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Abstract
During 2010-2016, I posed 235 conjectural series for powers of π
and other important constants (motivated by supercongruences).
On my list there are 178 reasonable series for π−1, four series for
π2, two series for π−2, five series for π4, two series for π5, three
series for π6, seven series for ζ(3), one series for πζ(3), two series
for π2ζ(3), one series for ζ(3)2, three series involving both ζ(3)2

and π6, one series for ζ(5), three series involving ζ(7), and so on.

Almost all of the mentioned series
∑

n an converge fast in the
sense that limn→∞

n
√
|an| = r ∈ (0, 1). I ever explained that these

series came from a combination of philosophy, intuition,
inspiration, experience and computation.

In this talk I’ll give some historical remarks on my conjectural
series, and reveal how I found some typical ones.

Main Reference

Zhi-Wei Sun, List of conjectural series for powers of π and other
constants, preprint, arXiv:1102.5649.
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My initial contact with π-series (1984-86)

When I was an undergraduate at Nanjing University, I learned from
calculus the following classical results :

Leibniz:

arctan x =
∞∑
k=0

(−1)k

2k + 1
x2k+1,

∞∑
k=0

(−1)k

2k + 1
=
π

4
.

Euler:

ζ(2) =
∞∑
k=0

1

k2
=
π2

6
, ζ(4) =

∞∑
k=0

1

k4
=
π4

90
.

But I did not know any other π-series then.
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Gaussian hypergeometric series

The rising factorial (or Pochhammer symbol):

(a)n = a(a + 1) · · · (a + n − 1) =
Γ(a + n)

Γ(a)
.

Note that (1)n = n!.

Classical Gaussian hypergeometric series:

r+1Fr (α0, . . . , αr ;β1, . . . , βr | x) =
∞∑
n=0

(α0)n(α1)n · · · (αr )n
(β1)n · · · (βr )n

· x
n

n!
,

where 0 6 α0 6 α1 6 · · · 6 αr < 1, 0 6 β1 6 · · · 6 βr < 1, and
|x | < 1.

4 / 44



Series for 1/π

G. Bauer (1859):

∞∑
k=0

(−1)k(4k + 1)
(1/2)3k

(1)3k
=
∞∑
k=0

(4k + 1)

(2k
k

)3
(−64)k

=
2

π
.

In his famous letter to Hardy, S. Ramanujan mentioned the above
series as one of his discoveries.

In 1914 S. Ramanujan published his first paper in England
Modular equations and approximations to π,
Quart. J. Math. (Oxford), 45(1914), 350–372.

Towards the end of this paper, he wrote “I shall conclude this
paper by giving a few series for 1/π”. Then he listed 17 series for
1/π and briefly mentioned that the first three series are related to
the classical theory of elliptic functions.
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Elliptic integrals
Complete elliptic integrals (with 0 < k < 1):

K (k) =

∫ π/2

0

dθ√
1− k2 sin2 θ

(the first kind),

E (k) =

∫ π/2

0

√
1− k2 sin2 θ dθ (the seond kind).

Legendre’s Relation:

E (k)K (
√

1− k2) + E (
√

1− k2)K (k)− K (k)K (
√

1− k2) =
π

2
.

A Central Result:

2F1

(
1

2
,

1

2
; 1
∣∣ k2) =

2

π
K (k) = ϕ2(q)

where q = e−πK(
√
1−k2)/K(k) and

ϕ(q) :=
∞∑

n=−∞
qn

2
(theta function).
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Series for 1/π given by Ramanujan

Two of the 17 series for 1/π recorded by Ramanujan:

∞∑
k=0

6k + 1

4k
·

(1/2)3k
(1)3k

=
∞∑
k=0

(6k + 1)

(2k
k

)3
256k

=
4

π
,

(proved by S. Chowla in 1928)
∞∑
k=0

26390k + 1103

994k
· (1/2)k(1/4)k(3/4)k

(1)3k

=
∞∑
k=0

26390k + 1103

3964k

(
4k

k , k , k , k

)
=

992

2π
√

2
.

In 1985 Jr. R. W. Gosper used the last series of Ramanujan to
calculate 17, 526, 100 digits of π (a world record at that time).

In 1987 Jonathan Borwein and Peter Borwein succeeded in proving
all the 17 Ramanujan series for 1/π.
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My first impression on Ramanujan-type series

In a year around 2003, I happened to see a paper on
Ramanujan-type series. Here is one of Ramanujan series for 1/π:

∞∑
k=0

(28k + 3)

(
− 27

512

)k (1/2)k(1/6)k(5/6)k
(1)3k

=
32
√

2

π
.

At that time I did not like this at all since it is too complicated! I
only enjoy simple and beautiful results! Thus this paper gave me
almost no impression and I could not remember what paper it is.

