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Abstract

A p-adic congruence is called a super congruence if it not only
holds mod p but also happens to hold modulo a higher power of p.
The topic of super congruences is related to the p-adic Gamma
function, Gauss and Jacobi sums, hypergeometric series, modular
forms, Calabi-Yau manifolds, representations of p by certain
quadratic forms, and some sophisticated combinatorial identities
involving harmonic numbers. Recently the speaker formulated
many conjectures on super congruences and revealed that super
congruences are related to Euler numbers and series with
summation related to π and other constants. In this talk we will
analyze few typical conjectures of the speaker and introduce
related progress.



Part A. Previous Work by Others



Rational p-adic integers

Let p be a prime. For m ∈ Z define the p-adic valuation (or order)

νp(m) = sup{a ∈ N = {0, 1, 2, . . .} : pa | m}.

For x = m/n with m ∈ Z and n ∈ Z+ = {1, 2, 3, . . .} define the
p-adic valuation νp(x) of x by

νp(x) = νp(m)− νp(n).

The p-adic norm is given by

|x |p =
1

pνp(x)
.

Those x ∈ Q with |x |p 6 1 (i.e., νp(x) > 0) are called rational
p-adic integers or p-integers, they form a ring.

An Example for Congruences involving p-Integers:

1 +
1

2
≡ 1− 4 = −3 (mod 32).



Classical congruences for central binomial coefficients

A central binomial coefficient has the form(
2k

k

)
(k = 0, 1, 2, . . .).

If p = 2n + 1 is an odd prime, then(
2k

k

)
=

(2k)!

(k!)2
≡ 0 (mod p) for every k =

p + 1

2
, . . . , p − 1.

Wolstenholme’s Congruence. For any prime p > 3 we have

Hp−1 =

p−1∑
k=1

1

k
≡ 0 (mod p2)

and (
2p − 1

p − 1

)
=

1

2

(
2p

p

)
≡ 1 (mod p3).

Remark. In 1900 Glaiser proved that for any prime p > 3 we have(
2p − 1

p − 1

)
≡ 1− 2

3
p3Bp−3 (mod p4).



Classical congruences for central binomial coefficients

Morley’s Congruence. For any prime p > 3 we have(
p − 1

(p − 1)/2

)
≡ (−1)(p−1)/24p−1 (mod p3).

Gauss’ Congruence. Let p ≡ 1 (mod 4) be a prime and write
p = x2 + y2 with x ≡ 1 (mod 4) and y ≡ 0 (mod 2). Then(

(p − 1)/2

(p − 1)/4

)
≡ 2x (mod p).

Further Refinement of Gauss’ Result (Chowla, Dwork and
Evans, 1986):(

(p − 1)/2

(p − 1)/4

)
≡ 2p−1 + 1

2

(
2x − p

2x

)
(mod p2).

It follows that(
(p − 1)/2

(p − 1)/4

)2

≡ 2p−1(4x2 − 2p) (mod p2).



Beukers’ Conjecture for Apéry Numbers

In 1978 Apéry proved that ζ(3) =
∑∞

n=1 1/n3 is irrational! During
his proof he used the sequence {B(n)/A(n)}∞n=1 of rational
numbers to approximate ζ(3), where

A(0) = 1, A(1) = 5, B(0) = 0, B(1) = 6,

and both {A(n)}n>0 and {B(n)}n>0 satisfy the recurrence

(n+1)3un+1 = (2n+1)(17n2 +17n+5)un−n3un−1 (n = 1, 2, . . .).

In fact,

A(n) =
n∑

k=0

(
n

k

)2(n + k

k

)2

and these numbers are called Apéry numbers.

Dedekind eta function in the theory of modular forms:

η(τ) = q1/24
∞∏

n=1

(1− qn) with q = e2πiτ

Note that |q| < 1 if τ ∈ H = {z ∈ C : Im(z) > 0}.



Beukers’ Conjecture (1985). For any prime p > 3 we have

A

(
p − 1

2

)
≡ a(p) (mod p2),

where a(n) (n = 1, 2, 3, . . .) are given by

η4(2τ)η4(4τ) = q
∞∏

n=1

(1− q2n)4(1− q4n)4 =
∞∑

n=1

a(n)qn.

