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Abstract. In this talk we introduce several topics in combinatorial num-

ber theory which are related to groups; the topics include combinatorial

aspects of covers of groups by cosets, and also restricted sumsets and zero-

sum problems on abelian groups. A survey of known results and open

problems on the topics is given in a popular way.

1. Nontrivial problems and results on cyclic groups

Any infinite cyclic group is isomorphic to the additive group Z of all

integers. Subgroups of Z different from {0} are those nZ = {nq : q ∈ Z}

with n ∈ Z+ = {1, 2, 3, . . .}. Any cyclic group of order n is isomorphic

to the additive group Z/nZ of residue classes modulo n. A coset of the

subgroup nZ of Z has the form

a+ nZ = {a+ nq : q ∈ Z} = {x ∈ Z : x ≡ a (mod n)}
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which is called a residue class with modulus n or an arithmetic sequence

with common difference n. For convenience we also write a(n) or a(mod n)

for a+ nZ, thus 0(1) = Z and 1(2) is the set of odd integers.

We can decompose the group Z into n cosets of nZ, namely

{r(n)}n−1
r=0 = {0(n), 1(n), . . . , n− 1(n)}

is a partition of Z (i.e., a disjoint cover of Z). For the index of the subgroup

nZ of Z, we clearly have [Z : nZ] = |Z/nZ| = n.

Since 0(2n) is a disjoint union of the residue classes 2n(2n+1) and

0(2n+1), the systems

A1 = {1(2), 0(2)}, A2 = {1(2), 2(4), 0(4)}, A3 = {1(2), 2(4), 4(8), 0(8)},

· · · · · · , Ak = {1(2), 2(22), . . . , 2k−1(2k), 0(2k)}, · · · · · ·

are disjoint covers of Z.

The concept of cover of Z was first introduced by P. Erdős in the early

1930s. He noted that {0(2), 0(3), 1(4), 5(6), 7(12)} is a cover of Z with

the moduli 2, 3, 4, 6, 12 distinct.

Soon after his invention of the concept of cover of Z, Erdős made the

following conjecture: If A = {as(ns)}k
s=1 (k > 1) is a system of residue

classes with the moduli n1, . . . , nk distinct, then it cannot be a disjoint

cover of Z.

Theorem 1.1. Let A = {as(ns)}k
s=1.

(i) (H. Davenport, L. Mirsky, D. Newman and R. Radó) If A is a

disjoint cover of Z with 1 < n1 6 n2 6 · · · 6 nk−1 6 nk, then we must

have nk−1 = nk.
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(ii) [Z. W. Sun, Chinese Quart. J. Math. 1991] Let n0 be a positive

period of the function wA(x) = |{1 6 s 6 k : x ∈ as(ns)}|. For any

positive integer d with d ∤ n0 and I(d) = {1 6 s 6 k : d | ns} 6= ∅, we have

|I(d)| > |{as mod d : s ∈ I(d)}| > min
06s6k
d∤ns

d

gcd(d, ns)
> p(d),

where p(d) is the least prime divisor of d.

Proof of part (i). Without loss of generality we let 0 6 as < ns (1 6 s 6 k).

For |z| < 1 we have

k
∑

s=1

zas

1 − zns
=

k
∑

s=1

∞
∑

q=0

zas+qns =

∞
∑

n=0

zn =
1

1 − z
.

If nk−1 < nk then

∞ = lim
z→e2πi/nk

|z|<1

zak

1 − znk
= lim

z→e2πi/nk

|z|<1

(

1

1 − z
−

k−1
∑

s=1

zas

1 − zns

)

<∞,

a contradiction! �

Part (ii) in the case n0 = 1 and d = nk yields the Davenport-Mirsky-

Newman-Radó result, a further extension of part (ii) was given by Z. W.

Sun [Math. Res. Lett. 11(2004)] and [J. Number Theory, to appear].

Recall that

Ak = {1(2), 2(22), . . . , 2k−1(2k), 0(2k)}

is a disjoint cover of Z. Thus the system {1(2), 2(22), . . . , 2k−1(2k)} covers

1, . . . , 2k−1 but does not cover any multiple of 2k. In 1965 P. Erdős made

the following conjecture.
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Erdős’ Conjecture. A = {as(ns)}k
s=1 forms a cover of Z if it covers

those integers from 1 to 2k.

In 1969–1970 R. B. Crittenden and C. L. Vanden Eynden [Bull. Amer.