General forms of Ramanujan-type series:

∞∑
k=0

(ak + b)

(2k
k

)3
mk

,

∞∑
k=0

(ak + b)

(2k
k

)2(3k
k

)
mk

,

∞∑
k=0

(ak + b)

(2k
k

)2(4k
2k

)
mk

,

∞∑
k=0

(ak + b)

(2k
k

)(3k
k

)(6k
3k

)
mk

.

There are 36 known Ramanujan-type series for 1/π with
a, b,m ∈ Z. I prefer their forms in terms of binomial coefficients.
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What is needed for proving
∑∞

n=0(6n+ 1)
(

2n
n

)3
/256n = 4/π

The proofs of Ramanujan series involve lots of things such as
modulo forms, elliptic integrals, theta functions, hypergeometric
series, modular equations and symbolic computation.

P(q) := 1− 24
∞∑
j=1

jqj

1− qj
(Eisenstein series),

ϕ(q) :=
∞∑

j=−∞
qj

2
(theta function),

X = X (q) = q
∞∏
j=1

(1− qj)24(1− q4j)24

(1− q2j)48
.

ϕ(q)4 =
∞∑
n=0

(
2n

n

)
X n, P(q2) =

√
1− 64X

∞∑
n=0

(3n + 1)

(
2n

n

)3

X n.

X (e−π
√
3) =

1

256
and P(e−2π

√
3) =

√
3

π
+

√
3

4
ϕ(e−π

√
3)4.
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On a(p), b(p), c(p)
For a power series f (q) in q, we let [qn]f (q) denote the coefficient
of qn in f (q).

For any prime p > 3, it is known that

a(p) := [qp]q
∞∏
n=1

(1− q4n)6 =

{
4x2 − 2p if p = x2 + y2 (2 - x),

0 if p ≡ 3 (mod 4).

b(p) : = [qp]q
∞∏
n=1

(1− q6n)3(1− q2n)3

=

{
4x2 − 2p if p = x2 + 3y2 with x , y ∈ Z,
0 if p ≡ 2 (mod 3),

c(p) :=[qp]q
∞∏
n=1

(1− qn)2(1− q2n)(1− q4n)(1− q8n)2

=

{
4x2 − 2p if (−2p ) = 1 and p = x2 + 2y2 with x , y ∈ Z,
0 if (−2p ) = −1, i.e., p ≡ 5, 7 (mod 8).
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Conjectures of Rodriguez-Villegas
Let p > 3 be a prime. In 2003 Rodriguez-Villegas conjectured that

p−1∑
k=0

(−1)k
(
−1/2

k

)3

=

p−1∑
k=0

(2k
k

)3
64k

,

p−1∑
k=0

(−1)k
(
−1/2

k

)(
−1/3

k

)(
−2/3

k

)
=

p−1∑
k=0

(2k
k

)2(3k
k

)
108k

,

p−1∑
k=0

(−1)k
(
−1/2

k

)(
−1/4

k

)(
−3/4

k

)
=

p−1∑
k=0

(2k
k

)2(4k
2k

)
256k

,

p−1∑
k=0

(−1)k
(
−1/2

k

)(
−1/6

k

)(
−5/6

k

)
=

p−1∑
k=0

(2k
k

)(3k
k

)(6k
3k

)
123k

are congruent to a(p), b(p), c(p) and (p3 )a(p) mod p2 respectively.
Actually the first one was proved by Ishikawa [Nagoya Math. J.
118(1990)]. E. Mortenson [Proc. AMS 133(2005)] provided partial
solutions to the last three and the remaining thing were proved by
Z.-W. Sun [156(2012)]. 11 / 44



My joint work on congruences modulo prime powers
H. Pan and Z. W. Sun [Discrete Math. 2006].

p−1∑
k=0

(
2k

k + d

)
≡
(
p − d

3

)
(mod p) (d = 0, . . . , p),

p−1∑
k=1

(2k
k

)
k
≡0 (mod p) for p > 3.

Sun & R. Tauraso [AAM 45(2010); IJNT 7(2011)].

pa−1∑
k=0

(
2k

k

)
≡
(
pa

3

)
(mod p2),

p−1∑
k=1

(2k
k

)
k
≡8

9
p2Bp−3 (mod p3) for p > 3,

where B0,B1,B2, . . . are Bernoulli numbers given by

B0 = 1,
n∑

k=0

(
n + 1

k

)
Bk = 0 (n = 1, 2, 3, . . .).
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What happened in November, 2009
I determined

∑p−1
k=0

(2k
k

)
/mk modulo p2 in 2009. After this I

systematically investigate congruences for
∑p−1

k=0

(2k
k

)2
/mk and∑p−1

k=0

(2k
k

)3
/mk modulo p2. In particular, I formulated the

following conjecture.