A Simple Observation. Let p = 2n + 1 be an odd prime. Then(
n

k

)(
n + k

k

)
(−1)k =

(
n

k

)(
−n − 1

k

)
=

(
(p − 1)/2

k

)(
(−p − 1)/2

k

)
≡

(
−1/2

k

)2

=

((
2k

k

)
/(−4)k

)2

=

(
2k

k

)2

/16k (mod p2).

Thus Beukers’ conjecture has the following equivalent form:

(p−1)/2∑
k=0

(2k
k

)4

256k
≡ a(p) (mod p2).



Ahlgren and Ono’s Proof of the Beukers conjecture
Key steps in S. Ahlgren and Ken Ono’s proof [2000].

(i) For an odd prime p let N(p) denote the number of Fp-points of
the following Calabi-Yau threefold

x +
1

x
+ y +

1

y
+ z +

1

z
+ w +

1

w
= 0.

Then
a(p) = p3 − 2p2 − 7− N(p).

(ii) For any positive integer n we have
n∑

k=1

(
n

k

)2(n + k

k

)2

(1 + 2kHn+k + 2kHn−k − 4kHk) = 0,

where Hk =
∑

0<j6k 1/j .

T. Kilbourn [Acta Arith. 123(2006)]: For any odd prime p we
have

p−1∑
k=0

(2k
k

)4

256k
≡ a(p) (mod p3).



Gaussian hypergeometric series

The rising factorial (or Pochhammer symbol):

(a)n = a(a + 1) · · · (a + n − 1) =
Γ(a + n)

Γ(a)
.

Note that (1)n = n!.

Classical Gaussian hypergeometric series:

r+1Fr (α0, . . . , αr ;β1, . . . , βr | x) =
∞∑

n=0

(α0)n(α1)n · · · (αr )n
(β1)n · · · (βr )n

· xn

n!
,

where 0 6 α0 6 α1 6 · · · 6 αr < 1 and 0 6 β1 6 · · · 6 βr < 1.



Legendre symbols

Let p be an odd prime and a ∈ Z. The Legendre symbol ( a
p ) is

given by(
a

p

)
=


0 if p | a,
1 if p - a and x2 ≡ a (mod p) for some x ∈ Z,

−1 if p - a and x2 ≡ a (mod p) for no x ∈ Z.

It is well known that (ab
p ) = ( a

p )(b
p ) for any a, b ∈ Z. Also,(

−1

p

)
= (−1)(p−1)/2 =

{
1 if p ≡ 1 (mod 4),

−1 if p ≡ −1 (mod 4);(
2

p

)
= (−1)(p

2−1)/8 =

{
1 if p ≡ ±1 (mod 8),

−1 if p ≡ ±3 (mod 8).

The Law of Quadratic Reciprocity: If p and q are distinct odd
primes, then (

p

q

) (
q

p

)
= (−1)

p−1
2
· q−1

2 .



Conjectures of Rodriguez-Villegas
In 2001 Rodriguez-Villegas conjectured 22 congruences which
relate truncated hypergeometric series to the number of Fp-points
of some family of Calabi-Yau manifolds. Here we list some of them.

p−1∑
k=0

(2k
k

)2

16k
≡

(
−1

p

)
= (−1)(p−1)/2 (mod p2),

p−1∑
k=0

(2k
k

)(3k
k

)
27k

≡
(p

3

)
=

(
−3

p

)
(mod p2),

p−1∑
k=0

(2k
k

)(4k
2k

)
64k

≡
(
−2

p

)
(mod p2),

p−1∑
k=0

(6k
3k

)(3k
k

)
432k

≡
(
−1

p

)
(mod p2),

p−1∑
k=0

(2k
k

)3

64k
≡ [qp]q

∞∏
n=1

(1− q4n)6 (mod p2).



Where the denominators and ( ·p) come from?
By Stirling’s formula,

n! ∼
√

2πn
(n

e

)n
as n → +∞

It follows that (
2k

k

)2

∼ 16k

kπ
,(

2k

k

)3

∼ 64k

(kπ)3/2
,(

2k

k

)(
3k

k

)
∼
√

3 27k

2kπ
,(

2k

k

)(
4k

2k

)
∼ 64k

√
2kπ

,(
3k

k

)(
6k

3k

)
∼ 432k

2kπ
.