Math. Soc. 1969; Proc. Amer. Math. Soc. 1970] supplied a long and

awkward proof of the Erdős conjecture for k > 20, which involves some

deep results concerning the distribution of primes.

The following result is stronger than Erdős’ conjecture.

Theorem 1.2 [Z. W. Sun, Acta Arith. 72(1995), Trans. Amer. Math.

Soc. 348(1996)]. Let A = {as(ns)}k
s=1 be a finite system of residue classes,

and let m1, . . . , mk be integers relatively prime to n1, . . . , nk respectively.

Then system A forms an m-cover of Z (i.e., A covers every integer at least

m times) if it covers |S| consecutive integers at least m times, where

S =

{{

∑

s∈I

ms

ns

}

: I ⊆ {1, . . . , k}
}

.

(As usual the fractional part of a real number x is denoted by {x}.)

Proof of Theorem 1.2 in the case m = 1. For any integer x, clearly

x is covered by A

⇐⇒ e2πi(as−x)ms/ns = 1 for some s = 1, . . . , k

⇐⇒
k
∏

s=1

(

1 − e2πi(as−x)ms/ns

)

= 0

⇐⇒
∑

I⊆{1,... ,k}

(−1)|I|e2πi
∑

s∈I asms/ns · e−2πix
∑

s∈I ms/ns = 0

⇐⇒
∑

θ∈S

e−2πixθzθ = 0,
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where

zθ =
∑

I⊆{1,... ,k}
{
∑

s∈I ms/ns}=θ

(−1)|I|e2πi
∑

s∈I asms/ns .

Suppose that A covers |S| consecutive integers a, a+ 1, . . . , a+ |S| − 1

where a ∈ Z. By the above,

∑

θ∈S

(e−2πiθ)r(e−2πiaθzθ) = 0

for r = 0, 1, . . . , |S| − 1. As the determinant ‖(e−2πiθ)r‖06r<|S|, θ∈S is of

Vandermonde’s type and hence nonzero, by Cramer’s rule we have zθ = 0

for all θ ∈ S. Therefore
∑

θ∈S e
−2πixθzθ = 0 for all x ∈ Z, i.e., any x ∈ Z

is covered by A. This proves the theorem in the case m = 1. �

The following theorem shows that disjoint covers of Z are related to

unit fractions, actually further results were obtained by Z. W. Sun.

Theorem 1.3 (Z. W. Sun [Acta Arith. 1995; Trans. Amer. Math. Soc.

1996]). Let A = {as(ns)}k
s=1 be a disjoint cover of Z.

(i) If ∅ 6= J ⊂ {1, . . . , k}, then there exists an I ⊆ {1, . . . , k} with

I 6= J such that
∑

s∈I 1/ns =
∑

s∈J 1/ns.

(ii) For any 1 6 t 6 k and r ∈ {0, 1, . . . , nt − 1}, there is an I ⊆

{1, . . . , k} \ {t} such that
∑

s∈I 1/ns = r/nt.

Proof. Let N = [n1, . . . , nk] be the least common multiple of n1, . . . , nk.

Then
k
∏

s=1

(

1 − zN/nse2πias/ns

)

= 1 − zN
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because each Nth root of unity is a single zero of the left hand side. Thus

∑

I⊆{1,... ,k}

(−1)|I|z
∑

s∈I N/nse2πi
∑

s∈I as/ns = 1 − zN .

Comparing the degrees of both sides we obtain the well-known equality
∑k

s=1 1/ns = 1. As ∅ 6= J ⊂ {1, . . . , k}, 0 <
∑

s∈J N/ns < N and hence

∑

I⊆{1,... ,k}
∑

s∈I 1/ns=
∑

s∈J 1/ns

(−1)|I|e2πi
∑

s∈I as/ns = 0

which implies that
∑

s∈I 1/ns =
∑

s∈J 1/ns for some I ⊆ {1, . . . , k} with

I 6= J .

Now fix 1 6 t 6 k. Observe that

k
∏

s=1
s 6=t

(

1 − zN/nse2πias/ns

)

=
1 − zN

1 − zN/nte2πiat/nt
=

nt−1
∑

r=0

zNr/nte2πiatr/nt .

