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Abstract

In this talk we introduce some new results on power residues
modulo primes.

Let p be an odd prime, and let a be an integer not divisible by p.
When m is a positive integer with p ≡ 1 (mod 2m) and 2 is an
mth power residue modulo p, the speaker determines the value of
the product

∏
k∈Rm(p)(1 + tanπ ak

p ), where

Rm(p) = {0 < k < p : k ∈ Z is an mth power residue modulo p}.

Let p > 3 be a prime. Let b ∈ Z and ε ∈ {±1}. Joint with Q.-.H.
Hou and H. Pan, we prove that∣∣∣∣{Np(a, b) : 1 < a < p and

(
a

p

)
= ε

}∣∣∣∣ =
3− (−1

p )

2
,

where Np(a, b) is the number of positive integers x < p/2 with
{x2 + b}p > {ax2 + b}p, and {m}p with m ∈ Z is the least
nonnegative residue of m modulo p.

We will also mention some open conjectures.
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Part A. Two Products related to Quadratic and Quartic Residues
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The product Sp(a, b, c) in the case p - ac(a + b + c)

For a, b, c ∈ Z, how to determine

Sp(a, b, c) :=
∏

16i<j6p−1

p-ai2+bij+cj2

(ai2 + bij + cj2)

modulo an odd prime p. This may be viewed as an analogue
problem of Wilson’s theorem for binary quadratic forms.

Theorem 1 (Z.-W. Sun [Finite Fields Appl. 59(2019)]). Let
a, b, c ∈ Z with ac(a + b + c) 6≡ 0 (mod p), and set
∆ = b2 − 4ac. Then

Sp(a, b, c) ≡

{
(a(a+b+c)

p ) (mod p) if p | ∆,

−(ac(a+b+c)∆
p ) (mod p) if p - ∆,

where ( ·p ) is the Legendre symbol.

Remark. I first found this result via a computer.
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Sp(a, b, c) mod p in the case p | ac(a + b + c)

Theorem 2 (Z.-W. Sun [Int. J. Number Theory 16(2020),
1833-1858]). Let p be an odd prime. In the case p | ac(a + b + c),
we have

Sp(a, b, c) ≡



0 (mod p) if p | a, p | b & p | c ,
−(−ap ) (mod p) if p - a, p | b & p | c ,
−(bp ) (mod p) if p | a, p - b & p | c ,
−(−cp ) (mod p) if p | a, p | b & p - c ,
−( cp ) (mod p) if p | a, p - bc & p | b + c,

−( a
p ) (mod p) if p - ab, p | a + b & p | c,

−(−ap ) (mod p) if p - ac , p | a− c , p | a + b + c ,

(−acp ) (mod p) if p - ac(a− c) & p | a + b + c ,

(−a(a+b)
p ) (mod p) if p - ab(a + b) & p | c ,

(−c(b+c)
p ) (mod p) if p | a & p - bc(b + c).
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Gauss’ Lemma and Jenkins’ extension

Gauss’ Lemma. For any odd prime p and integer x 6≡ 0 (mod p),
we have (

x

p

)
= (−1)|{16k<p/2: {kx}p>p/2}|,

where {x}n denotes the least nonnegative integer r with x ≡ r
(mod n).

This was extended to Jacobi symbols by M. Jenkins in 1867.

Jenkins (1867): For any positive odd integer n and integer x with
gcd(x , n) = 1, we have(x

n

)
= (−1)|{16k<n/2: {kx}n>n/2}|,

where ( ·n ) is the Jacobi symbol.

6 / 42



An auxiliary theorem

Auxiliary Theorem (Z.-W. Sun [Int. J. Number Theory 16(2020),
1833-1858]). Let n be a positive odd integer, and let x ∈ Z with
gcd(x(1− x), n) = 1. Then

(−1)|{16k<n/2: {kx}n>k}| =

(
2x(1− x)

n

)
.

Also,

(−1)|{16k<n/2: {kx}n>n/2 & {k(1−x)}n>n/2}| =

(
2

n

)
,

(−1)|{16k<n/2: {kx}n<n/2 & {k(1−x)}n<n/2}| =

(
2x(x − 1)

n

)
,

and

(−1)|{16k<n/2: {kx}n>n/2>{k(1−x)}n}| =

(
2x

n

)
.
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Lucas sequences
For any A ∈ Z, we define the Lucas sequences {un(A)}n>0 and
{vn(A)}n>0 by

u0(A) = 0, u1(A) = 1, and un+1(A) = Aun(A)+un−1(A) for n ∈ Z+,

and

v0(A) = 2, v1(A) = A, and vn+1(A) = Avn(A)+vn−1(A) for n ∈ Z+.

