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Abstract

In this talk I’ll introduce the classical Ramanujan-type series for 1
π

and their p-adic analogues. I’ll also tell how I found new π-series
via the congruence-reversing technique from divergent
Ramanujan-type series.
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Part I. Ramanujan Series for 1
π

and related p-adic Congruences
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My initial contact with π-series (1984-87)

When I was an undergraduate at Nanjing University, I learned from
calculus the following classical results :

Leibniz:

arctan x =
∞∑
k=0

(−1)k

2k + 1
x2k+1,

∞∑
k=0

(−1)k

2k + 1
=
π

4
.

Euler:

ζ(2) =
∞∑
k=0

1

k2
=
π2

6
, ζ(4) =

∞∑
k=0

1

k4
=
π4

90
.

But I did not know any other π-series then.
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Saw a report on Ramanujan

In my diary dated Sept. 16, 1987, I saw a report on the Indian
mathematician S. Ramanujan in a Chinese newspaper in which it
mentions a quick converging series for 1/π discovered by
Ramanujan:

1

π
= 2
√

2
∞∑
n=0

(12)n(14)n(34)n

(1)n(1)nn!
(1103 + 26390n)

(
1

99

)4n+2

,

where (α)n denotes α(α + 1) · · · (α + n − 1).

At that time, I had no special impression on this complicated
formula.
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Related work in 1988
In July-August 1988, I and my twin brother Zhi-Hong Sun studied
the sum

∑
k≡r (mod m)

(n
k

)
and related congruences.

Z.-H. Sun determined
∑

k≡r (mod 8)

(n
k

)
.

Z.-H. Sun and Z.-W. Sun [Acta Arith. 60 (1992)] determined∑
k≡r (mod 10)

(n
k

)
in terms of Fibonacci numbers and Lucas

numbers, and gave an application to Fermat’s Last Theorem.

Z.-W. Sun [Israel J. Math. 128(2002)] determined∑
k≡r (mod 12)

(n
k

)
and

∑
0<k<p

k≡r (mod 12)

1
k (mod p).

Later I realized that E. Lehmer determined
∑

k≡r (mod m)

(n
k

)
for

m = 3, 4 in 1938. Consequently, for any odd prime p we have

(p−3)/2∑
k=0

(−1)k

2k + 1
≡ (−1)(p−1)/2

2
· 2p−1 − 1

p
(mod p).

In 1988 I compared this with the Leibniz series
∑∞

k=0
(−1)k
2k+1 = π

4 ,
and thought that it is interesting to look at congruences for
truncated series for π. But at that time I knew little series for π. 6 / 64



The Gamma function

The Classical Gamma Function:

Γ(x) =

∫ ∞
0

tx−1e−tdt (x > 0), Γ(n) = (n − 1)! for n ∈ Z+.

Euler’s Formula:

Γ(x)Γ(1− x) =
π

sinπx
.

In particular,

Γ

(
1

2

)2

= π, Γ

(
1

2

)
=
√
π.
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Gaussian hypergeometric series

The rising factorial (or Pochhammer symbol):

(a)n = a(a + 1) · · · (a + n − 1) =
Γ(a + n)

Γ(a)
.

Note that (1)n = n!.

Classical Gaussian hypergeometric series:

r+1Fr (α0, . . . , αr ;β1, . . . , βr | x) =
∞∑
n=0

(α0)n(α1)n · · · (αr )n
(β1)n · · · (βr )n

· xn

n!
,

where 0 6 α0 6 α1 6 · · · 6 αr < 1, 0 6 β1 6 · · · 6 βr < 1, and
|x | < 1.
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Gaussian hypergeometric series

y = r+1Fr (α0, . . . , αr ;β1, . . . , βr | x)

satisfies the differential equation:(
θ

r∏
t=1

(θ + βt − 1)− x
r∏

s=0

(θ + αs)

)
y = 0

where

θ = x
d

dx
.

Clausen’s Identity:

2F1 (2a, 2b; a + b + 1/2 | x)2

=3F2 (2a, 2b, a + b; a + b + 1/2, 2a + 2b | 4x(1− x)) .

In the case a = b = 1/4, it gives the identity( ∞∑
k=0

(
2k

k

)2

xk

)2

=
∞∑
k=0

(
2k

k

)3

(x(1− 16x))k .
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Series for 1/π

G. Bauer (1859):

∞∑
k=0

(−1)k(4k + 1)
(1/2)3k

(1)3k
=
∞∑
k=0

(4k + 1)

(2k
k

)3
(−64)k

=
2

π
.

In his famous letter to Hardy, S. Ramanujan mentioned the above
series as one of his discoveries.

In 1914 S. Ramanujan published his first paper in England
Modular equations and approximations to π,
Quart. J. Math. (Oxford), 45(1914), 350–372.

Towards the end of this paper, he wrote “I shall conclude this
paper by giving a few series for 1/π”. Then he listed 17 series for
1/π and briefly mentioned that the first three series are related to
the classical theory of elliptic functions.
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Elliptic integrals
Complete elliptic integrals (with 0 < k < 1):

K (k) =

∫ π/2

0

dθ√
1− k2 sin2 θ

(the first kind),

E (k) =

∫ π/2

0

√
1− k2 sin2 θ dθ (the seond kind).

Legendre’s Relation: If 0 < k < 1 and k ′ =
√

1− k2, then

E (k)K (k ′) + E (k ′)K (k)− K (k)K (k ′) =
π

2
.

A Central Result:

2F1

(
1

2
,

1

2
; 1
∣∣ k2

)
=

2

π
K (k) = ϕ2(q)

where q = e−πK(k ′)/K(k) and

ϕ(q) :=
∞∑

n=−∞
qn2 (theta function).
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Modular equations

Modular equation of degree n: A relation between k and l in
the interval (0, 1) induced by

n
K (k ′)

K (k)
=

K (l ′)

K (l)
,

or an identity relating ϕ(q) to ϕ(qn).