Conjecture (Z.-W. Sun, Nov. 2009). Let p be an odd prime.
Then
p−1∑
k=0

(
2k

k

)3

≡

{
4x2 − 2p (mod p2) if (p7 ) = 1 & p = x2 + 7y2,

0 (mod p2) if (p7 ) = −1.

Prof. Ken Ono was very interested in this and he and one of his
students worked on my conjecture. They claimed that they had a
proof but in Jan. 2010 they replied me that they met real
difficulties.

My above conjecture was finally confirmed by J. Kibelbek, L. Long,
K. Moss, B. Sheller and H. Yuan [arXiv:1210.4489, JNT
164(2016)], as well as Z.-H. Sun [JNT 133(2013)].
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What happened in Jan.-Feb. 2010
I visited India during Jan.-Feb. 2010. On Jan. 23 I suddenly

realized that I should combine the congruences for
∑p−1

k=0

(2k
k

)3
/mk

and
∑p−1

k=0 k
(2k
k

)3
/mk mod p2. This led me to conjecture that

1

p

p−1∑
k=0

(21k + 8)

(
2k

k

)3

≡ 8 + 16p3Bp−3 (mod p4) (∗)

and that
1

n
(2n
n

) n−1∑
k=0

(21k + 8)

(
2k

k

)3

∈ Z.

After reading my message to Number Theory List on Feb. 10,
Kasper Andersen found on Feb. 11 that

1

n
(2n
n

) n−1∑
k=0

(21k + 8)

(
2k

k

)3

=
n−1∑
k=0

(
n + k − 1

k

)2

via Sloane’s OEIS (Online Encyclopedia of Integer Sequences).
Inspired by this I finally proved (∗).
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van Hamme’s conjecture

After I found
∑p−1

k=0

(2k
k

)3
/4096k mod p2 and conjectured the

congruence

p−1∑
k=0

(42k + 5)

(2k
k

)3
4096k

≡ 5p

(
−1

p

)
− p3Ep−3 (mod p4)

(which was later confirmed by D.-W. Hu and G.-S. Mao
[Ramanujan J. 42(2017)]), I got to know that van Hamme had the
conjecture

p−1∑
k=0

(42k + 5)

(2k
k

)3
4096k

≡ 5p

(
−1

p

)
(mod p3)

motivated by Ramanujan’s identity

∞∑
k=0

(42k + 5)

(2k
k

)3
4096k

=
16

π
.

Thus I became interested in Ramanujan-type series and wrote to
several mathematicians to get Hamme’s paper.
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Rediscover Zeilberger’s series
∑∞

k=1
21k−8

k3(2k
k )

3 = π2

6

I proved that for any odd prime p we have

p−1∑
k=0

(21k + 8)

(
2k

k

)3

≡ 8p + 16p4Bp−3 (mod p5).

As the series
∑∞

k=0(21k + 8)
(2k
k

)3
diverges, it does not provide a

Ramanujan-type series for 1/π. However, I observe that

p−1∑
k=0

(21k + 8)

(
2k

k

)3

=8 +

p−1∑
k=(p+1)/2

(21(p − k) + 8)

(
2(p − k)

p − k

)3

≡8−
p−1∑

k=(p+1)/2

(21k − 8)

(
2p

k
(2k
k

))3

(mod p)

and this led me to find that
∞∑
k=1

21k − 8

k3
(2k
k

)3 =
π2

6
(D. Zeilberger, 1993).
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Conjecture:
∑∞

k=1
(11k−3)64k

k3(2k
k )

2
(3k

k )
= 8π2

Conjecture (Z.-W. Sun, 2010) Let p > 3 be a prime. Then

p−1∑
k=0

(2k
k

)2(3k
k

)
64k

≡

{
x2 − 2p (mod p2) if ( p

11) = 1 & 4p = x2 + 11y2,

0 (mod p2) if ( p
11) = −1,

p−1∑
k=0

11k + 3

64k

(
2k

k

)2(3k

k

)
≡ 3p +

7

2
p4Bp−3 (mod p5),

p

(p−1)/2∑
k=1

(11k − 3)64k

k3
(2k
k

)2(3k
k

) ≡ 32
2p−1 − 1

p
− 64

3
p2Bp−3 (mod p3).