Thus, for any r = 0, 1, . . . , nt − 1 we have

∑

I⊆{1,... ,k}\{t}
∑

s∈I 1/ns=r/nt

(−1)|I|e2πi
∑

s∈I as/ns = e2πiatr/nt 6= 0

and hence
∑

s∈I 1/ns = r/nt for some I ⊆ {1, . . . , k} \ {t}. �

We mention that covers of Z by residue classes have many surprising

applications. For example, on the basis of Cohen and Selfridge’s work, Z.

W. Sun [Proc. Amer. Math. Soc. 2000] showed that if

x ≡ 47867742232066880047611079 (mod M)
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then x is not of the form ±pa ± qb, where p, q are primes and a, b are

nonnegative integers, and M is a 29-digit number given by

∏

p619

p× 31 × 37 × 41 × 61 × 73 × 97 × 109 × 151 × 241 × 257 × 331

= 66483084961588510124010691590.

If A = {a1 < · · · < ak} and B = {b1 < · · · < bl} are finite subsets of

Z, then clearly the sumset A +B = {a+ b : a ∈ A & b ∈ B} contains at

least the following k + l − 1 elements:

a1 + b1 < a2 + b1 < · · · < ak + b1 < ak + b2 < · · · < ak + bl.

However, the following result for cyclic groups of prime orders is nontrivial

and very useful.

Theorem 1.4 (Cauchy-Davenport Theorem). Let A and B be nonempty

subsets of Zp = Z/pZ where p is a prime. Then we have

|A+B| > min{p, |A| + |B| − 1}.

In 1964 P. Erdős and Heilbronn posed the following conjecture for cyclic

groups of prime orders.

Erdős-Heilbronn Conjecture. Let A be a nonempty subset of Zp =

Z/pZ where p is a prime. Then we have

|2∧A| > min{p, 2|A| − 3}
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where 2∧A = {a+ b : a, b ∈ A & a 6= b}.

This conjecture remained open until it was confirmed by Dias da Silva

and Y. Hamidoune [Bull. London. Math. Soc. 1994] thirty years later,

with the help of the representation theory of groups.

Theorem 1.5 (The da Silva–Hamidoune Theorem). Let p be a prime and

∅ 6= A ⊆ Zp. Then we have

|n∧A| ≥ min{p, n|A| − n2 + 1},

where n∧A denotes the set of all sums of n distinct elements of A.

If p is a prime, A ⊆ Zp and |A| > √
4p− 7, then by the da Silva–

Hamidoune theorem, any element of Zp can be written as a sum of ⌊|A|/2⌋

distinct elements of A.

In 1995–1996 Alon, Nathanson and Ruzsa [Amer. Math. Monthly 1995,

J. Number Theory 1996] developed a polynomial method rooted in [Alon

and Tarsi, Combinatorica 1989] to prove the Erdős-Heilbronn conjecture

and some similar results. The method turns out to be very powerful and

has many applications in number theory and combinatorics.

An extension of Theorem 1.5 appeared in Q. H. Hou and Z. W. Sun

[Acta Arith. 2002]. H. Pan and Z. W. Sun [J. Combin. Theory Ser. A

2002] obtained a general result on sumsets with polynomial restrictions

which includes the Cauchy-Davenport theorem as a special case.

Suppose that

{a1, · · · , an}, {b1, · · · , bn} and {a1 + b1, · · · , an + bn}
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are complete systems of residues modulo n. Let

σ = 0 + 1 + · · · + (n− 1) =
n(n− 1)

2
.

As
n
∑

i=1

(ai + bi) =
n
∑

i=1

ai +
n
∑

i=1

bi,

we have σ ≡ σ + σ (mod n) and hence 2 ∤ n.

In 2001, Dasgupta, Károlyi, Serra and Szegedy [Israel J. Math. 2001]

confirmed a conjecture of H. S. Snevily for cyclic groups.

Theorem 1.6 (Dasgupta-Károlyi-Serra-Szegedy Theorem). Let G be an

additive cyclic group with |G| odd. Let A and B be subsets of G with

cardinality n > 0. Then there is a numbering {ai}n
i=1 of the elements of A

and a numbering {bi}n
i=1 of the elements of B such that a1+b1, · · · , an+bn

are pairwise distinct.

Proof. As 2ϕ(|G|) ≡ 1 (mod |G|) (where ϕ is Euler’s totient function), the

multiplicative group of the finite field F with order 2ϕ(|G|) has a cyclic

subgroup isomorphic to G. Thus we can view G as a subgroup of the

multiplicative group F ∗ = F \ {0}.