Bruce Berndt wrote (in his book Number Theory in the Spirit of
Ramanujan): There is no single method one can use to
discover or construct modular equations. One needs to be
resourceful and use a variety of tools. Generally, as the
degree of the modular equation increases, the difficulty of
establishing modular equations rises sharply.
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Series for 1/π given by Ramanujan

Two of the 17 series for 1/π recorded by Ramanujan:

∞∑
k=0

6k + 1

4k
·

(1/2)3k
(1)3k

=
∞∑
k=0

(6k + 1)

(2k
k

)3
256k

=
4

π
,

(proved by S. Chowla in 1928)
∞∑
k=0

26390k + 1103

994k
· (1/2)k(1/4)k(3/4)k

(1)3k

=
∞∑
k=0

26390k + 1103

3964k

(
4k

k , k , k , k

)
=

992

2π
√

2
.

In 1985 Jr. R. W. Gosper used the last series of Ramanujan to
calculate 17, 526, 100 digits of π (a world record at that time).

In 1987 Jonathan Borwein and Peter Borwein succeeded in proving
all the 17 Ramanujan series for 1/π.
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What happened in 2003

In 2003, I happened to see a paper on Ramanujan-type series.
Here is one of Ramanujan series for 1/π:

∞∑
k=0

(28k + 3)

(
− 27

512

)k (1/2)k(1/6)k(5/6)k
(1)3k

=
32
√

2

π
.

At that time I did not like this at all since it is too complicated! I
only enjoy simple and beautiful results! Thus this paper gave me
almost no impression and I could not remember what paper it is.

During Nov. 16-22, 2003 I attended the Second East Asian
Conference on Algebra and Combinatorics held at Fukuoka in
Japan. On the conference I met Prof. Jiang Zeng (a
combinatorist) from Uinv. Lyon I in France.
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Ramanujan-type series for 1/π
General forms of Classical Ramanujan-type Series for 1/π:

∞∑
k=0

(ak + b)

(2k
k

)3
mk

,

∞∑
k=0

(ak + b)

(2k
k

)2(3k
k

)
mk

,

∞∑
k=0

(ak + b)

(2k
k

)2(4k
2k

)
mk

,

∞∑
k=0

(ak + b)

(2k
k

)(3k
k

)(6k
3k

)
mk

.

There are totally 36 known Ramanujan-type series for 1/π with
a, b,m rational. I prefer their forms in terms of binomial
coefficients.

D. V. Chudnovsky and G. V. Chudnovsky (1987):

∞∑
k=0

545140134k + 13591409

(−640320)3k

(
6k

3k

)(
3k

k

)(
2k

k

)
=

3× 533602

2π
√

10005
.

Remark. This yielded the record for the calculation of π during
1989-1994.

15 / 64



What is needed for proving
∑∞

n=0(6n+ 1)
(

2n
n

)3
/256n = 4/π

The proofs of Ramanujan series involve lots of things such as
modulo forms, elliptic integrals, theta functions, hypergeometric
series, modular equations and symbolic computation.

P(q) := 1− 24
∞∑
j=1

jqj

1− qj
(Eisenstein series),

ϕ(q) :=
∞∑

j=−∞
qj2 (theta function),

X = X (q) = q
∞∏
j=1

(1− qj)24(1− q4j)24

(1− q2j)48
.

ϕ(q)4 =
∞∑
n=0

(
2n

n

)
X n, P(q2) =

√
1− 64X

∞∑
n=0

(3n + 1)

(
2n

n

)3

X n.

X (e−π
√
3) =

1

256
and P(e−2π

√
3) =

√
3

π
+

√
3

4
ϕ(e−π

√
3)4.
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What happened in 2005-2006
During Jan. 11-March 10, 2005, I visited Prof. Jiang Zeng at
Univ. Lyon-I. At that time, Dr. Victor Junwei Guo was a
postdoctor there. Guo told me his following conjectural identity:

l∑
k=0

(−1)m−k

(
l

k

)(
m − k

l

)(
2k

k − 2l + m

)
=

{(2m/3
m/3

)( m/3
l−m/3

)
if 3 | m,

0 otherwise.

When I returned to China, I asked my PhD student Hao Pan to
prove this conjecture. At first, Pan had no idea.

During May 2005-May 2006, I visited Prof. Daqing Wan at Univ.
of California at Irvine.

In 2005, H. Pan and I finally established the following result which
extends the conjectural identity of Guo.

Theorem (H. Pan and Z.-W. Sun [Discrete Math. 306(2006)]). If
l ,m, n ∈ {0, 1, 2, . . .} then

l∑
k=0

(−1)m−k

(
l

k

)(
m − k

n

)(
2k

k − 2l + m

)
=

l∑
k=0

(
l

k

)(
2k

n

)(
n − l

m + n − 3k − l

)
.
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My joint work on congruences modulo prime powers
H. Pan and Z. W. Sun [Discrete Math. 306(2006)].

p−1∑
k=0

(
2k

k + d

)
≡
(

p − d

3

)
(mod p) (d = 0, . . . , p),

p−1∑
k=1

(2k
k

)
k
≡0 (mod p) for p > 3.

Sun & R. Tauraso [AAM 45(2010); IJNT 7(2011)].

pa−1∑
k=0

(
2k

k

)
≡
(

pa

3

)
(mod p2),

p−1∑
k=1

(2k
k

)
k
≡8

9
p2Bp−3 (mod p3) for p > 3,

where B0,B1,B2, . . . are Bernoulli numbers given by

B0 = 1,
n∑

k=0

(
n + 1

k

)
Bk = 0 (n = 1, 2, 3, . . .).
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My result on
∑p−1

k=0

(
2k
k

)
/mk mod p2

Z.-W. Sun [Sci. China Math. 53(2010)]: Let p be an odd prime
and let m ∈ Z with p - m. Then

p−1∑
k=0

(2k
k

)
mk
≡
(

m2 − 4m

p

)
+ u

p−(m2−4m
p

)
(mod p2),

where {un}n>0 is the Lucas sequence given by

u0 = 0, u1 = 1, and un+1 = (m − 2)un − un−1 (n = 1, 2, 3, . . .).

In particular,

p−1∑
k=0

(2k
k

)
2k
≡ (−1)(p−1)/2 (mod p2). (∗)

Remark. Remark. I only found two values of p such that the last
congruence holds mod p3: p = 149, 241.
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Multinomial coefficients

Multinomial coefficients:(
k1 + · · ·+ kn

k1, . . . , kn

)
=

(k1 + · · ·+ kn)!

k1! · · · kn!
.

Note that
(2k
k

)
=
( 2k
k,k

)
. So, a natural extension of

(2k
k

)
is(

kn

k, k , . . . , k

)
=

(kn)!