Also,

∞∑
k=1

(11k − 3)64k

k2
(2k
k

)2(3k
k

) = 8π2 (confirmed by J. Guillera in 2013).
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Conjecture:
∑∞

k=1
(15k−4)(−27)k−1

k3(2k
k )

2
(3k

k )
= K

Conjecture (Z.-W. Sun, 2010) Let p > 3 be a prime. Then

p−1∑
k=0

(2k
k

)2(3k
k

)
(−27)k

≡


4x2 − 2p (mod p2) if p ≡ 1, 4 (mod 15) & p = x2 + 15y2,

2p − 12x2 (mod p2) if p ≡ 2, 8 (mod 15) & p = 3x2 + 5y2,

0 (mod p2) if ( p
15) = −1;

p−1∑
k=0

15k + 4

(−27)k

(
2k

k

)2(3k

k

)
≡ 4p

(p
3

)
+

4

3
p3Bp−2

(
1

3

)
(mod p4).

Also,
∞∑
k=1

(15k − 4)(−27)k−1

k3
(2k
k

)2(3k
k

) = K :=
∞∑
k=1

(k3 )

k2
(confirmed by

Kh. Hessami Pilehrood and T. Hessami Pilehrood in 2012).
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More such conjectural series

Conjecture (Z.-W. Sun, 2010; Sci. China Math. 54(2011))

∞∑
k=1

(10k − 3)8k

k3
(2k
k

)2(3k
k

) =
π2

2
,

∞∑
k=1

(35k − 8)81k

k3
(2k
k

)2(4k
2k

) =12π2,

∞∑
k=1

(5k − 1)(−144)k

k3
(2k
k

)2(4k
2k

) =− 45

2
K .

The three conjectural identities were finally confirmed by J.
Guillera and M. Rogers [J. Austral. Math. Soc. 97(2014)].
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A curious identity with $480 prize for the solution

Conjecture (Z.-W. Sun) (i) (2009-11-29) For any prime p > 3, we
have

p−1∑
k=1

( 4k
2k+1

)(2k
k

)
48k

≡ 0 (mod p2).

(ii) (2014-07-07) For any prime p > 3, we have

p−1∑
k=1

( 4k
2k+1

)(2k
k

)
48k

≡ 5

12
p2Bp−2

(
1

3

)
(mod p3),

p2
p−1∑
k=1

48k

k(2k − 1)
(4k
2k

)(2k
k

) ≡ 4
(p

3

)
+ 4p (mod p2).

(iii) (2014-08-12, $480 prize for the solution) We have

∞∑
k=1

48k

k(2k − 1)
(4k
2k

)(2k
k

) =
15

2

∞∑
k=1

(k3 )

k2
.
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Three more conjectural series

Motivated by corresponding congruences, I made the following
conjecture in 2010-2011.

Conjecture (Z.-W. Sun) (i) [Sci. China Math. 54(2011)] We have

∞∑
n=0

18n2 + 7n + 1

(−128)n

(
2n

n

)2 n∑
k=0

(
−1/4

k

)2(−3/4

n − k

)2

=
4
√

2

π2

∞∑
n=0

40n2 + 26n + 5

(−256)n

(
2n

n

)2 n∑
k=0

(
n

k

)2(2k

k

)(
2(n − k)

n − k

)
=

24

π2
.

(In 2004 H.H. Chan, S.H. Chan and Z. Liu [Adv. Math.] proved

that
∑∞

n=0
5n+1
64n

∑n
k=0

(n
k

)2(2k
k

)(2(n−k)
n−k

)
= 8√

3π
.)

(ii) [Electron. J. Combin. 20(2013)] We have

∞∑
k=1

(28k2 − 18k + 3)(−64)k

k5
(2k
k

)4(3k
k

) = −14ζ(3).
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My Philosophy about Series for 1/π
Part I of the Philosophy (2010). Given a regular identity of the
form

∞∑
k=0

(bk + c)
ak
mk

=
C

π
,

where ak , b, c ,m ∈ Z, bm is nonzero and C 2 is rational, we have

n−1∑
k=0

(bk + c)akm
n−1−k ≡ 0 (mod n)

for any positive integer n. Furthermore, there exist an integer m′

and a squarefree positive integer d with the class number of
Q(
√
−d) in {1, 2, 22, 23, . . .} (and with C/

√
d often rational) such

that either d > 1 and for any prime p > 3 not dividing dm we have

p−1∑
k=0

ak
mk
≡

{
(m

′

p )(x2 − 2p) (mod p2) if 4p = x2 + dy2,

0 (mod p2) if (−dp ) = −1,

or d = 1, gcd(15,m) > 1, and for any prime p ≡ 3 (mod 4) with
p - 3m we have

∑p−1
k=0 ak/m

k ≡ 0 (mod p2).
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Philosophy about Series for 1/π (continued)

Part II of the Philosophy (2011). Let b, c,m, a0, a1, . . . be
integers with bm nonzero and the series

∑∞
k=0(bk + c)ak/m

k

convergent. Suppose that there are d ∈ Z+, d ′ ∈ Z, and rational
numbers c0 and c1 such that

p−1∑
k=0

(bk + c)
ak
mk
≡ p

(
c0

(
−d
p

)
+ c1

(
d ′

p

))
(mod p2)

for all sufficiently large primes p. If d ′ > 0, then
∞∑
k=0

(bk + c)
ak
mk

=
C

π

for some C with C 2 rational (and with C/
√
d rational if c0 6= 0). If

d ′ = −d1 < 0, then there are rational numbers λ0 and λ1 such that
∞∑
k=0

(bk + c)
ak
mk

=
λ0
√
d + λ1

√
d1

π
.

