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Abstract

Let A and B be integers. The Lucas sequences

up = up(A,B) (n=0,1,2,...) and v, = w(A,B) (n=0,1,2,...)

are defined by

up=0, u1 =1, upy1 = Aup — Bup_1 (n=1,2,3,...)
and

=2, i =A, Vpy1 =Av,—Bvp_1 (n=1,2,3,...).

They are natural extensions of the Fibonacci numbers and the
Lucas numbers. Lucas sequences play important roles in number
theory and combinatorics. In this talk we introduce various
properties of Lucas sequences and their applications. In particular,
we will mention their elegant application to Hilbert's Tenth
Problem on Diophantine equations.
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Fibonacci numbers

In a book in 1202, Fibonacci considered the growth of an idealized
(biologically unrealistic) rabbit population, assuming that: a newly
born pair of rabbits, one male, one female, are put in a field;
rabbits are able to mate at the age of one month so that at the
end of its second month a female can produce another pair of
rabbits; rabbits never die and a mating pair always produces one
new pair (one male, one female) every month from the second
month on. The puzzle that Fibonacci posed was: how many pairs
will there be in one year?

Suppose that in the n-th month there are totally F, pairs of
rabbits. Then

Fo=0, =1, Fpp1 =Fo+ Fro1 (n=1,2,3,...).
Note that

F,r=1 F=2 F,=3 =5, F =8, [ =13,

Fg =21, Fg =34, Fip =55, F11 =89, F1p = 144.
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A combinatorial interpretation of Fibonacci numbers

Let f(n) denote the number of binary sequences not containing
two consecutive zeroes.

Clearly, (1) = 2 (both 0 and 1 meet the purpose), and f(2) =3
(01,10, 11 meet the purpose).

Now let a1,...,a, € {0,1}. Clearly a; ..., a,1 meets the purpose
if and only if the sequence a; ..., a, meets the purpose. Also, the
sequence ai ..., a,0 meets the purpose if and only if a, =1 and

the sequence a; ... a,_1 meets the purpose. Therefore
f(n+1)=f(n)+f(n—1).

Since f(1) = F3, f(2) = F4 and also f(n+ 1) = f(n) + f(n—1)
forn=1,2,3,..., we see that

f(n) = Foy2.



Edouard Lucas

The name “Fibonacci numbers or the Fibonacci sequence’ was
first used by the French mathematician E. Lucas (1842-1891).

5

Lucas has several fundamental contributions to number theory.

Lucas’ Congruence. Let p be a prime, and let a = Zf'(:o a;jp’ and
b=k, bip’ with a;, b € {0,...,p —1}. Then

()=11() toon

Lucas died in unusual circumstances. At the banquet of an annual
congress, a waiter dropped some crockery and a piece of broken

plate cut Lucas on the cheek. He died a few days later of a severe
skin inflammation probably caused by septicemia. He was only 49.
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Lucas sequences

Let A and B be given numbers. For n € N={0,1,2,...} we
define up, = up(A, B) and v, = v,(A, B) as follows:
up=0, vy =1, and up41 = Aup — Bup—1 (n=1,2,3,...);
=2, i=A, and vp41 = Av, — Bv,_1 (n=1,2,3,...).

The sequence {up}nen and its companion {v,}pen are called Lucas
sequences.

In 1876 E. Lucas introduced such sequences in the case A, B € Z,
and studied them systematically. Lucas sequences play important
roles in number theory.
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Special cases

By induction on n € N we find that

2741
3
Those Fp, = un(1,—1) and L, = v,(1,—1) are called Fibonacci

numbers and Lucas numbers respectively. The Pell sequence
{Pn}nen is given by P, = up(2,-1), so

un(2,1) =n, vp(2,1) =2; up(3,2) =2"—1, v,(3,2) =

Pob=0, P =1, Pn+1 =2P,+ P,_1 (n: 1,2,3,...).

The companion of the Pell sequence is {Qn}nen wWhere
Qn = vn(2,—1). We also let S, = up(4,1) and T, = v,(4,1); thus

So=0, 5 =1, and 5,41 =45, — S,—1 (n=1,2,3,...);
To=2 Ti=4, Tht1=4T,— Tp_1 (n=1,2,3,...).