(k!)n
.

Clearly, (
3k

k , k , k

)
=

(
2k

k

)(
3k

k

)
and (

4k

k , k, k, k

)
=

(
2k

k

)2(4k

2k

)
.
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My result and conjecture on multinomial coefficients

Theorem (Sun [Acta Arith. 148(2011)]). An integer p > 1 is a
prime if and only if

p−1∑
k=0

(
(p − 1)k

k, . . . , k

)
≡ 0 (mod p).

Conjecture (Sun [Acta Arith. 148(2011)]). For any odd prime p
and positive integer n,

1

n
(2n
n

) n−1∑
k=0

(
(p − 1)k

k , . . . , k

)
is always a p-adic integer.

Remark. When p = 3, Strauss, Shallit and Zagier [Amer. Math.
Monthly 99(1992)] show that

∑n−1
k=0

(2k
k

)
/(n2

(2n
n

)
) is a 3-adic

integer for any n = 1, 2, 3, . . ..
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Conjectures of Rodriguez-Villegas
It is easy to see that for any k ∈ N = {0, 1, 2, . . .} we have(
−1/2

k

)
=

k∏
j=1

1/2− j

j
= (−1)k

(2k − 1)!!

k!2k
=

(−1)k(2k)!

(k!2k)2
=

(2k
k

)
(−4)k

.

In 2003 Rodriguez-Villegas conjectured the following congruences
for primes p > 3 (which were soon confirmed by E. Mortenson):

p−1∑
k=0

(
−1/2

k

)2

=

p−1∑
k=0

(2k
k

)2
16k

≡
(
−1

p

)
(mod p2),

p−1∑
k=0

(
−1/3

k

)(
−2/3

k

)
=

p−1∑
k=0

(2k
k

)(3k
k

)
27k

≡
(p

3

)
(mod p2),

p−1∑
k=0

(
−1/4

k

)(
−3/4

k

)
=

p−1∑
k=0

(2k
k

)(4k
2k

)
64k

≡
(
−2

p

)
(mod p2),

p−1∑
k=0

(
−1/6

k

)(
−5/6

k

)
=

p−1∑
k=0

(6k
3k

)(3k
k

)
432k

≡
(
−1

p

)
(mod p2).
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On a(p), b(p), c(p)
For a power series f (q) in q, we let [qn]f (q) denote the coefficient
of qn in f (q).

For any prime p > 3, it is known that

a(p) := [qp]q
∞∏
n=1

(1− q4n)6 =

{
4x2 − 2p if p = x2 + y2 (2 - x),

0 if p ≡ 3 (mod 4).

b(p) : = [qp]q
∞∏
n=1

(1− q6n)3(1− q2n)3

=

{
4x2 − 2p if p = x2 + 3y2 with x , y ∈ Z,
0 if p ≡ 2 (mod 3),

c(p) :=[qp]q
∞∏
n=1

(1− qn)2(1− q2n)(1− q4n)(1− q8n)2

=

{
4x2 − 2p if (−2p ) = 1 and p = x2 + 2y2 with x , y ∈ Z,
0 if (−2p ) = −1, i.e., p ≡ 5, 7 (mod 8).

23 / 64



Conjectures of Rodriguez-Villegas
Let p > 3 be a prime. In 2003 Rodriguez-Villegas conjectured that

p−1∑
k=0

(−1)k
(
−1/2

k

)3

=

p−1∑
k=0

(2k
k

)3
64k

,

p−1∑
k=0

(−1)k
(
−1/2

k

)(
−1/3

k

)(
−2/3

k

)
=

p−1∑
k=0

(2k
k

)2(3k
k

)
108k

,

p−1∑
k=0

(−1)k
(
−1/2

k

)(
−1/4

k

)(
−3/4

k

)
=

p−1∑
k=0

(2k
k

)2(4k
2k

)
256k

,

p−1∑
k=0

(−1)k
(
−1/2

k

)(
−1/6

k

)(
−5/6

k

)
=

p−1∑
k=0

(2k
k

)(3k
k

)(6k
3k

)
123k

are congruent to a(p), b(p), c(p) and (p3 )a(p) mod p2 respectively.
Actually the first one was proved by Ishikawa [Nagoya Math. J.
118(1990)]. E. Mortenson [Proc. AMS 133(2005)] provided partial
solutions to the last three and the remaining thing were proved by
Z.-W. Sun [156(2012)]. 24 / 64



What happened in November, 2009

During Nov. 6-7, 2009 both Zhi-Hong and I attended the 1st
National Conference on Combinatorial Number Theory held at
Nanjing Normal University. After the conference, Zhi-Hong did not
return home and came to our univ. to copy some books.
On Nov. 10, 2009 I had a supper with Zhi-Hong who brought a
copy of Ken Ono’s book The Web of Modularity: Arithmetic of the
Coefficients of Modular Forms and q-Series (Amer. Math. Soc.,
2004). I had a glance at the last page of the book and found a list
of few supercongruences conjectured by F. Rodriguez-Villegas and
proved by Mortenson including

p−1∑
k=0

( 3k
k,k,k

)
27k

≡
(
−3

p

)
(mod p2).

I knew such things before. But, on that day, as I had determined∑p−1
k=0

( 2k
k,k

)
/mk mod p2, I suddenly realized that I should check∑p−1

k=0

( 3k
k,k,k

)
/mk mod p2 via Mathematica which I just began to

learn. I wished to go home immediately (for secret computation).
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What happened in November, 2009

But Zhi-Hong insisted that I should live with him in the guest
room at the New Era Hotel. So, on Nov. 10, 2009 I brought my
computer to the hotel and found that∑p−1

k=0

( 3k
k,k,k

)
/24k ≡ 0 (mod p) for any odd prime p ≡ 2 (mod 3).

Later I figured out the pattern and conjectured that

p−1∑
k=0

( 3k
k,k,k

)
24k

≡

{(2(p−1)/3
(p−1)/3

)
(mod p2) if p ≡ 1 (mod 3),

p/
(2(p+1)/3
(p+1)/3

)
(mod p2) if p ≡ 2 (mod 3).