Remark. Almost all identities of the stated form are regular.
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An Example Illustrating the Philosophy
Ramanujan Series:

∞∑
k=0

28k + 3

(−2123)k

(
2k

k

)2(4k

2k

)
=

16√
3π

.

Conjecture (Sun [Sci. China Math. 54(2011)]). For any prime
p > 3, we have

p−1∑
k=0

(2k
k

)2(4k
2k

)
(−2123)k

≡


4x2 − 2p (mod p2) if 12 | p − 1, p = x2 + y2, 3 - x and 3 | y ,
−( xy3 )4xy (mod p2) if 12 | p − 5 and p = x2 + y2 (x , y ∈ Z),

0 (mod p2) if p ≡ 3 (mod 4),

p−1∑
k=0

28k + 3

(−2123)k

(
2k

k

)2(4k

2k

)
≡ 3p

(p
3

)
+

5

24
p3Bp−2

(
1

3

)
(mod p4).
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Another Example Illustrating the Philosophy

I would like to offer $90 for the first proof of the identity in the
following conjecture and $105 for the first proof of congruences in
the conjecture.

Conjecture (Z. W. Sun, 2011). We have

∞∑
n=0

357n + 103

2160n

(
2n

n

) n∑
k=0

(
n

k

)(
n + 2k

2k

)(
2k

k

)
(−324)n−k =

90

π
.

For any prime p > 5, we have

p−1∑
n=0

357n + 103

2160n

(
2n

n

) n∑
k=0

(
n

k

)(
n + 2k

2k

)(
2k

k

)
(−324)n−k

≡ p

(
−1

p

)(
54 + 49

( p

15

))
(mod p2).
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Another Example Illustrating the Philosophy (continued)
And

p−1∑
n=0

(2n
n

)
2160n

n∑
k=0

(
n

k

)(
n + 2k

2k

)(
2k

k

)
(−324)n−k

≡



4x2 − 2p (mod p2) if p = x2 + 105y2 (x , y ∈ Z),

2x2 − 2p (mod p2) if 2p = x2 + 105y2 (x , y ∈ Z),

2p − 12x2 (mod p2) if p = 3x2 + 35y2 (x , y ∈ Z),

2p − 6x2 (mod p2) if 2p = 3x2 + 35y2 (x , y ∈ Z),

20x2 − 2p (mod p2) if p = 5x2 + 21y2 (x , y ∈ Z),

10x2 − 2p (mod p2) if 2p = 5x2 + 21y2 (x , y ∈ Z),

28x2 − 2p (mod p2) if p = 7x2 + 15y2 (x , y ∈ Z),

14x2 − 2p (mod p2) if 2p = 7x2 + 15y2 (x , y ∈ Z),

0 (mod p2) if (−105p ) = −1.

Remark. The quadratic field Q(
√
−105) has class number 8.
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One more Example Illustrating the Philosophy

Conjecture (Z.-W. Sun, Jan. 2012) (i) For any prime p > 3 we
have

p−1∑
n=0

28n + 5

576n

(
2n

n

) n∑
k=0

5k
(2k
k

)2(2(n−k)
n−k

)2(n
k

)
≡p
(
−1

p

)(
3 + 2

(
2

p

))
(mod p2).

(ii) We have the identity

∞∑
n=0

28n + 5

576n

(
2n

n

) n∑
k=0

5k
(2k
k

)2(2(n−k)
n−k

)2(n
k

) =
9

π
(2 +

√
2).
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Conjecture (Sun). For any prime p > 5, we have

(
−1

p

) p−1∑
n=0

(2n
n

)
576n

n∑
k=0

5k
(2k
k

)2(2(n−k)
n−k

)2(n
k

)

≡



4x2 − 2p (mod p2) if ( 2
p ) = (p3 ) = (p5 ) = 1, p = x2 + 30y2,

8x2 − 2p (mod p2) if ( 2
p ) = 1, (p3 ) = (p5 ) = −1, p = 2x2 + 15y2,

2p − 12x2 (mod p2) if (p3 ) = 1, ( 2
p ) = (p5 ) = −1, p = 3x2 + 10y2,

20x2 − 2p (mod p2) if (p5 ) = 1, ( 2
p ) = (p3 ) = −1, p = 5x2 + 6y2,

0 (mod p2) if (−30p ) = −1,

where x and y are integers.
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Generalized central trinomial coefficients
For real numbers b and c , we define

Tn(b, c) :=[xn](x2 + bx + c)n

(the coefficient of xn in (x2 + bx + c)n)

=

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
bn−2kck .