Binet Formulae

The equation x> = Ax — B is called the characteristic equation of
the Lucas sequences {un(A, B)}nen and {vp(A, B) }nen.
A = A2 — 4B is the discriminant, and the two roots are
A+VA A—-VA
a=—"0 and 3= —

Property 1 (Binet, 1843) For any n =0,1,2,... we have
Up = Z o817k and v, =a" + 3",
0<k<n

As A= a+ 8 and B = af, we can prove the formulae by
induction on n.

If A =0, then o = = A/2, hence

A n—1 A n
u, = Z a”_lzn(2> and vn:2a”:2<2> .

0<k<n



Explicit Formulae
We can express u, and v, in terms of n, A and A. In fact,

VAu, =(a— B)up, =" — " = (

o ()
— An— A(k_l)/2

2tk

2 2

and thus

n
2n—1 — An_1_2kAk
=) (2k + 1)

k=0
(which also holds when A = 0). Similarly,
A+va\"  (A-vA\"
2 + 2

Vn:an+5n:<

1 [n/2] n ek
— n—
“on-1 Z <2k> A A%

k—0

A+\/E>"_ (A—\/E)"

9
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Special cases

For the Fibonacci sequence {F,}nen and its companion {L,}pen,
A =12 - 4(-1) =5 and so

1+v5\ [1-v5\" 1+v5) [1-v5)\
o () () o () ()

For the Pell sequence {Pp}pen and its companion {Qp}ren,
A =22—-4(-1)=8and so

2V2P, = (1+v2)" — (1 = v2)", Qo = (1 +v2)" + (1 — V2)".

For the sequence {S,}nen and its companion { T, }pen,
A=4%>_—-4.1=12and so

S ((2+\@)"—(2—f3)”), To = (2+V3)"+(2—V3)".

1
= 72\@
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On ((A+ /A2 —4B)/2)"

Let A, B € Z with A = A2 —4B. For n € N, as
A+VvAaY [(A-vDA\"
@un(A,B):< +2f> —( f) ,

2

n n
va(A, B) = <A+2\/E> + (A_;/E) ,
we have
<A + \/E> " Va(A, B) % us(A, B)VA
2 2 '
In particular,

(H:\@)"_ Lo+ Fov/5
2 B 2

(1i\f2)”:%iPn\@, (21\6)%%15”\6.
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Relations between u, and v,

Property 2. For n € N we have
Vo = 2Upt1 — Aup, Aup =2Vh41 — Avp, v,% — Au% = 4B".
This can be easily proved since
A=a+ B, VAu,=a" = B", vy =0a"+ ",

where

A+ VA A—VA

A=A>—4B, a= 5 and f="—

In particular,

Ly =2Fn1 — Fn, 5F, =201 — Ly, L2 —5F2 = 4(—1)".

n
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Neighbouring formulae

Property 3 (Neighbouring formulae). For any n € N we have

2 2 2 2
Uni1 — Auppiun + Buy = B", vy 1 — Avppivs + By = —AB”.

In other words, if n € Z*t = {1,2,3,...} then
uﬁ — Up—_1Upp1 = B! and v,% — Vp_1Vpp1 = —AB" L,
Proof. By Property 2,
4B" = v2 — Au? = (2upy1 — Aup)? — Au?
and
4AB" = Av2 — (Aup)? = Av2 — (2vny1 — 4Av,)°.
So the desired results follow.

Example.

Fiy— FopiFn— F3=(-1)" Lo, — Lojaly — L5 =5(-1)""".
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Addition formulae

Property 4 (Addition Formulae). For any m,n € N we have

_ UmVnp + UpVm
Um+n = 5

and
VinVn + ADumu,
Vm+n = #

Property 5 (Double Formulae). For each n € N we have

2 2
vi + Aug

5 = Au? +2B",

2 n
Upp = UpVp, Vo, =V, —2B" =

2 2 n
Uony1 = Upyy — Bup, vapi1 = vavppr — AB™.
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Multiplication Formulae
Property 6 (Multiplication Formulae). For any k, n € N we have
Ukn = Uy - Up( vk, Bk) and vk, = viu(vg, Bk).
Proof. Let A/ = v, and B’ = B¥. Then A’ = v,% — 4Bk = Auf,

vk — VAuy

, vk + VA
o = — >

[
e

Hence

(o) +(8)" = (V" - f“k) - (Vk - ;/E“k>

<A+\/E>kn (A_\/E>kn
7z ) |7z ) =

That uy, = uy - up(vi, BX) can be proved similarly.
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Expansions in terms of A and B

Property 7 (Expansions in terms of A and B). For any n € Z* we
have

up, =

n-1)2)
("

k> An—1—2k(_ B)k
k=0
Ln/2]

_ no(n—k\ . o k
V"_kz_on—k< B >A (—=B)*.