It is well known that

un(A) =
αn − βn

α− β
and vn(A) = αn + βn

for all n ∈ N = {0, 1, 2, . . .}, where

α =
A +
√
A2 + 4

2
and β =

A−
√
A2 + 4

2
.
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Tp(a, b, c)

Let p be an odd prime. The speaker introduced for a, b, c ∈ Z the
product

Tp(a, b, c) :=

(p−1)/2∏
i,j=1

p-ai2+bij+cj2

(ai2 + bij + cj2),

and determined Tp(a, b, c) mod p in the case a + c = 0.
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On Tp(1,−A,−1) mod p
Theorem 3 (Z.-W. Sun [Int. J. Number Theory 16(2020)]). Let p
be an odd prime and let A ∈ Z.

(i) Suppose that p | (A2 + 4). Then 4 | p − 1, A
2 ≡ (−1)k p−1

2 !
(mod p) for some k ∈ {0, 1}, and

Tp(1,−A,−1) ≡

{
(−1)(p+7)/8 p−1

2 ! (mod p) if 8 | p − 1,

(−1)k+(p−5)/8 (mod p) if 8 | p − 5.

(ii) When (A
2+4
p ) = 1, we have

Tp(1,−A,−1) ≡

{
−(A2 + 4)

p−1
4 (mod p) if 4 | p − 1,

−(A2 + 4)
p+1

4 u(p−1)/2(A)/2 (mod p) if 4 | p − 3.

(iii) When (A
2+4
p ) = −1, we have

Tp(1,−A,−1) ≡

{
(−A2 − 4)

p−1
4 (mod p) if 4 | p − 1,

(−A2 − 4)
p+1

4 u(p+1)/2(A)/2 (mod p) if 4 | p − 3.
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A corollary

Corollary 1. Let p be an odd prime.

(i) We have

Tp(1,−1,−1) ≡


−5(p−1)/4 (mod p) if p ≡ 1, 9 (mod 20),

(−5)(p−1)/4 (mod p) if p ≡ 13, 17 (mod 20),

(−1)b(p−10)/20c (mod p) if p ≡ 3, 7 (mod 20),

(−1)b(p−5)/10c (mod p) if p ≡ 11, 19 (mod 20).

(ii) We have

Tp(1,−2,−1) ≡


−2(p−1)/4 (mod p) if p ≡ 1 (mod 8),

2(p−1)/4 (mod p) if p ≡ 5 (mod 8),

(−1)(p−3)/8 (mod p) if p ≡ 3 (mod 8),

(−1)(p−7)/8 (mod p) if p ≡ 7 (mod 8).
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An open conjecture

Recall that

Tp(a, b, c) :=

(p−1)/2∏
i,j=1

p-ai2+bij+cj2

(ai2 + bij + cj2).

Conjecture 1 (Z.-W. Sun [Int. J. Number Theory 16(2020)]). For
any prime p ≡ 1 (mod 12), we have

Tp(1,±4, 1) ≡ −3(p−1)/4 (mod p).

Remark. K.S. Williams and J.D. Currie [Canad. J. Math.
34(1982)] showed that for any prime p ≡ 1 (mod 4) we have

(−3)(p−1)/4 ≡

{
(−1)h(−3p)/4 (mod p) if p ≡ 1 (mod 12),

(−1)(h(−3p)−2)/4 p−1
2 ! (mod p) if p ≡ 5 (mod 12),

where h(−d) denotes the class number of the imaginary quadratic
field Q(

√
−d).
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Two more conjectures

Conjecture 2 (Z.-W. Sun, May 2022). For any prime p ≡ 1
(mod 8), we have∏

1≤i,j≤(p−1)/2

p-i2+6ij+j2

(i2 + 6ij + j2) ≡ −2(p−1)/4 (mod p)

and ∏
1≤i,j≤(p−1)/2

p-i2−6ij+j2

(i2 − 6ij + j2) ≡ −2(p−1)/4 (mod p).