Progress on Rodriguez-Villegas conjectures

The congruences we list have been confirmed, see,

E. Motenson, J. Number Theory 99(2003); Trans. AMS
355(2003); Proc. AMS 133(2005).

Many of the 22 conjectures remain open.



Ramanujan’s series for 1/π
Here are 5 of the 17 Ramanujan series recorded by him in 1914:

∞∑
k=0

(−1)k(4k + 1)
(1/2)3k
(1)3k

=
∞∑

k=0

(4k + 1)

(2k
k

)3

(−64)k
=

2

π
,

∞∑
k=0

6k + 1

4k
·
(1/2)3k
(1)3k

=
∞∑

k=0

(6k + 1)

(2k
k

)3

256k
=

4

π
,

∞∑
k=0

6k + 1

(−8)k
·
(1/2)3k
(1)3k

=
∞∑

k=0

(6k + 1)

(2k
k

)3

(−512)k
=

2
√

2

π
,

∞∑
k=0

42k + 5

64k
·
(1/2)3k
(1)3k

=
∞∑

k=0

(42k + 5)

(2k
k

)3

4096k
=

16

π
,

∞∑
k=0

20k + 3

(−4)k
· (1/2)k(1/4)k(3/4)k

(1)3k
=

∞∑
k=0

(20k + 3)

( 4k
k,k,k,k

)
(−1024)k

=
8

π
.

Remark. The first one was actually proved by G. Bauer in 1859.



Hamme’s Conjectures
L. Van Hamme [1997] conjectured the p-adic analogues of the
above first 4 identities and W. Zudilin [JNT, 2009] obtained the
p-adic analogue of the last identity.

(p−1)/2∑
k=0

(4k + 1)

(2k
k

)3

(−64)k
≡

(
−1

p

)
p (mod p3),

(p−1)/2∑
k=0

(6k + 1)

(2k
k

)3

256k
≡

(
−1

p

)
p (mod p4),

(p−1)/2∑
k=0

(6k + 1)

(2k
k

)3

(−512)k
≡

(
−2

p

)
p (mod p3),

(p−1)/2∑
k=0

(42k + 5)

(2k
k

)3

4096k
≡

(
−1

p

)
5p (mod p4),

p−1∑
k=0

(20k + 3)

( 4k
k,k,k,k

)
(−1024)k

≡
(
−1

p

)
3p (mod p3).



Progress on Hamme’s conjectures

The first of the above congruence was proved by E. Mortenson
[Proc. AMS 136(2008)] and the second one was recently shown by
Ling Long, while the last was confirmed by Zudilin via the WZ
method. The third and the fourth remain open.

The p-adic Gamma function plays an important role in Hamme’s
formulation of those conjectures. It is defined in the following way:

Γp(n) := (−1)n
∏

1<k<n
p-k

k (n = 1, 2, 3, . . .)

and
Γp(x) = lim

n→x
Γp(n) for any p−adic integer x .



Some Series for π
D. V. Chudnovsky and G. V. Chudnovsky (1987):

∞∑
k=0

545140134k + 13591409

(−640320)3k

(
6k

3k

)(
3k

k, k, k

)
=

3× 533602

2π
√

10005
.

This yielded the record for the calculation of π during 1989-1994.

D. Zeilberger (1993):
∞∑

k=1

21k − 8

k3
(2k

k

)3
= ζ(2) =

π2

6
.

T. Amdeberhan and D. Zeilberger (1997):
∞∑

k=1

(−1)k(205k2 − 160k + 32)

k5
(2k

k

)5
= −2ζ(3).

A Conjecture of J. Guillera (2003):
∞∑

k=1

(21k3 − 22k2 + 8k − 1)256k

k7
(2k

k

)7
=

π4

8
.



Part B. My Results and Conjectures



Some Joint Work
H. Pan and Z. W. Sun [Discrete Math. 2006].

p−1∑
k=0

(
2k

k + d

)
≡

(
p − d

3

)
(mod p) (d = 0, . . . , p),

p−1∑
k=1

(2k
k

)
k

≡0 (mod p) for p > 3.