Proof. Observe that

00 oo m-—1
Z ume—l — Z akﬁm—l—kxm—l
m=1 m=1 k=0
oo m-—1 00 00 ]
=)D (ax)}(Bx)"TE =) (ax)* D (BxY
m=1 k=0 k=0 j=0
1 1 1

:1—ax.1—ﬁx:1—Ax+Bx2'

16
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Expansions in terms of A and B (continued)

Let [x™]f(x) denote the coefficient of x™ in the power series for
f(x). Then

n— - m—=1 _ 1yn— 1
un—1 =[x"""] mzl Umx™ =[x l]m
n n—1

k=0

n—1
:[anl] anflfk(A - BX)nflfk
k=0
[(n=1)/2] <n 1

B >(_B)kAn—1—k—k

[(n—1)/2]
n—1—Kk\ no1-0k; pyk
( ) )A (—B).
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Expansions in terms of A and B (continued)

Vp =2Unpt1 — Aup
[n/2]

_22( L An 2k

(n—1)/2] <
k

>An 1- 2k( B)k

TR P

k=0

M?
~
N
7 N\
N
/\
»I

Corollary. For any n € Z* we have

F,,:Z(n_}(_k> and Ly= > jk(”;k

n
keN 0<k<n/?2

)
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On linear index

Property 8 (On linear index) (Z.-W. Sun [Sci. China Ser. A

35(1992)]). Suppose that
Wnt1 = Aw, — Bw,_1 forn=1,2,3,....

Then, for any k € Z* and I, n € N we have

n

n e
Wikn+1 = Z <J> (—Bu—1)" 7wy,

j=0
in particular

n

n _: .
Wont1 = Z <J>(—B)n JAJW/+J'.

j=0

Corollary. For any n € N we have

“ n 1 n
Fon= (J.)F,- and Fopi1 =) <J> Fit1.

j=0 Jj=0
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On linear index (continued)
We prove the identity by induction on n. The case n = 0 is trivial.

Now assume that the identity for n is valid. Then

n

n n—i j
Wi(nt1)+1 =Wknt(k+1) = Z <j>(_BUk—1) T Wiy 14
j=0

n n o
ZZ <j>(—BUk—1)” T (uewigjy1 — Buk—iwiyj)
=0

n
n e
J:

n n .
+ <J> (= Buk—1)"" 7 uwiyj + (~Bug—1)"wy
j=1
n+1
n+1 il
- ( J >(—B'Jk—1) T wig.
j=0
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Lucas’ Theorem
Property 9 (E. Lucas) Let A, B € Z with (A, B) = 1. Then
(Um, Un) = |t(m,ny| forall m,neN.

Proof. By induction, u,,+1 A" (mod B). As (A,B) =1, we have
(unt1, B) = 1. Since ”n+1 Aupyiup + Bu = B" by Property 3,
(Un, upnt1) | B™ and hence (upn, upy1) | (u,,+1, B") =1.

By Property 8, for any n € Z* and q,r € N we have

q

q _ .
iravr =3 (1) (-Bun 1)

=0
=(—Bup-1)%u; = (upy1 — Aup)u, = ug+1ur (mod up)

and hence
(Unq-i—ra Un) = (Una Ur)-
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Lucas" Theorem (continued)

Clearly, (um, uo) = (Um,0) = |um| = |t(m,0)l-

Now let rp = m and rp = n€ Z*. Write r;_1 = r;jq; + riy1 for
i=1,...,kwithrp>rn>...>r>ry1 =0. For each
i=1,...,k,

(uri717 uri) = (uqiri+fi+17 ufi) = (uri7 ufi+1)'
Therefore,

(Um7 un) :(Ul’ov url) - (Ul’lv ur2) e

=(ur,, ufk+1) = (u(m,n)7 up) = ’U(m,n)"

Remark. For m,n € Z*, we can prove that

(V v ) — |V(m,n)‘ |f OrdQ(m) = Ord2(n)7
e (2, V(m,n)) otherwise.