(This was recently confirmed by C. Wang and me [JMAA
505(2022)].)
I also noted that

p−1∑
k=0

( 4k
k,k,k,k

)
81k

≡
p−1∑
k=0

(
2k

k

)3

≡ 0 (mod p2)

for half of the primes:

p = 5, 13, 17, 19, 31, 41, 59, 61, 73, 83, 89, 97, 101, 103, 131, 139, 157, . . .

But I could not find the pattern for these primes. 26 / 64



What happened in November, 2009
In the afternoon of Nov. 11 (Wednesday) we had a seminar. First I
reported my discovery and asked if anybody (my students and
Zhi-Hong) can figure out the pattern of those primes. Nobody
gave an answer. Then I left for a meeting in our dept and
Zhi-Hong gave a talk on his results on Euler numbers. When I got
to the dept there are still few minutes left, so I opened my
computer and searched the sequence 5,13,17,19,31,41 via google
and this led me to find that these primes are quadratic nonresidues
modulo 7. I immediately called my student Yong Zhang or Hao
Pan in the seminar to inform this news.
On Nov. 11 I wrote a draft and posted it to arXiv. The results in
the paper include

p−1∑
k=0

(2k
k

)3
64k

≡

{
4x2 − 2p (mod p) if p = x2 + y2 (2 - x),

0 (mod p) if p ≡ 3 (mod 4).

Several days later I learned that this is not new, it has been proved
to hold mod p2.
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What happened in November, 2009
If (p7 ) = 1, what about

∑p−1
k=0

(2k
k

)3
mod p2 ? I was puzzled by

this. On Friday afternoon (Nov. 13), I attended another meeting in
out dept, and suddenly remembered that Q(

√
−7) is an Euclidean

domain and hence an PID as I often taught undergraduates in the
course Modern Algebra. If (p7 ) = 1, i.e., (−7p ) = 1, then p splits by
algebraic number theory and thus p can be written in the form

x + y
√
−7

2
× x − y

√
−7

2
=

x2 + 7y2

4
,

as both x and y must be even we have p = (x/2)2 + 7(y/2)2.
After the meeting I immediately went back and verified this
observation from Cox’s book Primes of the Form x2 + ny2. Thus
this led me to find that if (p7 ) = 1 and p = x2 + 7y2 then∑p−1

k=0

(2k
k

)2 ≡ 4x2 − 2p (mod p2). I updated my arXiv article to
add this immediately.

I also found patterns for
∑p−1

k=0

(2k
k

)2
/mk mod p2 with

m = 8,−16, 32.
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What happened in November, 2009
On Nov. 14 (Saturday) I called Zhi-Hong and informed my
discovery. He said that he just wanted to make computations to

determine
∑p−1

k=0

(2k
k

)3
mod p2 in the case (p7 ) = 1, and he

complained that his student was too lazy and did not compute for
him.

Lesson. If one has not yet formulated a complete conjecture,
better not inform others to avoid potential competition.

On Nov. 11 I also conjectured that if (p7 ) = −1 then∑p−1
k=0 k

(2k
k

)3 ≡ 0 (mod p). On Nov. 27, 2009 I posted Open
Conjectures on Congruences to collect my conjectural congruences.
After reading this material, on Nov. 28 Bilgin Ali and Bruno
Mishutka guessed that if p = x2 + 7y2 then

p−1∑
k=0

k

(
2k

k

)3

≡

{
11y2/3− x2 (mod p) if 3 | y ,

4(y2 − x2)/3 (mod p) if 3 - y .
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What happened in November, 2009

Inspired this I immediately realized that

p−1∑
k=0

k

(
2k

k

)3

≡

{
8
21(3− 4x2) (mod p2) if p = x2 + 7y2,
8
21p (mod p2).

and circulated this via a message to Number Theory Mailing List.

Thus, in Nov. 2009 I formulated complete conjectures on∑p−1
k=0

(2k
k

)3
mod p2 and

∑p−1
k=0 k

(2k
k

)3
mod p2.

Prof. Ken Ono was very interested in this and he and one of his
students worked on my conjecture. They claimed that they had a
proof but in Jan. 2010 they replied me that they met real
difficulties.
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My unexpected discovery in Jan. 2010
Let p be an odd prime. I wanted to know

∑(p−1)/2
k=1

(2k
k

)
/k mod p2

and I found that
∑(p−1)/2

k=1

(2k
k

)
/k ≡ 0 (mod p3) for p = 149, 241.

A conjecture of Rodriguez-Villegas proved by Mortenson [JNT,
2003] states that

p−1∑
k=0

(2k
k

)2
16k

≡
(
−1

p

)
= (−1)(p−1)/2 (mod p2).

I found that it holds mod p3 for p = 149, 241.

A conjecture of van Hamme proved by Mortenson [PAMS, 2008]
asserts that

p−1∑
k=0

(4k + 1)

(2k
k

)3
(−64)k

≡
(
−1

p

)
p (mod p3).

I found that it holds mod p4 for p = 149, 241.
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Connections to Euler numbers
Recall that Euler numbers E0,E1, . . . are given by

E0 = 1,
∑
2|k

(
n

k

)
En−k = 0 (n = 1, 2, 3, . . .).

It is known that E1 = E3 = E5 = · · · = 0 and

sec x =
∞∑
n=0

(−1)nE2n
x2n

(2n)!

(
|x | < π

2

)
.

Z. W. Sun [Sci. China Math., 54(2011)]:

p−1∑
k=0

(2k
k

)
2k
≡(−1)(p−1)/2 − p2Ep−3 (mod p3),

(p−1)/2∑
k=1

(2k
k

)
k
≡(−1)(p+1)/2 8

3
pEp−3 (mod p2) (p > 3),

(p−1)/2∑
k=0

(2k
k

)2
16k

≡(−1)(p−1)/2 + p2Ep−3 (mod p3),

p−1∑
k=0

(2k
k

)
16k

≡(−1)(p−1)/2 − p2Ep−3 (mod p3).
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Connections between series and congruences involving Ep−3

Series:

∞∑
k=1

1

k2
(2k
k

) =
π2

18
,

∞∑
k=1

4k

k2
(2k
k

) =
π2

2
,

∞∑
k=0

(4k + 1)

(2k
k

)3
(−64)k

=
2

π
.