Sun & R. Tauraso [arXiv:0709.1665, Adv. in Appl. Math.].
pa−1∑
k=0

(
2k

k

)
≡

(
pa

3

)
(mod p2),

p−1∑
k=1

(2k
k

)
k

≡8

9
p2Bp−3 (mod p3) for p > 3,

L. L. Zhao, H. Pan and Z. W. Sun [Proc. AMS, 2010]
p−1∑
k=1

2k

k

(
3k

k

)
≡ 0 (mod p).



My own results

Recall that if p/2 < k < p then(
2k

k

)
=

(2k)!

(k!)2
≡ 0 (mod p).

Thus
p−1∑
k=0

(2k
k

)
mk

≡
(p−1)/2∑

k=0

(2k
k

)
mk

(mod p),

where m is an integer with p - m.

In 2009 I [arXiv:0909.5648, arXiv:0911.3060, 0909.3808]
determined

p−1∑
k=0

(2k
k

)
mk

mod p2,

(p−1)/2∑
k=0

(2k
k

)
mk

mod p2,

p−1∑
k=0

(3k
k

)
mk

mod p

in terms of linear recurrences.



Some particular congruences due to me

p−1∑
k=0

(3k
k

)
8k

≡3

4

((p

5

)
− 1

)
(mod p),

p−1∑
k=0

(3k
k

)
7k

≡

{
−2 (mod p) if p ≡ ±2 (mod 7),

1 (mod p) otherwise.

p−1∑
k=0

(4k
k

)
5k

≡


1 (mod p) if p ≡ 1 (mod 5) & p 6= 11,

−1/11 (mod p) if p ≡ 2, 3 (mod 5),

−9/11 (mod p) if p ≡ 4 (mod 5).

If p ≡ 1 (mod 3) then

p−1∑
k=0

(3k
k

)
6k

≡ 2(p−1)/3 (mod p).



Connection between super congruences and Euler numbers
Recall that Euler numbers E0,E1, . . . are given by

E0 = 1,
∑
2|k

(
n

k

)
En−k = 0 (n = 1, 2, 3, . . .).

It is known that E1 = E3 = E5 = · · · = 0 and

sec x =
∞∑

n=0

(−1)nE2n
x2n

(2n)!

(
|x | < π

2

)
.

Z. W. Sun [arXiv:1001.4453].

p−1∑
k=0

(2k
k

)
2k

≡ (−1)(p−1)/2 − p2Ep−3 (mod p3),

(p−1)/2∑
k=0

(2k
k

)
8k

≡
(

2

p

)
+

(
−2

p

)
p2

4
Ep−3 (mod p3).

.



Connection between super congruences and Euler numbers

Theorem (Sun, 2010). For any prime p > 3 we have

(p−1)/2∑
k=1

(2k
k

)
k

≡(−1)(p+1)/2 8

3
pEp−3 (mod p2),

(p−1)/2∑
k=1

1

k2
(2k

k

) ≡(−1)(p−1)/2 4

3
Ep−3 (mod p),

(p−1)/2∑
k=0

(2k
k

)2

16k
≡(−1)(p−1)/2 + p2Ep−3 (mod p3).

Remark. Note that

lim
k→+∞

k
(2k

k

)2

16k
=

1

π
and

∞∑
k=1

1

k2
(2k

k

) =
π2

18
.



Some auxiliary results needed for the proof
A Lemma (Sun, 2010). (i) If p = 2n + 1 is an odd prime, then(

n

k

)(
n + k

k

)
(−1)k

(
1− p

4
(Hn+k − Hn−k)

)
≡

(2k
k

)2

16k
(mod p4).

(ii) We have

(−1)n
n∑

k=0

(
n

k

)(
n + k

k

)
(−1)k(Hn+k − Hn−k) =

3

2

n∑
k=1

(2k
k

)
k

.