On positivity of u, and v,
Property 10 (Z.-W. Sun [PhD thesis, 1992]).

u, =>0forallneN
<= v,=>0forall ne N
>0

— A and A = A> — 4B > 0.

Proof. If A>0and A > 0, then u, > 0 and v, > 0 by the explicit
formulae in terms of A and A.

Suppose that u, > 0forallne€ N. Then A=u, > 0. If A <0,
then u,21Jr1 — UpUpyo = B™ > 0 and the decreasing sequence
(Upt+1/Un)n>1 has a real number limit #. Since

Un+2:AUn+1—BUn:A_ B (n=1,2,3,..),
Upy1 Upy1 Un+1/Un

we see that 2 — A + B = 0 and thus A > 0. Similarly, if v, >0
forall ne Nthen A=vy>0and A > 0.
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Periodicity of u, and v, modulo m

Property 11 (Periodicity of u, and v, modulo m). Let m € Z*
with (B, m) = 1. Then there is a positive integer A such that

Uptx = Up (mod m) forallneN

and also
Vatr = Vp  (mod m) forall n € N.

Proof. Consider the m? + 1 ordered pairs
(ui,uiy1) (I=0,..., m2).

By the Pigeon-hole Principle, two of them are congruent modulo
m. Choose the least A € m? such that

(ux, ury1) = (uj, uj1)  (mod m)
for some 0 < j < A. Since
—Buj_1 = uj11 — Auj = uny1 — Auy = —Buy—1 (mod m)

and (B,m) =1, we get uj_1 = uy_1 (mod m). Continuing this

process, we finally obtain (ux_j, ux—j+1 = (uo, u1) (mod m).
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Periodicity of u, and v, modulo m (continued)

By the choice of A\, we must have j = 0 and thus

(ux, uyy1) = (uo,u1) (mod m).

It follows that u,+) = u, (mod m) for all n=0,1,2,....

For any n € N, we also have
Viid = 2Upirt1 — Alpiy = 2Upt1 — Aup = v, (mod m).

This completes the proof.
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Legendre symbols

Let p be an odd prime and a € Z. The Legendre symbol (%) is
given by

0 ifpla,
(a) =41 ifpfaand x?> =a (mod p) for some x € Z,
—~1 if pfaand x? = a (mod p) for no x € Z.

It is well known that (ab) =(2 )(g) for any a, b € Z. Also,

-1\ ey )1 ifp=1(mod4),
<P>_( R 2_{—1 if p=—1 (mod 4);

<2> — (—1)P-1/8 1 if p==£1 (mod 8),
p —1 if p=43 (mod 8).

The Law of Quadratic Reciprocity: If p and g are distinct odd

primes, then
p q p=1.g-1
- — | =(-1) 2 2 .
(2)(5) -

26
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LLucas sequences modulo primes

Property 12. Let A, B € Z with A = A2 — 4B, and let p be an
odd prime.

(i) up = (%) (mod p) and v, = A (mod p).

(i) If pt B, then p | Up (Y-
P
Proof. Note that p | (5’) forallj=1,...,p—1. Thus

(p—1)/2 p
— ap—1,. _ —1-2k nk
up =2P" up, = ;} <2k+1>Ap A

and
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LLucas sequences modulo primes

Now we prove p | Uy (2) under the condition p 1 B.
P

If A, then u =u

Pl p*(%) p

If () = —1, then

(%) =0 (mod p).

A
2upi1 =Aup+vp = A <p> +A=0 (mod p)

and hence upf(%) = up+1 =0 (

In the case (%) =1, we have

Au, — v, A
BUP_]- = AUP — Up+]_ = % 5

and hence u,_(ay=up_1 =0 (mod p) since p{B.
P
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Wall-Sun-Sun primes

In 1960 D. D. Wall [Amer. Math. Monthly] investigated Fibonacci
numbers modulo m. For d € Z* let n(d) be the least n € Z™ such
that d | F,,. Wall asked whether n(p) # n(p?) for any odd prime p.