Corresponding congruences that I proved:

(p−1)/2∑
k=1

1

k2
(2k
k

) ≡(−1

p

)
4

3
Ep−3 (mod p) (p > 3),

(p−1)/2∑
k=1

4k

k2
(2k
k

) ≡(−1

p

)
4Ep−3 (mod p),

∞∑
k=0

(4k + 1)

(2k
k

)3
(−64)k

≡p

(
−1

p

)
+ p3Ep−3 (mod p4).
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Connections between series and congruences
Known series involving Hn =

∑n
k=1 1/k or H

(2)
n =

∑n
k=1 1/k2:

∞∑
k=1

Hk

k2k
=
π2

12
,

∞∑
k=1

H
(2)
k

k2k
=

5

8
ζ(3),

∞∑
k=1

H2
k

k2
=

17π4

360
.

Corresponding congruences for any prime p > 5:

(p−1)/2∑
k=1

Hk

k2k
≡

p−1∑
k=1

H2
k

k2
≡ 0 (mod p)

[Z. W. Sun, Proc. AMS 140(2012), 415-428],

p−1∑
k=1

Hk

k2k
≡ 7

24
pBp−3 (mod p2),

p−1∑
k=1

H
(2)
k

k2k
≡ −3

8
Bp−3 (mod p)

[Conjectured by Sun and proved by Sun and Zhao (arXiv:0911.4433)],

p−1∑
k=1

H2
k

k2
≡ 4

5
pBp−5 (mod p2)

[Conjectured by Sun and proved by R. Meštrović (arXiv:1108.1171)].
34 / 64



The philosophy about regular series involving π or the
ζ-function

As Euler proved, for each m ∈ Z+ we have

2ζ(2m) = (−1)m−1B2m
(2π)2m

(2m)!
,

∞∑
k=0

(−1)k

(2k + 1)2m+1
=

(−1)mE2mπ
2m+1

4m+1(2m)!
.

J.W.L. Glaisher (1900): Let p > 3 be a prime. Then

H
(m)
p−1 =

p−1∑
k=1

1

km
≡

{
pm
m+1Bp−1−m (mod p2) if m ∈ {2, 4, . . . , p − 3},
− p2m(m+1)

2(m+2) Bp−2−m (mod p3) if m ∈ {1, 3, . . . , p − 4},
.

In a message to Number Theory List on March 15, 2010, I
expressed the following viewpoint:

Almost every series with summation related to π = 3.14 . . . or the
Riemann zeta function corresponds to a congruence for Euler
numbers or Bernoulli numbers. Conversely, many congruences for
Ep−3 or Bp−3 modulo a prime p yield corresponding series related
to π or the zeta function.
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An example illustrating my philosophy
Example. It is known that

∞∑
k=0

(2k
k

)
(2k + 1)16k

=
π

3
,

∞∑
k=0

(2k
k

)
(2k + 1)2(−16)k

=
π2

10
.

I [JNT 131(2011)] proved that for any prime p > 3 we have

(p−3)/2∑
k=0

(2k
k

)
(2k + 1)16k

≡0 (mod p2),

∑
p/2<k<p

(2k
k

)
(2k + 1)16k

≡p

3
Ep−3 (mod p2).

And I conjectured that for any prime p > 5 we have

(p−3)/2∑
k=0

(2k
k

)
(2k + 1)2(−16)k

≡− p

15
Bp−3 (mod p2),

∑
p/2<k<p

(2k
k

)
(2k + 1)2(−16)k

≡− p

4
Bp−3 (mod p2).
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Find new series for π3

There are very few interesting series for π3. The only well-known
series for π3 is the following one:

∞∑
k=0

(−1)k

(2k + 1)3
=
π3

32
.

I observed that for any prime p > 3 we have

(p−3)/2∑
k=0

(2k
k

)
(2k + 1)316k

≡ (−1)(p+1)/2

12
Bp−3 (mod p).

Motivated by this observation, I guessed that

∞∑
k=0

(2k
k

)
(2k + 1)316k

=
7

216
π3.

After I announced this conjecture, Olivier Gerard pointed out there
is a computer proof via Mathematica (version 7).
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Find new series for π3

There are very few interesting series for π3. The only well-known
series for π3 is the following one:

∞∑
k=0

(−1)k

(2k + 1)3
=
π3

32
.

I observed that for any prime p > 3 we have

(p−3)/2∑
k=0

(2k
k

)
(2k + 1)316k

≡ (−1)(p+1)/2

12
Bp−3 (mod p).

Motivated by this observation, I guessed that

∞∑
k=0

(2k
k

)
(2k + 1)316k

=
7

216
π3.

After I announced this conjecture, Olivier Gerard pointed out there
is a computer proof via Mathematica (version 7).
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What happened in Jan.-Feb., 2010
I visited India during Jan.-Feb. 2010. On Jan. 23 I suddenly

realized that I should combine the congruences for
∑p−1

k=0

(2k
k

)3
/mk

and
∑p−1

k=0 k
(2k
k

)3
/mk mod p2. This led me to conjecture that

1

p

p−1∑
k=0

(21k + 8)

(
2k

k

)3

≡ 8 + 16p3Bp−3 (mod p4) (∗)

and that
1

n
(2n
n

) n−1∑
k=0

(21k + 8)

(
2k

k

)3

∈ Z.

After reading my message to Number Theory List on Feb. 10,
Kasper Andersen found on Feb. 11 that

1

n
(2n
n

) n−1∑
k=0

(21k + 8)

(
2k

k

)3

=
n−1∑
k=0

(
n + k − 1

k

)2

via Sloane’s OEIS (Online Encyclopedia of Integer Sequences).
Inspired by this I finally proved (∗).

39 / 64



van Hamme’s conjecture

After I found
∑p−1

k=0

(2k
k

)3
/4096k mod p2 and conjectured the

congruence

p−1∑
k=0

(42k + 5)

(2k
k

)3
4096k

≡ 5p

(
−1

p

)
− p3Ep−3 (mod p4),

I got to know that van Hamme had the conjecture

p−1∑
k=0

(42k + 5)

(2k
k

)3
4096k

≡ 5p

(
−1

p

)
(mod p3)

motivated by Ramanujan’s identity

∞∑
k=0

(42k + 5)

(2k
k

)3
4096k

=
16

π
.