Some auxiliary identities:
n∑

k=1

(2k
k

)
k

=
n + 1

3

(
2n + 1

n

) n∑
k=1

1

k2
(n
k

)2
(Staver),

n∑
k=1

(−1)k

k2
(n
k

)(n+k
k

) = (−1)n−1

(
3

n∑
k=1

1

k2
(2k

k

) + 2
n∑

k=1

(−1)k

k2

)
(Apéry)

n∑
k=1

1

k2
(n+k

k

) = 3
n∑

k=1

1

k2
(2k

k

) − n∑
k=1

1

k2
(Sun).



Six conjectured series for π2 and other constants
Conjecture (Z. W. Sun, 2010): We have

∞∑
k=1

(10k − 3)8k

k3
(2k

k

)2(3k
k

) =
π2

2
,

∞∑
k=1

(11k − 3)64k

k3
(2k

k

)2(3k
k

) =8π2,

∞∑
k=1

(35k − 8)81k

k3
(2k

k

)2(4k
2k

) =12π2,

∞∑
k=1

(15k − 4)(−27)k

k3
(2k

k

)2(3k
k

) =− 27
∞∑

k=1

(k
3 )

k2
,

∞∑
k=1

(5k − 1)(−144)k

k3
(2k

k

)2(4k
2k

) =− 45

2

∞∑
k=1

(k
3 )

k2
,

∞∑
k=1

(28k2 − 18k + 3)(−64)k

k5
(2k

k

)4(3k
k

) =− 14ζ(3).



Conjecture involving x2 + 7y 2

Let p > 3 be a prime. Then

p−1∑
k=0

(
2k

k

)3

≡

{
4x2 − 2p (mod p2) if (p

7 ) = 1 & p = x2 + 7y2,

0 (mod p2) if (p
7 ) = −1.

Moreover,

(p−1)/2∑
k=0

(21k + 8)

(
2k

k

)3

≡ 8p +

(
−1

p

)
32p3Ep−3 (mod p4).

Remark. M. Jameson and K. Ono are working on the first part of
this conjecture but they have not yet got a proof.



Conjecture involving x2 + 11y 2

Let p > 3 be a prime. Then

p−1∑
k=0

(2k
k

)2(3k
k

)
64k

≡

{
x2 − 2p (mod p2) if ( p

11) = 1 & 4p = x2 + 11y2 (x , y ∈ Z),

0 (mod p2) if ( p
11) = −1, i.e., p ≡ 2, 6, 7, 8, 10 (mod 11).

Furthermore,

p−1∑
k=0

(11k + 3)

(2k
k

)2(3k
k

)
64k

≡ 3p +
7

2
p4Bp−3 (mod p5),

p

(p−1)/2∑
k=1

(11k − 3)64k

k3
(2k

k

)2(3k
k

) ≡ 32
2p−1 − 1

p
− 64

3
p2Bp−3 (mod p3).

Remark. It is well-known that the quadratic field Q(
√
−11) has

class number one and hence for any odd prime p with ( p
11) = 1 we

can write 4p = x2 + 11y2 with x , y ∈ Z.



A conjecture motivated by some series for ζ(3) and ζ(4)

Conjecture (Sun, 2010). Let p > 7 be a prime and let
Hp−1 =

∑p−1
k=1 1/k ≡ −p2Bp−3/3 (mod p3). Then

p−1∑
k=1

(2k
k

)
k3

≡ − 2

p2
Hp−1 (mod p2)

and
p−1∑
k=1

1

k4
(2k

k

) − Hp−1

p3
≡ − 7

45
pBp−5 (mod p2).

Also,
(p−1)/2∑

k=1

(−1)k

k3
(2k

k

) ≡ −2Bp−3 (mod p).

Motivation.
∞∑

k=1

(−1)k

k3
(2k

k

) = −2

5
ζ(3) and

∞∑
k=1

1

k4
(2k

k

) =
17

36
ζ(4).



A conjecture on divisibility of binomial coefficients

Recall that

Cn =
1

n + 1

(
2n

n

)
∈ Z for all n ∈ N.

The author observed that for any k, l ∈ Z+ we have

ln + 1

(k, ln + 1)

∣∣∣∣ (
kn + ln

kn

)
for any n ∈ N.

In particular, if all prime factors of k divides l then
(ln + 1) |

(kn+ln
kn

)
for every n = 0, 1, 2, . . ..