Write A = {a1, . . . , an} and B = {b1, . . . , bn}. We want to show that

there is a σ ∈ Sn such that aσ(i)bi 6= aσ(j)bj whenever 1 6 i < j 6 n. In

other words,

c =
∑

σ∈Sn

∏

16i<j6n

(

aσ(j)bj − aσ(i)bi
)

6= 0.
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In fact,

c =
∑

σ∈Sn

‖ai−1
σ(j)b

i−1
j ‖16i,j6n (Vandermonde)

=
∑

σ∈Sn

∑

τ∈Sn

sign(τ)
n
∏

j=1

a
τ(j)−1
σ(j) b

τ(j)−1
j

=
∑

τ∈Sn

sign(τ)

n
∏

j=1

b
τ(j)−1
j

∑

σ∈Sn

n
∏

j=1

a
τ(j)−1
σ(j)

=
∑

τ∈Sn

sign(τ)
n
∏

j=1

b
τ(j)−1
j

∑

σ∈Sn

sign(στ−1)
n
∏

i=1

ai−1
στ−1(i)

(as − 1 = 1 in F )

=‖bi−1
j ‖16i,j6n × ‖ai−1

j ‖16i,j6n =
∏

16i<j6n

(aj − ai)(bj − bi) 6= 0.

This concludes the proof. �

The following conjecture remains unsolved.

Snevily’s Conjecture. Let a1, . . . , ak ∈ Z, and let n be a positive integer

greater than k. Then there is a permutation σ ∈ Sk such that all the

i+ aσ(i) (i = 1, . . . , k) modulo n are distinct.

2. Nontrivial Problems and Results on Abelian Groups

Let G be an additive abelian group of order n, and let b1, · · · , bn ∈ G.

If both {ai}n
i=1 and {ai +bi}n

i=1 are numberings of the elements of G, then
∑n

i=1(ai + bi) =
∑n

i=1 ai and hence b1 + · · · + bn = 0. In 1952 M. Hall

[Proc. Amer. Math. Soc.] obtained the converse.

Theorem 2.1 (Hall’s Theorem). Let G = {a1, · · · , an} be an additive

abelian group, and let b1, · · · , bn be any elements of G with b1+· · ·+bn = 0.
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Then there exists a permutation σ ∈ Sn such that aσ(1)+b1, · · · , aσ(n)+bn

are distinct.

Hall’s proof is highly technical.

In 1999 H. S. Snevily made the following general conjecture:

Let G be any additive abelian group with |G| odd. Let A and B be

subsets of G with cardinality n > 0. Then there is a numbering {ai}n
i=1 of

the elements of A and a numbering {bi}n
i=1 of the elements of B such that

a1 + b1, · · · , an + bn are pairwise distinct.

The proof of the following result in this direction involves linear algebra,

field theory and Dirichlet’s unit theorem in algebraic number theory

Theorem 2.2 (Z. W. Sun [J. Combin. Theory Ser. A, 2003]). Let G be an

additive abelian group whose finite subgroups are all cyclic. Let A1, · · · , An

be finite subsets of G with cardinality k > m(n− 1) (where m is a positive

integer), and let b1, · · · , bn be elements of G.

(i) If b1, · · · , bn are distinct, then there are at least (k− 1)n−m
(

n
2

)

+1

multi-sets {a1, · · · , an} such that ai ∈ Ai for i = 1, · · · , n and all the

mai + bi are distinct.

(ii) The sets

{{a1, · · · , an}: ai ∈ Ai, ai 6= aj and mai + bi 6= maj + bj if i 6= j}

and

{{a1, · · · , an}: ai ∈ Ai, mai 6= maj and ai + bi 6= aj + bj if i 6= j}
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have more than (k−1)n−(m+1)
(

n
2

)

> (m−1)
(

n
2

)

elements, provided that

b1, · · · , bn are distinct and of odd order, or they have finite order and n!

cannot be written in the form
∑

p∈P pxp where all the xp are nonnegative

integers and P is the set of primes dividing one of the orders of b1, · · · , bn.

In the 1960’s M. Knerser obtained the following remarkable theorem on

abelian groups.

Theorem 2.3 (Kneser’s Theorem). Let G be an additive abelian group.

Let A and B be finite nonempty subsets of G, and let H = H(A + B) be

the stablizer {g ∈ G : g + A + B = A + B}. If |A + B| 6 |A| + |B| − 1,

then

|A+B| = |A+H| + |B +H| − |H|.