Thus I became interested in Ramanujan-type series and wrote to
several mathematicians to get Hamme’s paper.
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The p-adic Gamma function
Let p be a prime and let Zp be the ring of p-adic integers. Any
p-adic integer x has a unique p-adic series representation

x = a0 + a1p + a2p2 + . . . with a0, a1, a2, . . . ∈ {0, . . . , p − 1}
which converges according to the p-adic norm | · |p. Note that

x ≡
n−1∑
k=0

akpk (mod pn) and

∣∣∣∣x − n−1∑
k=0

akpk

∣∣∣∣
p

6 p−n → 0.

So each p-adic integer is the limit of a sequence of natural
numbers which converges p-adically.

The p-adic Gamma function: For n ∈ Z+ define

Γp(n) := (−1)n
∏

0<k<n
p-k

k .

Also set Γp(0) = 1. For x ∈ Zp, choose a sequence of natural
numbers (xn)n>0 whose p-adic limit is x , and then define

Γp(x) = lim
n→∞

Γp(xn).

Similar to Euler’s formula Γ(x)Γ(1− x) = π/sinπx , for any x ∈ Zp

we have
Γp(x)Γp(1− x) = (−1){x}p ,

where {x}p is the least positive integer r with x ≡ r (mod p). In
particular,

Γp

(
1

2

)2

= (−1){1/2} = (−1)(p+1)/2 = −
(
−1

p

)
.

41 / 64



van Hamme’s idea

Similar to Euler’s formula

Γ(x)Γ(1− x) =
π

sinπx
,

for any x ∈ Zp we have

Γp(x)Γp(1− x) = (−1){x}p ,

where {x}p is the unique r ∈ {1, . . . , p} with x ≡ r (mod p). In
particular,

Γp

(
1

2

)2

= (−1){1/2}p = (−1)(p+1)/2 = −
(
−1

p

)
.

Using this idea, in 1997 van Hamme posed p-adic analogues of
many series for powers of π.
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van Hamme’s conjectures

For the two Ramanujan series

∞∑
k=0

(6k + 1)

(2k
k

)3
(−512)k

=
2
√

2

π
and

∞∑
k=0

(42k + 5)

(2k
k

)3
4096k

=
16

π
,

in 1997 van Hamme conjectured their following p-adic analogues:

p−1∑
k=0

(6k + 1)

(2k
k

)3
(−512)k

≡p

(
−2

p

)
(mod p3),

(p−1)/2∑
k=0

(42k + 5)

(2k
k

)3
4096k

≡5p

(
−1

p

)
(mod p4),

where p is an odd prime.

All the p-adic analogue conjectures of van Hamme were proved
before 2017. Following van Hamme’s idea, Zudilin [JNT, 2009]
proposed more p-adic analogues for Ramanujan-type series.
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Part II. Throwing the Linear Part in Ramanujan Series for 1
π
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My Philosophy about Series for 1/π
Part I of the Philosophy (2010). Given a regular identity of the
form

∞∑
k=0

(bk + c)
ak
mk

=
C

π
,

where ak , b, c ,m ∈ Z, bm is nonzero and C 2 is rational, we have

n−1∑
k=0

(bk + c)akmn−1−k ≡ 0 (mod n)

for any positive integer n. Furthermore, there exist an integer m′

and a squarefree positive integer d with the class number of
Q(
√
−d) in {1, 2, 22, 23, . . .} (and with C/

√
d often rational) such

that either d > 1 and for any prime p > 3 not dividing dm we have

p−1∑
k=0

ak
mk
≡

{
(m
′

p )(x2 − 2p) (mod p2) if 4p = x2 + dy2,

0 (mod p2) if (−dp ) = −1,

or d = 1, gcd(15,m) > 1, and for any prime p ≡ 3 (mod 4) with
p - 3m we have

∑p−1
k=0 ak/mk ≡ 0 (mod p2).
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Philosophy about Series for 1/π (continued)

Part II of the Philosophy (2011). Let b, c,m, a0, a1, . . . be
integers with bm nonzero and the series

∑∞
k=0(bk + c)ak/mk

convergent. Suppose that there are d ∈ Z+, d ′ ∈ Z, and rational
numbers c0 and c1 such that

p−1∑
k=0

(bk + c)
ak
mk
≡ p

(
c0

(
−d

p

)
+ c1

(
d ′

p

))
(mod p2)

for all sufficiently large primes p. If d ′ > 0, then
∞∑
k=0

(bk + c)
ak
mk

=
C

π

for some C with C 2 rational (and with C/
√

d rational if c0 6= 0). If
d ′ = −d1 < 0, then there are rational numbers λ0 and λ1 such that

∞∑
k=0

(bk + c)
ak
mk

=
λ0
√

d + λ1
√

d1

π
.

Remark. Almost all identities of the stated form are regular.
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An Example Illustrating the Philosophy
Ramanujan Series:

∞∑
k=0

28k + 3

(−2123)k

(
2k

k

)2(4k

2k

)
=

16√
3π

.

Conjecture (Sun [Sci. China Math. 54(2011)]). For any prime
p > 3, we have

p−1∑
k=0

(2k
k

)2(4k
2k

)
(−2123)k

≡


4x2 − 2p (mod p2) if 12 | p − 1, p = x2 + y2, 3 - x and 3 | y ,

−( xy3 )4xy (mod p2) if 12 | p − 5 and p = x2 + y2 (x , y ∈ Z),

0 (mod p2) if p ≡ 3 (mod 4),

p−1∑
k=0

28k + 3

(−2123)k

(
2k

k

)2(4k

2k

)
≡ 3p

(p

3

)
+

5

24
p3Bp−2

(
1

3

)
(mod p4).
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Another Example Illustrating the Philosophy
In 1987 D. V. Chudnovsky and G. V. Chudnovsky got the formula

∞∑
k=0

545140134k + 13591409

(−640320)3k

(
6k

3k

)(
3k

k , k , k

)
=

3× 533602

2π
√

10005
.

Conjecture (Sun, 2010). Let p > 5 be a prime with p 6= 23, 29.
Then

p−1∑
k=0

(6k
3k

)( 3k
k,k,k

)
(−640320)3k

≡

{
(−10005p )(x2 − 2p) (mod p2) if ( p

163) = 1 & 4p = x2 + 163y2,

0 (mod p2) if ( p
163) = −1.