Conjecture (Sun, 2010). Let k and l be positive integers. If
(ln + 1) |

(kn+ln
kn

)
for all sufficiently large positive integers n, then

each prime factor of k divides l . In other words, if k has a prime
factor not dividing l then there are infinitely many positive integers
n such that (ln + 1) -

(kn+ln
kn

)
.



Some numerical examples

Let k and l be positive integers such that not all prime factors of k
divides l . Define f (k, l) as the smallest positive integer n such that
(ln + 1) -

(kn+ln
kn

)
. Via Mathematica we obtained the following

data:

f (7, 36) = 279, f (10, 192) = 362, f (11, 100) = 1187,

f (13, 144) = 2001, f (22, 200) = 6462, f (31, 171) = 1765;

f (43, 26) = 640, f (53, 32) = 790, f (67, 56) = 2004,

f (73, 61) = 2184, f (74, 62) = 885, f (97, 81) = 2904,

f (179, 199) = 28989, f (223, 93) = 13368, f (307, 189) = 31915,

f (277, 254) = 36552, f (313, 287) = 41307.



On Apéry numbers

An :=
n∑

k=0

(
n

k

)2(n + k

k

)2

.

Theorem (Sun, 2010).
∑n−1

k=0(2k + 1)Ak ≡ 0 (mod n) for any
n ∈ Z+. If p > 3 is a prime, then

p−1∑
k=0

(2k + 1)Ak ≡ p (mod p4).

Conjecture (Sun, 2010). For any positive integer n we have

n |
n−1∑
k=0

(2k + 1)(−1)kAk .

If p > 3 is a prime, then

p−1∑
k=0

(2k + 1)(−1)kAk ≡ p
(p

3

)
(mod p3).



On Apéry numbers

Conjecture (Sun, 2010) Let p > 3 be a prime. Then

p−1∑
k=0

Ak

≡

{
4x2 − 2p (mod p2) if p ≡ 1, 3 (mod 8) and p = x2 + 2y2,

0 (mod p2) if p ≡ 5, 7 (mod 8);

and

p−1∑
k=0

(−1)kAk

≡

{
4x2 − 2p (mod p2) if p ≡ 1 (mod 3) and p = x2 + 3y2,

0 (mod p2) if p ≡ 2 (mod 3).



On central Delannoy numbers

Dn :=
n∑

k=0

(
n

k

)(
n + k

k

)
.

In combinatorics, Dn is the number of lattice paths from (0, 0) to
(n, n) with steps (1, 0), (0, 1) and (1, 1).
Theorem (Sun, 2010). Let p be an odd prime. Then

p−1∑
k=0

Dk ≡
(
−1

p

)
− p2Ep−3 (mod p3).

When p > 3 we also have

p−1∑
k=0

(2k + 1)(−1)kDk ≡ p (mod p4),

p−1∑
k=0

(2k + 1)Dk ≡ p + 2p2qp(2)− p3qp(2)2 (mod p4),

where qp(2) denotes the Fermat quotient (2p−1 − 1)/p.

Conjecture (Sun, 2010). For any positive integer n we have

n |
n−1∑
k=0

(2k + 1)(−1)kAk and n2 |
n−1∑
k=0

(2k + 1)D2
k .



On central Delannoy numbers

Conjecture (Sun, 2010). (i) For any n ∈ Z+ we have

n−1∑
k=0

(2k + 1)D2
k ≡ 0 (mod n2).

If p > 3 is a prime, then

p−1∑
k=0

(2k + 1)D2
k ≡ p2 − 4p3qp(2)− 2p4qp(2)2 (mod p5).

(ii) Let p be any odd prime. Then

p−1∑
k=1

Dk

k2
≡ 2

(
−1

p

)
Ep−3 (mod p) and

p−1∑
k=0

D2
k ≡

(
2

p

)
(mod p).

Remark. I can show that n |
∑n−1

k=0(2k + 1)(−1)kD2
k for n ∈ Z+.



More Conjectures on Congruences

For more conjectures of mine on congruences, see

Z. W. Sun, Open Conjectures on Congruences,

arXiv:0911.5665.

You are welcome to solve my
conjectures!



Thank you!