Let p be an odd prime. Then Fp_(g) = Fp_(%) =0 (mod p).

Z.-H. Sun and Z.-W. Sun [Acta Arith. 60(1992)] proved that
n(p) # n(p®) <= P>t Fpqz)
= xP + yP = zP for no x,y,z € Z with p{ xyz.

An odd prime p with p? | Fp_(e) is called a Wall-Sun-Sun prime.
There are no known Wall-Sun-Sun primes though heuristic
arguments suggest that there should be infinitely many
Wall-Sun-Sun primes.
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Chebyshev polynomials

The first kind of Chebyshev polynomials T,(x) (n € N) and the
second kind of Chebyshev polynomials T,(x) (n € N) are given by

cos nf = T,(cos®) and sin((n+ 1)0) =sin6 - Uy(cosb).

Clearly,
To(x) =1, Ti(x) =x, Ta(x) = 2x% — 1,

Up(x) =1, Ur(x) = 2x, Ua(x) = 4x> — 1.
As
cos(nf+6) = cos O cos nf —sin 0 sin nf = 2 cos 6 cos nf — cos(nh — )
and
sin(nf+60) = cos 6 sin nf +sin 6 cos nf = 2 cos @ sin nf —sin(nd — ),
we have

Th+1(x) = 2xTp(x) — Th—1(x) and Upy1(x) = 2xUn(x) — Up—1(x).
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Chebyshev polynomials (continued)
As
2To(x) =2, 2T1(x) = 2x, Tpy1(x) = 2xTp(x)—Th-1(x) (n=1,2,...),
and
Uo(x) =1, Ui(x) = 2x, Upy1(x) = 2xUn(x)—Un—1(x) (n =1,2,...),
we see that
2T,(x) = va(2x,1) and Up(x) = upt1(2x,1).
Thus, for any n € Z™, by Property 7 we have

Ln/2]
=5 2 (e

k=0
and
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Pell's equation
Let d € Z™ \ O. It is well-known that the Pell equation
y2 —dx’=1

has infinitely many integral solutions. (Note that x = 0 and
y = =£1 are trivial solutions.) Moreover,

{y+Vdx: x,y € Zand y? — dx?® = 1}
is a multiplicative cyclic group.

For any integer A > 2, the solutions of the Pell equation
y2—(A2-1)x*=1 (x,y €N)

are given by x = u,(2A,1) and y = v,(2A,1) with n € N. J.
Robinson and his followers wrote u,(2A,1) and v,(2A, 1) as 1,(A)
and xn(A) respectively.

To unify Matiyasevich's use of Fp, = u,(3,1) and Robinson's use
of 1n(A) = un(2A,1), we deal with Lucas sequences (un(A, 1))n=0.
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On u,(A,1) with n € Z

We extend the sequences u, = u,(A,1) and v, = v,(A, 1) to
integer indices by letting

up =0, uy =1, and up_1 + Upy1 = Aup for all n € Z,
and
vw=2, vi=A, and vy,_1 + vpr1 = Av, for all n € Z.
It is easy to see that
u_n(A1) = —up(A1) = (=1)"us(—A, 1)
and v_,(A,1) = v4(A, 1) = (—=1)"vp(—A, 1) for all n € Z.
Lemma. Let A, X € Z. Then

(A2 —8)X2+4c0 < X = un(A,1) for some m € Z.

Remark. For n € N and A > 2, it is easy to show that
(A—1)" < pa(A,1) <A™
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Hilbert's Tenth Problem

In 1900, at the Paris conference of ICM, D. Hilbert presented 23
famous mathematical problems. He formulated his tenth problem
as follows:

Given a Diophantine equation with any number of unknown
quantities and with rational integral numerical coefficients: To
devise a process according to which it can be determined in a finite
number of operations whether the equation is solvable in rational
integers.

In modern language, Hilbert's Tenth Problem (HTP) asked for an
effective algorithm to test whether an arbitrary polynomial equation

P(zi,...,z,) =0
(with integer coefficients) has solutions over the ring Z of the
integers.