Recursion: T0(b, c) = 1, T1(b, c) = b, and

(n + 1)Tn+1(b, c) = (2n + 1)bTn(b, c)− ndTn−1(b, c) (n > 0),

where d = b2 − 4c . It is known that if d 6= 0 then

Tn(b, c) =
√
d
n
Pn

(
b√
d

)
where

Pn(x) :=
n∑

k=0

(
n

k

)(
n + k

k

)(
x − 1

2

)k

is the Legendre polynomial of degree n.
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Replace
(

2k
k

)
by Tk(b, c)

As Tk(2, 1) =
(2k
k

)
, in 2010 I viewed Tk(b, c) as a natural

extension of the central binomial coefficients. In contrast with my

conjectures on
∑p−1

k=0
(2kk )

3

mk and
∑p−1

k=0(a + dk)
(2kk )

3

mk modulo p2

(with p an odd prime not dividing m), in December 2010 I
formulated many conjectures with some

(2k
k

)
replaced by Tk(b, c).

For example, I made the following conjecture.

Conjecture (Sun, 2010-12-25). Let p be any odd prime. Then(
−1

p

) p−1∑
k=0

(2k
k

)2
Tk(1, 16)

(−256)k

≡

{
4x2 − 2p (mod p2) if (p7 ) = 1 and p = x2 + 7y2,

0 (mod p2) if (p7 ) = −1, i.e., p ≡ 3, 5, 6 (mod 7).

Also,
p−1∑
k=0

(30k + 7)

(2k
k

)2
Tk(1, 16)

(−256)k
≡ 7p

(
−1

p

)
(mod p2).
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Asymptotic Behavior of Tn(b, c)
By the Laplace-Heine formula, for x 6∈ [−1, 1] we have

Pn(x) ∼ (x +
√
x2 − 1)n+1/2

√
2nπ 4
√
x2 − 1

as n→ +∞.

It follows that if b > 0 and c > 0 then

Tn(b, c) ∼ fn(b, c) :=
(b + 2

√
c)n+1/2

2 4
√
c
√
nπ

.

as n→ +∞. Note that Tn(−b, c) = (−1)nTn(b, c).
Conjecture (Sun, 2011; proved by S. Wagner): For b, c > 0,

Tn(b, c) = fn(b, c)

(
1 +

b − 4
√
c

16n
√
c

+ O

(
1

n2

))
as n→ +∞. If c > 0 and b = 4

√
c , then

Tn(b, c)√
c
n =

3× 6n√
6nπ

(
1 +

1

8n2
+

15

64n3
+

21

32n4
+ O

(
1

n5

))
.

If c < 0 and b ∈ R then

lim
n→∞

n
√
|Tn(b, c)| =

√
b2 − 4c .
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Story happened around Jan 1, 2011

Tn(1, 16) ∼ (1 + 2
√

16)n+1/2

2 4
√

16
√
nπ

=
9n+1/2

4
√
nπ

=
9n

12
√
nπ
.

This is very similar to the fact that
(2n
n

)
∼ 4n√

nπ
. On Dec. 25,

2010, I conjectured that for any odd prime p we have

p−1∑
k=0

(30k + 7)

(2k
k

)2
Tk(1, 16)

(−256)k
≡ 7p

(
−1

p

)
(mod p2),

which is very similar to Ramanujan-type congruences.

Conjecture (Z. W. Sun, Jan. 2, 2011). We have
∞∑
k=0

30k + 7

(−256)k

(
2k

k

)2

Tk(1, 16) =
24

π
,

T[n ]:=If[n>0,Coefficient[(x∧2 + x + 16)∧n,x∧n],1]
S[n ]:=Sum[(30k+7)Binomial[2k,k]∧2*T[k]/(−256)∧k,{k,0,n}]
Print[N[S[200]Pi,20]]

Output: 24.000000000000000000

32 / 44



Story happened around Jan 1, 2011

Tn(1, 16) ∼ (1 + 2
√

16)n+1/2

2 4
√

16
√
nπ

=
9n+1/2

4
√
nπ

=
9n

12
√
nπ
.