The following consequence is an extension of the Cauchy-Davenport

theorem.

Corollary 2.1. Let G be an additive abelian group. Let p(G) be the least

order of a nonzero element of G, or p(G) = +∞ if G is torsion-free. Then,

for any finite nonempty subsets A and B of G, we have

|A+B| > min{p(G), |A|+ |B| − 1}.

Proof. Suppose that |A+B| < |A|+ |B| − 1. Then H = H(A+B) 6= {0}

by Kneser’s theorem. Therefore |H| > p(G) and hence

|A+B| = |A+H| + |B +H| − |H| > |A+H| > |H| > p(G).
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We are done. �

Quite recently G. Károlyi was able to extend the Erdős-Heilbronn con-

jecture to any abelian groups.

Theorem 2.4 (G. Károlyi [Israel J. Math. 2004]). Let G be an additive

abelian group. Then, for any finite nonempty subset A of G, we have

|2∧A| > min{p(G), 2|A| − 3}.

The characteristic function of a residue class is a periodic arithmatical

map. Dirichlet characters are also periodic functions. If an element a in

an additive abelian group G has order n, then the map ψ : Z → G given

by ψ(x) = xa is periodic mod n.

Theorem 2.5 (Z. W. Sun, 2004). Let G be any additive abelian group,

and let ψ1, . . . , ψk be maps from Z to G with periods n1, . . . , nk ∈ Z+

respectively. Then the function ψ = ψ1 + · · · + ψk is constant if ψ(x)

equals a constant for |T | 6 n1 + · · · + nk − k + 1 consecutive integers x,

where

T =

k
⋃

s=1

{

r

ns
: r = 0, 1, . . . , ns − 1

}

.

The proof of Theorem 2.5 involves linear recurrences and algebraic in-

tegers.

Corollary 2.2 (Z. W. Sun [Math. Res. Lett. 11(2004)]). The system

A = {as(mod ns)}k
s=1 covers every integer exactly m times if it covers |T |

consecutive integers exactly m times, where T is as in Theorem 2.5.
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In 1966 J. Mycielski [Fund. Math.] posed an interesting conjecture

on disjoint covers (i.e. partitions) of abelian groups. Before stating the

conjecture we give a definition first.

Definition 2.1. The Mycielski function f : Z+ = {1, 2, . . .} → N =

{0, 1, 2, . . .} is given by

f(n) =
∑

p∈P (n)

ordp(n)(p− 1),

where P (n) denotes the set of prime divisors of n and ordp(n) repre-

sents largest integer α such that pα | n. In other words, f(
∏r

t=1 p
αt
t ) =

∑r
t=1 αt(pt − 1) where p1, . . . , pr are distinct primes.

Mycielski’s Conjecture. Let G be an abelian group, and {asGs}k
s=1 be

a disjoint cover of G by left cosets of subgroups. Then k > 1 + f([G : Gt])

for each t = 1, . . . , k. (It is known that [G : Gt] <∞ for all t = 1, . . . , k.)

Mycielski’s conjecture was first confirmed by Š. Znám [Colloq. Math.,

1966] in the case G = Z.

Theorem 2.6 (G. Lettl and Z. W. Sun, 2004). Let A = {asGs}k
s=1 be a

cover of an abelian group G by left cosets of subgroups. Suppose that A cov-

ers all the elements of G at least m times with the coset atGt irredundant.

Then [G : Gt] 6 2k−m and furthermore k > m+ f([G : Gt]).

In the case m = 1 and Gt = {e}, this confirms a conjecture of W.

D. Gao and A. Geroldinger [European J. Combin. 2003]. The proof of

Theorem 2.6 involves algebraic number theory and characters of abelian

groups.
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Conjecture (Z. W. Sun, 2004). Let A = {asGs}k
s=1 be a finite system of

left cosets of subgroups of an abelian group G. Suppose that A covers all

the elements of G at least m times but none of its proper subsystems does.

Then we have k > m+ f(N) where N is the least common multiple of the

indices [G : G1], . . . , [G : Gk].

In 1961 P. Erdős, A. Ginzburg and A. Ziv [Bull. Research Council.

Israel] established the following celebrated theorem which initiated the

study of zero-sums.