Also,
p−1∑
k=0

545140134k + 13591409

(−640320)3k

(
6k

3k

)(
3k

k , k , k

)
≡13591409p

(
−10005

p

)
(mod p3).
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Part III. Techniques to Find Series via Transforms of Congruences
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Zeilberger-type series
In 1993, D. Zeilberger used the Wilf-Zeilberger method to obtain
the new identity

∞∑
k=1

21k − 8

k3
(2k
k

)3 = ζ(2) =
π2

6
.

Define

F (n, k) =
1(2n

n

)
(n + 1)2

(2n+k+1
n+1

)2
and

G (n, k) =
n!4(n + k)!2

2(2n + 1)!(2n + k + 2)!2
P(n, k),

where P(n, k) denotes

(n + 1)2(21n + 13) + 2k3 + k2(13n + 11) + k(28n2 + 48n + 20).

Then 〈F ,G 〉 is a WZ pair in the sense that

F (n + 1, k)− F (n, k) = G (n, k + 1)− G (n, k).
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Zeilberger’s proof

N−1∑
k=0

(F (n+1, k)−F (n, k)) =
N−1∑
k=0

(G (n, k+1)−G (n, k)) = G (n,N)−G (n, 0).

N∑
n=0

( N−1∑
k=0

F (n + 1, k)−
N−1∑
k=0

F (n, k)

)
=

N∑
n=0

G (n,N)−
N∑

n=0

G (n, 0).

N−1∑
k=0

F (N + 1, k)−
N−1∑
k=0

F (0, k) =
N∑

n=0

(G (n,N)− G (n, 0)).

F (0, k) =
1

(k + 1)2
, G (n, 0) =

21(n + 1)− 8

(n + 1)3
(2n+2
n+1

)3 .
N−1∑
k=0

F (N + 1, k)−
N∑

n=1

1

n2
=

N∑
n=0

G (n,N)−
N+1∑
n=1

21n − 8

n3
(2n
n

)3
and hence

∑∞
n=1

21n−8
n3(2nn )

3 = ζ(2) = π2

6 since
∑N−1

k=0 F (N + 1, k)→ 0

and
∑N

n=0 G (n,N)→ 0.
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Other Zeilberger-type series
J. Guillera [Ramanujan J. 15(2008)] used the WZ method to give
three new Zeilberger-type series:

∞∑
k=1

(4k − 1)(−64)k

k3
(2k
k

)3 =− 16G ,

∞∑
k=1

(3k − 1)(−8)k

k3
(2k
k

)3 =− 2G ,

∞∑
k=1

(3k − 1)16k

k3
(2k
k

)3 =
π2

2
,

where G denotes the Catalan constant
∑∞

k=0
(−1)k

(2k+1)2
.

Q.-H. Hou, C. Krattenthaler and Z.-W. Sun [Proc. Amer. Math.
Soc. 147(2019)] provided a q-analogue of the last identity with
|q| < 1:
∞∑
n=0

qn(n+1)/2 1− q3n+2

1− q
· (q; q)3n(−q; q)n

(q3; q2)3n
= (1− q)2

(q2; q2)4∞
(q; q2)4∞

.
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A Useful Lemma
Lemma (Z.-W. Sun [Sci. China Math. 54(2011)]) Let p be an
odd prime and let k ∈ {0, . . . , p − 1}. Then

k

(
2k

k

)(
2(p − k)

p − k

)
≡ (−1)b2k/pc−12p (mod p2).

Thus,

(
2(p − k)

p − k

)
≡


2p

k(2kk )
(mod p) if k ∈ {p+1

2 , . . . , p − 1},
−2p
k(2kk )

(mod p2) if k ∈ {1, . . . , p−12 }.

Remark. R. Tauraso [J. Number Theory 130(2010)] realized that(
2(p − k)

p − k

)
≡ 2p

k
(2k
k

) (mod p) for all k = 1, . . . , p − 1.

We have similar lemmas involving
(3k
k

)
or
(4k
2k

)
.
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Rediscover Zeilberger’s series
∑∞

k=1
21k−8

k3(2k
k )

3 = π2

6

In 2010 I proved that for any odd prime p we have

p−1∑
k=0

(21k + 8)

(
2k

k

)3

≡ 8p + 16p4Bp−3 (mod p5).

As the series
∑∞

k=0(21k + 8)
(2k
k

)3
diverges, it does not provide a

Ramanujan-type series for 1/π. However, I observe that

p−1∑
k=0

(21k + 8)

(
2k

k

)3

=8 +

p−1∑
k=(p+1)/2

(21(p − k) + 8)

(
2(p − k)

p − k

)3

≡8−
p−1∑

k=(p+1)/2

(21k − 8)

(
2p

k
(2k
k

))3

(mod p)

and this led me to rediscover that
∞∑
k=1

21k − 8

k3
(2k
k

)3 =
π2

6
(D. Zeilberger, 1993).
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Conjecture:
∑∞

k=1
(11k−3)64k

k3(2k
k )

2
(3k

k )
= 8π2

Conjecture (Z.-W. Sun, 2010) Let p > 3 be a prime. Then

p−1∑
k=0

(2k
k

)2(3k
k

)
64k

≡

{
x2 − 2p (mod p2) if ( p

11) = 1 & 4p = x2 + 11y2,

0 (mod p2) if ( p
11) = −1,

p−1∑
k=0

11k + 3

64k

(
2k

k

)2(3k

k

)
≡ 3p +

7

2
p4Bp−3 (mod p5),

p

(p−1)/2∑
k=1

(11k − 3)64k

k3
(2k
k

)2(3k
k

) ≡ 32
2p−1 − 1

p
− 64

3
p2Bp−3 (mod p3).

Also,

∞∑
k=1

(11k − 3)64k

k3
(2k
k

)2(3k
k

) = 8π2 (confirmed by J. Guillera in 2013).
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Conjecture:
∑∞

k=1
(15k−4)(−27)k−1

k3(2k
k )

2
(3k

k )
= K

Conjecture (Z.-W. Sun, 2010) Let p > 3 be a prime. Then

p−1∑
k=0

(2k
k

)2(3k
k

)
(−27)k

≡


4x2 − 2p (mod p2) if p ≡ 1, 4 (mod 15) & p = x2 + 15y2,

2p − 12x2 (mod p2) if p ≡ 2, 8 (mod 15) & p = 3x2 + 5y2,

0 (mod p2) if ( p
15) = −1;

p−1∑
k=0

15k + 4

(−27)k

(
2k

k

)2(3k

k

)
≡ 4p

(p

3

)
+

4

3
p3Bp−2

(
1

3

)
(mod p4).

