckλk = 0,

where c1, . . . , ck are nonnegative integers. Then c1 + · · ·+ ck can
be written in the form

∑
p|n pxp, where the sum is over all prime

divisors of n and the xp are nonnegative integers.

Tools for the proof. Galois group of cyclotomic extension,
Newton’s identity for symmetric functions.

Corollary. Let p be a prime and let a ∈ Z+. If λ1, . . . λk are path
roots of unity with λ1 + · · ·+ λk = 0, then k ≡ 0 (mod p).



Proof of the DKSS conjecture for abelian p-groups

Let G be an abelian p-group with |G | = pa > 1 and let a1, . . . , ak

be distinct elements of G with k < p. Let b1, . . . , bk be a
sequence of (not necessarily distinct) elements of G . Let Ĝ be the
group of all complex-valued characters of G .

As a1, . . . , ak are distinct, by Lemma 1 there are χ1, . . . , χk ∈ Ĝ
such that det(χi (aj))16i ,j6k 6= 0. Since all those χi (bj) are path
roots of unity and |Sk | = k! 6≡ 0 (mod p), by Lemma 3 we have

per(χi (bj))16i ,j6k =
∑
π∈Sk

k∏
i=1

χi (bπ(i)) 6= 0.

Applying Lemma 2 we see that for some π ∈ Sk the products
a1bπ(1), . . . , akbπ(k) are distinct!



Open Problem

How to prove the DKSS conjecture
for general finite abelian groups?

In particular,

how to prove the DKSS conjecture
for the cyclic group Z/nZ?



Thank you!