Theorem 2.7 (The EGZ Theorem). Let G be any additive abelian group

of order n. For any given c1, · · · , c2n−1 ∈ G, there is an I ⊆ {1, . . . , 2n−1}

with |I| = n such that
∑

s∈I cs = 0.

In 2003 Z. W. Sun connected the EGZ theorem with covers of Z.

Theorem 2.8 (Z. W. Sun [Electron. Res. Announc. AMS, 2003]). Let

A = {as(mod ns)}k
s=1 and suppose that |{1 6 s 6 k : x ≡ as (mod ns)}| ∈

{2q− 1, 2q} for all x ∈ Z, where q is a prime power. Let G be an additive

abelian group of order q. Then, for any c1, . . . , ck ∈ G, there exists an

I ⊆ {1, . . . , k} such that
∑

s∈I 1/ns = q and
∑

s∈I cs = 0.

Definition 2.2. The Davenport constant D(G) of a finite abelian group G

(written additively) is defined as the smallest positive integer k such that

any sequence {cs}k
s=1 (repetition allowed) of elements of G has a nonempty

subsequence ci1 , · · · , cil
(i1 < · · · < il) with zero-sum (i.e. ci1 + · · ·+ cil

=

0).
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For any abelian group G of order n we clearly have D(G) 6 n. In fact,

if c1, . . . , cn ∈ G, then the partial sums

s0 = 0, s1 = a1, s2 = a1 + a2, . . . , sn = a1 + · · ·+ an

cannot be distinct since n+ 1 > |G|, so there are 0 6 i < j 6 n such that

si = sj, i.e. ai+1 + · · · + aj = 0.

In 1966 Davenport showed that if K is an algebraic number field with

ideal class group G, then D(G) is the maximal number of prime ideals

(counting multiplicity) in the decomposition of an irreducible integer in

K.

In 1969 J. Olson [J. Number Theory] used the knowledge of group rings

to show that the Davenport constant of an abelian p-group G ∼= Zph1 ⊕

· · · ⊕ Zphl is 1 +
∑l

t=1(p
ht − 1).

In 1994 W. R. Alford, A. Granville and C. Pomerance [Ann. Math.]

employed an upper bound for the Davenport constant of the unit group of

the ring Zn to prove that there are infinitely many Carmichael numbers

which are those composites m such that am−1 ≡ 1 (mod m) for any a ∈ Z

with (a,m) = 1.

The following well-known conjecture is still open, it is known to be true

for k = 1, 2.

Olson’s Conjecture. Let k and n be positive integers. Then D(Zk
n) =

1 + k(n− 1) where Zk
n is the direct sum of k copies of Zn.

3. Nontrivial Problems and Results on General Groups

Let G be a group and G1, · · · , Gk be subgroups of G. Let a1, · · · , ak ∈
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G. If the system A = {aiGi}k
i=1 of left cosets covers all the elements of

G at least m times but none of its proper subsystems does, then all the

indices [G : Gi] are known to be finite.

Theorem 3.1. Let A = {aiGi}k
i=1 be a finite system of left cosets in a

group G where G1, . . . , Gk are subgroups of G. Suppose that A forms a

minimal cover G (i.e. A covers all the elements of G but none of its proper

systems does).

(i) (B. H. Neumann [Publ. Math. Debrecen, 1954]) There is a constant

ck depending only on k such that [G : Gi] 6 ck for all i = 1, . . . , k.

(ii) (M. J. Tomkinson [Comm. Algebra, 1987]) We have [G :
⋂k

i=1Gi] 6

k! where the upper bound k! is best possible.

Proof. We prove (ii) by induction. (Part (ii) is stronger than part (i).)

We want to show that

[

⋂

i∈I

Gi :

k
⋂

i=1

Gi

]

6 (k − |I|)! (∗I)

for all I ⊆ {1, . . . , k}, where
⋂

i∈∅Gi is regarded as G.

Clearly (∗I) holds for I = {1, . . . , k}.