However, at that time the exact meaning of algorithm was not

known.
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Two key steps to solve HTP
Based on the above theorem, M. Davis, H. Putnam and J.
Robinson [Ann. of Math. 1961] successfully showed that any r.e.
set is exponential Diophantine, that is, any r.e. set A has the
exponential Diophantine representation

acA = I >0...3x, 2 0[P(a,x1, ..., %, 2,...,2°") = 0],
where P is a polynomial with integer coefficients.
Recall that the Fibonacci sequence (Fp,)n>0 defined by

Fo=0, 1 =1, and Foy1 =Fo+ Fro1 (n=1,2,3,...)

increases exponentially. In 1970 Yu. Matiyasevich took the last
step to show ingeniously that the relation y = F,, (with x,y € N)
is Diophantine! It follows that the exponential relation a = b
(with a,b,c € N, b > 1 and ¢ > 0) is Diophantine, i.e. there exists
a polynomial P(a, b, ¢, x1,...,x,) with integer coefficients such
that

a=b" < Ixy >0...3x, =2 0[P(a,b,c,x1,...,xn) =0].
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A key lemma

The following lemma is an extension of a lemma of Yu.
Matiyasevich (1970).

Lemma (Sun [Sci. China Ser. A 35(1992)]). Let A, B € Z with
(A,B) =1, and let k,m € N.

(i) kug | m = u? | um.

(ii) Suppose that A # 0, A?> > 4B, and |A| # 1 or (k —2)B # 0.
Then u? | um = kuk | m.
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Diophantine representation of C = ug(A, 1) with
unknowns arbitrarily large

Matiyasevi ¢ and Robinson (1975) showed that for A > 1 and
B, C > 0 there is a Diophantine representation of C = ug(2A,1)
only involving three natural number variables.

Lemma (Sun [Sci. China Ser. A 35(1992)]). Let A, B, C € Z with
A>1and B> 0. Then

C=ug(A1l) <= C>=BA3Ix>03Jy>0(DFl €O)
<= 3x,y,z > 0[DFI(C — B+1)? = (z— DFI(C — B+1))?,
where
D= (A%2-4)C?+4, E=C?Dx, F=4(A%2-4)E*>+1,
G =1+ CDF —2(A+2)(A—2)*E?, H= C + BF + (2y — 1)CF,
I =(G> - 1)H* +1.

Moreover, if C = ug(A,1) with B > 0, then for any Z € Z™ there
are integers x > Z and y > Z with DFl € L.
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Diophantine representation of C = ug(A, 1) with integer
unknowns

Clearly C > B <= 3x > 0(C = B + x). However, if we use
integer variables, we need three variables:

C>B <« IxTyAz[C=B+x*+y>+ 22 +2].

Thus, to save the number of integer variables involved, we should
try to avoid inequalities.

Note that

ug(A,1) =up(2,1) =B (mod A—2).

Lemma (Sun [Sci. China Ser. A 35(1992)]). Let A, B, C € Z with
1< |B| < |A|/2—1. Then

C=up(A1) < (A—2]|C— B)A3x+#03y(DFI €0),

where D, F, | are defined as before.
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Diophantine representation of W = V& with integer
unknowns

J. Robinson showed that W = VB (with V > 1 and B, W > 0) if
and only if there is an integer A > max{ V38 W8} such that

(V2 —1)Wup(2A,1) = V(W2 —1) (mod 24V — V2 —1).

Lemma (Sun [Sci. China Ser. A 35(1992)]). Let B, V, W be
integers with B > 0 and |V| > 1. Then W = VB if and only if
there are A, C € Z for which |A| > max{V*B W*}, C = ug(A,1)
and

(V2 —1)WC = V(W?—-1) (mod AV — V2 —1).

Remark. A, V and W in this lemma are not necessarily positive,
they might be negative.
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Applications to Hilbert's Tenth Problem

Matiyasevich (1975). There is no algorithm to determine for any
P(x1,...,x9) € Z[x1,...,xg] whether P(x1,...,x9) =0 has
solutions with xq,...,x9 € N.

Z.-W. Sun (1992). There is no algorithm to determine for any
P(zi,...,z11) € Z|z1, ..., z11] whether the equation

P(Zl,...,le) =0

has integral solutions.
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