Also,
∞∑
k=1

(15k − 4)(−27)k−1

k3
(2k
k

)2(3k
k

) = K :=
∞∑
k=1

(k3 )

k2
(confirmed by

Kh. Hessami Pilehrood and T. Hessami Pilehrood in 2012).
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More such conjectural series

Conjecture (Z.-W. Sun, 2010; Sci. China Math. 54(2011))

∞∑
k=1

(10k − 3)8k

k3
(2k
k

)2(3k
k

) =
π2

2
,

∞∑
k=1

(35k − 8)81k

k3
(2k
k

)2(4k
2k

) =12π2,

∞∑
k=1

(5k − 1)(−144)k

k3
(2k
k

)2(4k
2k

) =− 45

2
K .

The three conjectural identities were finally confirmed by J.
Guillera and M. Rogers [J. Austral. Math. Soc. 97(2014)].
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A curious identity with $480 prize for the solution

Conjecture (Z.-W. Sun) (i) (2009-11-29) For any prime p > 3,

p−1∑
k=1

( 4k
2k+1

)(2k
k

)
48k

≡ 0 (mod p2).

(Confirmed by Chen Wang and Z.-W. Sun [JMAA 306(2022)].)

(ii) (2014-07-07) For any prime p > 3, we have

p−1∑
k=1

( 4k
2k+1

)(2k
k

)
48k

≡ 5

12
p2Bp−2

(
1

3

)
(mod p3),

p2
p−1∑
k=1

48k

k(2k − 1)
(4k
2k

)(2k
k

) ≡ 4
(p

3

)
+ 4p (mod p2).

(iii) (2014-08-12, $480 prize for the solution) We have
∞∑
k=1

48k

k(2k − 1)
(4k
2k

)(2k
k

) =
15

2

∞∑
k=1

(k3 )

k2
.
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Three more conjectural series

Motivated by corresponding congruences, I made the following
conjecture in 2010-2011.

Conjecture (Z.-W. Sun) (i) [Sci. China Math. 54(2011)] We have

∞∑
n=0

18n2 + 7n + 1

(−128)n

(
2n

n

)2 n∑
k=0

(
−1/4

k

)2(−3/4

n − k

)2

=
4
√

2

π2

∞∑
n=0

40n2 + 26n + 5

(−256)n

(
2n

n

)2 n∑
k=0

(
n

k

)2(2k

k

)(
2(n − k)

n − k

)
=

24

π2
.

(In 2004 H.H. Chan, S.H. Chan and Z. Liu [Adv. Math.] proved

that
∑∞

n=0
5n+1
64n

∑n
k=0

(n
k

)2(2k
k

)(2(n−k)
n−k

)
= 8√

3π
.)

(ii) [Electron. J. Combin. 20(2013)] We have

∞∑
k=1

(28k2 − 18k + 3)(−64)k

k5
(2k
k

)4(3k
k

) = −14ζ(3).
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Another transform of congruences

Z.-W. Sun [Nanjing Univ. Math. Biquarterly 32(2015)]: Let
p = 2n + 1 be an odd prime. Then, for each k = 0, . . . , n we have(2k

k

)
16k

≡
(
−1

p

)(
2(n − k)

n − k

)
(mod p).

This is easy. In fact,(
2k

k

)
=

(
−1/2

k

)
(−4)k ≡

(
n

k

)
(−4)k =

(
n

n − k

)
(−4)k

≡
(
−1/2

n − k

)
(−4)k =

(2(n−k)
n−k

)
(−4)n−k

(−4)k

≡(−1)n
(

2(n − k)

n − k

)
16k (mod p).
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An Example
Let p = 2n + 1 be an odd prime. Then

p−1∑
k=0

(21k + 8)

(
2k

k

)3

≡
n∑

k=0

(21(n − k) + 8)

(
−1

p

)((2k
k

)
16k

)3

≡(−1)(p+1)/2

2

p−1∑
k=0

(42k + 5)

(2k
k

)3
4096k

(mod p).

This relates the Zeilberger series

∞∑
k=1

21k − 8

k3
(2k
k

)3 =
π2

6

to the Ramanujan series

∞∑
k=0

(42k + 5)

(2k
k

)3
4096k

=
16

π
.
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A transformation via dual sequences
For a sequence a0, a1, a2, . . . of complex numbers, define

a∗n =
n∑

k=0

(
n

k

)
(−1)kak for all n ∈ N = {0, 1, 2, . . .}

and call (a∗n)n∈N the dual sequence of (an)n∈N. It is well known
that a∗∗n = an for all n ∈ N.

For example,

wn :=

bn/3c∑
k=0

(−1)k3n−3k
(

n

3k

)(
3k

k

)(
2k

k

)
= 3na∗n

where

an =

{(3k
k

)(2k
k

)
/27k if n = 3k,

0 if 3 - n.

On March 10, 2011, I realized that if |m − 4| > 4 then
∞∑
n=0

(bmn+2b+(m−4)c)

(2n
n

)
a∗n

(4−m)n
= (m−4)

√
m − 4

m

∞∑
k=0

(bk+c)

(2k
k

)
ak

mk
.
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Congruences for dual sequences
Z.-W. Sun [Nanjing Univ. J. Math. Biquarterly 32(2015)]: Let p
be an odd prime and let m be an integer with p - m(m − 4). Let α
be a positive integer, and let a0, a1, . . . , apα−1 be p-adic integers.
Then we have the congruences

pα−1∑
k=0

(2k
k

)
(4−m)k

a∗k ≡
(

m(m − 4)

pα

) pα−1∑
k=0

(2k
k

)
mk

ak (mod p)

and

m

pα−1∑
k=0

k
(2k
k

)
(4−m)k

a∗k ≡
(

m(m − 4)

pα

) pα−1∑
k=0

((m−4)k−2)

(2k
k

)
mk

ak (mod p),

where ( ·pα ) denotes the Jacobi symbol.

If (−1)kak = fk :=
∑k

j=0

(k
j

)3
(k = 0, 1, . . .), then

a∗n =
∑n

k=0

(n
k

)
fk = gn, where gn =

∑n
k=0

(n
k

)2(2k
k

)
.
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Thank you!
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