Now let I ⊂ {1, . . . , k} and assume (∗J) for all J ⊆ {1, . . . , k} with

|J | > |I|. Since {aiGi}i∈I is not a cover of G, there is an a ∈ G not covered

by {aiGi}i∈I . Clearly a(
⋂

i∈I Gi) is disjoint from the union
⋃

i∈I aiGi and

hence contained in
⋃

j 6∈I ajGj . Thus

a

(

⋂

i∈I

Gi

)

=
⋃

j 6∈I
ajGj∩a(

⋂

i∈I Gi)6=∅

(

ajGj ∩ a
(

⋂

i∈I

Gi

))
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and hence

[

⋂

i∈I

Gi : H

]

6
∑

j 6∈I

[

Gj ∩
⋂

i∈I

Gi : H

]

6
∑

j 6∈I

(k − (|I| + 1))! = (k − |I|)!

where H =
⋂k

i=1Gi. This concludes the induction proof. �

Definition 3.1. Let H be a subnormal subgroup of a group G with finite

index, and

H0 = H ⊂ H1 ⊂ · · · ⊂ Hn = G

be a composition series from H to G (i.e. Hi is maximal normal in Hi+1

for each 0 6 i < n). If the length n is zero (i.e. H = G), then we set

d(G,H) = 0, otherwise we put

d(G,H) =
n−1
∑

i=0

([Hi+1 : Hi] − 1).

Let H be a subnormal subgroup of a group G with [G : H] < ∞. By

the Jordan–Hölder theorem, d(G,H) does not depend on the choice of the

composition series from H to G. Clearly d(G,H) = 0 if and only ifH = G.

If K is a subnormal subgroup of H with [H : K] <∞, then

d(G,H) + d(H,K) = d(G,K).

When H is normal in G, the ‘distance’ d(G,H) was first introduced by I.

Korec [Fund. Math. 1974]. The current general notion is due to Z. W.

Sun [Fund. Math. 1990]. Z. W. Sun [Fund. Math. 1990] showed that

[G : H] − 1 > d(G,H) > f([G : H]) > log2[G : H]
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where f is the Mycielski function. Moreover, Sun [European J. Combin.

2001] noted that d(G,H) = f([G : H]) if and only if G/HG is solvable

where HG =
⋂

g∈G gHg
−1 is the largest normal subgroup of G contained

in H.

In 1968 Š. Znam [Coll. Math. Soc. János Bolyai] made the following

further conjecture: If A = {as(ns)}k
s=1 is a disjoint cover of Z then

k > 1 + f(NA) and hence NA 6 2k−1,

where NA = [n1, . . . , nk] = [Z :
⋂k

s=1 nsZ].

In 1974 I. Korec [Fund. Math.] confirmed Znaám’s conjecture and

Mycielski’s conjecture by proving the following deep result: Let {aiGi}k
i=1

be a partition of a group into left cosets of normal subgroups. Then k >

1 + f([G :
⋂k

i=1Gi]).

Here is a further extension of Korec’s result.

Theorem 3.2 (Z. W. Sun [European J. Combin. 22(2001)]). Let G be

a group and {aiGi}k
i=1 cover each elements of G exactly m times, where

G1, . . . , Gk are subnormal subgroups of G. Then

k > m+ d

(

G,
k
⋂

i=1

Gi

)

,

where the lower bound can be attained. Moreover, for any subgroup K of

G not contained in all the Gi we have

|{1 6 i 6 k : K 6⊆ Gi}| > 1 + d

(

K,K ∩
k
⋂

i=1

Gi

)

.



20 ZHI-WEI SUN

Corollary 3.1 (Z. W. Sun [Fund. Math. 1990]). Let H be a subnormal

subgroup of a group G with [G : H] <∞. Then

[G : H] > 1+d(G,HG) > 1+f([G : HG]) and hence [G : HG] 6 2[G:H]−1.

Proof. Let {Hai}k
i=1 be a right coset decomposition of G where k = [G :

H]. Then {aiGi}k
i=1 is a disjoint cover of G where all the Gi = a−1

i Hai

are subnormal in G. Observe that

k
⋂

i=1

Gi =

k
⋂

i=1

⋂

h∈H

a−1
i h−1Hhai =

⋂

g∈G

g−1Hg = HG.

So the desired result follows from Theorem 3.2. �

Theorem 3.3. (i) (Berger-Felzenbaum-Fraenkel, 1988, Coll. Math.) If

{aiGi}k
i=1 is a disjoint cover of a finite solvable group G, then k > 1 +

f([G : Gi]) for i = 1, · · · , k.

(ii) [Z. W. Sun, European J. Combin. 2001] Let G be a group and

{aiGi}k
i=1 be a finite system of left cosets which covers each elements of

G exactly m times. For any i = 1,6, k, whenever G/(Gi)G is solvable we

have k > m+ f([G : Gi]) and hence [G : Gi] 6 2k−m.