This is very similar to the fact that
(2n
n

)
∼ 4n√

nπ
. On Dec. 25,

2010, I conjectured that for any odd prime p we have

p−1∑
k=0

(30k + 7)

(2k
k

)2
Tk(1, 16)

(−256)k
≡ 7p

(
−1

p

)
(mod p2),

which is very similar to Ramanujan-type congruences.
Conjecture (Z. W. Sun, Jan. 2, 2011). We have

∞∑
k=0

30k + 7

(−256)k

(
2k

k

)2

Tk(1, 16) =
24

π
,

T[n ]:=If[n>0,Coefficient[(x∧2 + x + 16)∧n,x∧n],1]
S[n ]:=Sum[(30k+7)Binomial[2k,k]∧2*T[k]/(−256)∧k,{k,0,n}]
Print[N[S[200]Pi,20]]

Output: 24.000000000000000000
33 / 44



New series for 1/π involving Tk(b, c)
For b, c ∈ Z let Tk(b, c) be the coefficient of xk in (x2 + bx + c)k .
In Jan.-Feb. 2011, I introduced 40 series for 1/π of the following
five types with a, b, c , d ,m integers and mbcd(b2 − 4c) nonzero.
In August I added 8 new series for 1/π of type III.

Type I.
∑∞

k=0(a + dk)
(2k
k

)2
Tk(b, c)/mk .

Type II.
∑∞

k=0(a + dk)
(2k
k

)(3k
k

)
Tk(b, c)/mk .

Type III.
∑∞

k=0(a + dk)
(4k
2k

)(2k
k

)
Tk(b, c)/mk .

Type IV.
∑∞

k=0(a + dk)
(2k
k

)2
T2k(b, c)/mk .

Type V.
∑∞

k=0(a + dk)
(2k
k

)(3k
k

)
T3k(b, c)/mk .

In October 2011, I found 10 conjectural series for 1/π of two new
types:
Type VI.

∑∞
k=0(a + dk)T 3

k (b, c)/mk .

Type VII.
∑∞

k=0(a + dk)
(2k
k

)
T 2
k (b, c)/mk .

This stimulated several papers by H.-H. Chan, J. Wan, W. Zudilin.
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My conjectural series of type VI

∞∑
k=0

66k + 17

(21133)k
T 3
k (10, 112) =

540
√

2

11π
,

∞∑
k=0

126k + 31

(−80)3k
T 3
k (22, 212) =

880
√

5

21π
,

∞∑
k=0

3990k + 1147

(−288)3k
T 3
k (62, 952) =

432

95π
(195
√

14 + 94
√

2).

I would like to offer $300 as the prize for the person who can
provide first rigorous proofs of all the above three identities. The
last one was inspired by my following conjecture for primes p > 3.

p−1∑
k=0

3990k + 1147

(−288)3k
T 3
k (62, 952)

≡ p

19

(
17563

(
−14

p

)
+ 4230

(
−2

p

))
(mod p2).
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My unsolved conjectural series of type VII
Conjecture (Sun, 2011). (i) For any n ∈ Z+, the number

1

n
(2n−1
n−1

) n−1∑
k=0

(2800512k + 435257)4342(n−1−k)
(

2k

k

)
Tk(73, 576)2

is an odd integer, and

n

(
2n − 1

n − 1

) ∣∣∣∣ n−1∑
k=0

(24k + 5)282(n−1−k)
(

2k

k

)
Tk(4, 9)2.

(ii) We have

p−1∑
k=0

2800512k + 435257

4342k

(
2k

k

)
Tk(73, 576)2 =

10406669

2
√

6π
,

∞∑
k=0

24k + 5

282k

(
2k

k

)
Tk(4, 9)2 =

49

9π
(
√

3 +
√

6).
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Conjecture (Sun). (i) If p > 3 is a prime with p 6= 7, 11, 17, 31,
then

p−1∑
k=0

(2k
k

)
Tk(73, 576)2

4342k

≡



4x2 − 2p (mod p2) if ( 2
p ) = (p3 ) = ( p

17) = 1, p = x2 + 102y2,

8x2 − 2p (mod p2) if ( p
17) = 1, ( 2

p ) = (p3 ) = −1, p = 2x2 + 51y2,

12x2 − 2p (mod p2) if (p3 ) = 1, ( 2
p ) = ( p

17) = −1, p = 3x2 + 34y2,

24x2 − 2p (mod p2) if ( 2
p ) = 1, (p3 ) = ( p

17) = −1, p = 6x2 + 17y2,

0 (mod p2) if (−102p ) = −1,

where x and y are integers.
(ii) For any odd prime p 6= 7, 31, we have

p−1∑
k=0

2800512k + 435257

4342k

(
2k

k

)
Tk(73, 576)2

≡p
(

466752

(
−6

p

)
− 31495

)
(mod p2).
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Conjecture (Sun). (i) For any prime p > 7, we have

p−1∑
k=0

(
2k

k

)
Tk(4, 9)2

282k

≡



4x2 − 2p (mod p2) if ( 2
p ) = (p3 ) = (p5 ) = 1, p = x2 + 30y2,

12x2 − 2p (mod p2) if (p3 ) = 1, ( 2
p ) = (p5 ) = −1, p = 3x2 + 10y2,

2p − 8x2 (mod p2) if ( 2
p ) = 1, (p3 ) = (p5 ) = −1, p = 2x2 + 15y2,

20x2 − 2p (mod p2) if (p5 ) = 1, ( 2
p ) = (p3 ) = −1, p = 5x2 + 6y2,

pδp,7 (mod p2) if (−30p ) = −1.

where x and y are integers.

(ii) For any odd prime p 6= 7, we have

p−1∑
k=0

24k + 5

282k

(
2k

k

)
Tk(4, 9)2 ≡ p

(
−6

p

)(
4 +

(
2

p

))
(mod p2).
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520-Series

In 1895 J. Franel introduced the Franel numbers
fn =

∑n
k=0

(n
k

)3
(n ∈ N). In view of Strehl’s identity

fn =
∑n

k=0

(n
k

)2(2k
n

)
, in 2011 I introduced the Franel polynomials

fn(x) :=
n∑

k=0

(
n

k

)2(2k

n

)
xk =

n∑
k=0

(
n

k

)(
k

n − k

)(
2k

k

)
xk (n > 0).

520-Series:
∞∑
k=0

1054k + 233

3840k

(
2k

k

)
fk(−64) =

520

π
.

As May 20 is the day for Nanjing University, I offered $520 as the
prize for proving this 520-series.

In 2013, M. Rogers and A. Straub [Int. J. Number Theory
9(2013)] won the prize via their following paper.

M. Rogers and A. Straub, A solution of Sun’s $520 challenge
concerning 520/π, Int. J. Number Theory 9(2013), 1273–1288.
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Series for 1/π involving a kind of polynomials

In March 2011, I introduced the polynomials

pn(x) =
n∑

k=0

(
2k

k

)2(2(n − k)

n − k

)
xn−k (n = 0, 1, 2, . . .)

and proved that
∑∞

k=0 k
(2k
k

)
pk(4)/128k =

√
2/π,

∞∑
k=0

8k + 1

576k

(
2k

k

)
pk(4) =

9

2π
,

∞∑
k=0

8k + 1

(−4032)k

(
2k

k

)
pk(4) =

9
√

7

8π
.

via Ramanujan-type series for 1/π. I noted that(
2n

n

)
pn(4) =

n∑
k=0

(
2k

k

)2(4k

2k

)(
k

n − k

)
(−64)n−k .

Conjecture (Sun, 2011).
∞∑
k=0

4k + 1

(−192)k

(
2k

k

)
pk(4) =

√
3

π
.
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Series for 1/π involving a kind of polynomials
Conjecture (Sun, 2011) We have
∞∑
k=0

17k − 224

(−225)k

(
2k

k

)
pk(−14) =

1800

π
,

∞∑
k=0

15k − 256

172k

(
2k

k

)
pk(18) =

2312

π
,

∞∑
k=0

20k − 11

(−576)k

(
2k

k

)
pk(−32) =

90

π
,

∞∑
k=0

3k − 2

640k

(
2k

k

)
pk(36) =

5
√

10

π
,

∞∑
k=0

20k − 67

(−3136)k

(
2k

k

)
pk(−192) =

490

π
,

∞∑
k=0

7k − 24

3200k

(
2k

k

)
pk(196) =

125
√

2

π
,

∞∑
k=0

5k − 32

(−6336)k

(
2k

k

)
pk(−392) =

495

2π
,

∞∑
k=0

66k − 427

6400k

(
2k

k

)
pk(396) =

1000
√

11

π
,

∞∑
k=0

34k − 7

(−18432)k

(
2k

k

)
pk(−896) =

54
√

2

π
,

∞∑
k=0

24k − 5

1362k

(
2k

k

)
pk(900) =

867

16π
.

A New One Found in 2019:
∞∑
k=0

12k + 1

100k

(
2k

k

)
pk

(
9

4

)
=

75

4π
.
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Comments from Shaun Cooper

In 2017, Prof. Shaun Cooper published the following book:
S. Cooper, Ramanujan Theta Functions, Springer, Cham,

2017.

In his Notes for Chapter 14 (Ramanujan’s series for 1/π), he wrote
the following comments:

“The theory of Ramanujan’s series for 1/π was

extended significantly by the announcement of a large

number of conjectures by Z.-W. Sun that are

summarized in [279]. Sun’s conjectures have

stimulated and inspired works by W. Zudilin and

coauthors, including work with H.H. Chan and J. Wan

[93], the paper [125], works with J. Guillera [172],

with J. Wan [294] and the paper [308]. See also the

work of M. Rogers and A. Straub [258] and the works

of J. Wan [292], [293]."
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Thank you!
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