Z. W. Sun [European J. Combin. 2001] suggested the following further

conjecture.

Conjecture 3.1 (Z. W. Sun, 2001). Let a1G1, . . . , akGk be left cosets of

a group G such that {aiGi}k
i=1 covers each elements of G exactly m times

and that all the G/(Gi)G are solvable. Then k > m + f(N) where N is

the least common multiple of the indices [G : G1], · · · , [G : Gk].
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If {x1, . . . , xk} is a maximal subset of a group G with xixj 6= xjxi

for all 1 6 i < j 6 k, then {CG(xi)}k
i=1 is a minimal cover of G with

⋂k
i=1 CG(xi) = Z(G) (Tomkinson, Comm. Algebra, 1987) and |G/Z(G)| 6

ck for some absolute constant (L. Pyber, J. London Math. Soc., 1987).

Conjecture 3.2 (Z. W. Sun, 1996). Let {Gi}k
i=1 be a minimal cover of a

group G by subnormal subgroups. Write [G :
⋂k

i=1Gi] =
∏r

t=1 p
αt
t , where

p1, . . . , pr are distinct primes and α1, . . . , αr are positive integers. Then

we have

k > 1 +

r
∑

t=1

(αt − 1)pt.

Up to now, no counterexample to this conjecture has been found.

The following conjecture extends a conjecture of P. Erdős.

The Herzog-Schönheim Conjecture ([Canad. Math. Bull. 1974]).

Let A = {aiGi}k
i=1 (k > 1) be a partition (i.e. disjoint cover) of a group

G into left cosets of subgroups G1, · · · , Gk. Then the indices n1 = [G :

G1], · · · , nk = [G : Gk] cannot be pairwise distinct.

M. A. Berger, A. Felzenbaum and A. S. Fraenkel [1986, Canad. Math.

Bull.; 1987, Fund. Math.] showed the conjecture for finite nilpotent

groups and supersolvable groups. A quite recent progress was made by

the speaker.

Theorem 3.4 (Z. W. Sun [J. Algebra, 2004]). Let G be a group, and

A = {aiGi}k
i=1 (k > 1) be a system of left cosets of subnormal subgroups.
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Suppose that A covers each x ∈ G the same number of times, and

n1 = [G : G1] 6 · · · 6 nk = [G : Gk].

Then the indices n1, · · · , nk cannot be distinct. Moreover, if each index

occurs in n1, · · · , nk at most M times, then

logn1 6
eγ

log 2
M log2M +O(M logM log logM)

where γ = 0.577 · · · is the Euler constant and the O-constant is absolute.

The above theorem also answers a question analogous to a famous prob-

lem of Erdős negatively. Theorem 3.4 was established by a combined use

of tools from group theory and number theory.

One of the key lemmas is the following one which is the main reason

why covers involving subnormal subgroups are better behaved than general

covers.

Lemma 3.1 (Z. W. Sun [European J. Combin. 2001]). Let G be a group,

and let P (n) denote the set of prime divisors of a positive integer n.

(i) If G1, . . . , Gk are subnormal subgroups of G with finite index, then

[

G :
k
⋂

i=1

Gi

]

∣

∣

k
∏

i=1

[G : Gi] and hence P

([

G :
k
⋂

i=1

Gi

])

=
k
⋃

i=1

P ([G : Gi]).

(ii) Let H be a subnormal subgroup of G with finite index. Then

P (|G/HG|) = P ([G : H]).

We mention that part (ii) is a consequence of the first part, and the

word “subnormal” cannot be removed from part (i).

Here is another useful lemma.
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Lemma 3.2 (Z. W. Sun [J. Algebra, 2004]). Let G be a group and H its

subgroup with finite index N . Let a1, . . . , ak ∈ G, and let G1, . . . , Gk be

subnormal subgroups of G containing H. Then
⋃k

i=1 aiGi contains at least

|⋃i=1 0(ni) ∩ {0, 1, . . . , N − 1}| left cosets of H, where ni = [G : Gi].

Finally we pose an interesting unsolved conjecture.

Conjecture 3.3 (Z. W. Sun). Let G be a group, and a1G1, . . . , akGk be

pairwise disjoint left cosets of G with all the indices [G : Gi] finite. Then,

for some 1 6 i < j 6 k we have gcd([G : Gi], [G : Gj ]) > k.

This conjecture is open even in the special case G = Z.