Conjecture 3 (Z.-W. Sun, May 2022). Let p be a prime with
p ≡ 1 (mod 8), and write p = x2 + 2y2 with x , y ∈ Z and x ≡ 1
(mod 4). Then∏

1≤i,j≤(p−1)/2

p-i2+4ij+2j2

(i2 + 4ij + 2j2) ≡ (−1)(x+3)/42(p−1)/4 (mod p),

∏
1≤i,j≤(p−1)/2

p-i2−4ij+2j2

(i2 − 4ij + 2j2) ≡ (−1)(x+3)/42(p−1)/4 (mod p).
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Part B. New Results on Quadratic Residues
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A mysterious discovery on Sept. 15, 2018

Let p = 2n + 1 be an odd prime, and let a1 < . . . < an be all the
quadratic residues modulo p among 1, . . . , p − 1. It is well known
that {12}p, . . . , {n2}p is a permutation of a1, . . . , an. Let πp
denote this permutation. What’s the sign of the permutation πp?

On Sept. 14, 2018, I made computation via Mathematica but
could not see any pattern. Then I thought that perhaps sign(πp) is
distributed randomly.

After I waked up in the early morning of Sept. 15, 2018, I thought
that it would be very interesting if sign(πp) obeys certain pattern.
Thus, I computed and analyzed sign(πp) once again. This led to
the following surprising discovery.

Conjecture (Z.-W. Sun, Sept. 15, 2018). Let p ≡ 3 (mod 4) be a
prime and let h(−p) be the class number of Q(

√
−p). Then

sign(πp) =

{
1 if p ≡ 3 (mod 8),

(−1)(h(−p)+1)/2 if p ≡ 7 (mod 8).
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An example

For the prime p = 11,

({12}11, . . . , {52}11) = (1, 4, 9, 5, 3),

and

{(j , k) : 1 6 j < k 6 5 & {j2}11 > {k2}11}
= {(2, 5), (3, 4), (3, 5), (4, 5)}.

Thus
sign(π11) = (−1)4 = 1.

16 / 42



Determination of sign(πp) for p ≡ 3 (mod 4)

Theorem 4 (Z.-W. Sun [Finite Fields Appl. 59(2019), 246-283]).
Let p be a prime with p ≡ 3 (mod 4). Then

sign(πp) =

{
1 if p ≡ 3 (mod 8),

(−1)(h(−p)+1)/2 if p ≡ 7 (mod 8).

Moreover, for any a ∈ Z with p - a, we have∏
16j<k6(p−1)/2

cscπ
a(k2 − j2)

p
=

∏
16j<k6(p−1)/2

(
cotπ

aj2

p
− cotπ

ak2

p

)

=

{
(2p−1/p)(p−3)/8 if p ≡ 3 (mod 8),

(−1)(h(−p)+1)/2( a
p )(2p−1/p)(p−3)/8 if p ≡ 7 (mod 8),

Remark. Note that for 1 6 j < k 6 (p − 1)/2 we have

{j2}p > {k2}p ⇐⇒ cotπ
j2

p
< cotπ

k2

p
.

Our proof of the theorem involves Galois theory.
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The function Np(a, b)

Motivated by the above work of Sun, for an odd prime p and
integers a and b, Q.-H. Hou and Z.-W. Sun introduced in 2018 the
notation

Np(a, b) :=

∣∣∣∣{1 6 x 6
p − 1

2
: {x2 + b}p > {ax2 + b}p

}∣∣∣∣ .
Example. We have N7(4, 0) = 2 since

{12}7 < {4× 12}7, {22}7 > {4× 22}7 and {32}7 > {4× 32}7.

Let p be a prime with p ≡ 1 (mod 4). Then q2 ≡ −1 (mod p) for
some integer q, hence for a, x ∈ Z we have {(qx)2}p > {a(qx)2}p
if and only if {x2}p < {ax2}p. Thus, for each a = 2, . . . , p − 1
there are exactly (p − 1)/4 positive integers x < p/2 such that
{x2}p > {ax2}p. Therefore Np(a, 0) = (p − 1)/4 for all
a = 2, . . . , p − 1.
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A joint work with Q.-H. Hou and H. Pan

The following result was originally conjectured by Q.-H. Hou and
Z.-W. Sun in 2018.

Theorem 5 (Q.-H. Hou, H. Pan and Z.-W. Sun [C. R. Math.
Acad. Sci. Paris, 360(2022)]) Let p > 3 be a prime, and let b be
any integer. Set

S =

{
Np(a, b) : 1 < a < p and

(
a

p

)
= 1

}
and

T =

{
Np(a, b) : 1 < a < p and

(
a

p

)
= −1

}
.

Then |S | = |T | = 1 if p ≡ 1 (mod 4), and |S | = |T | = 2 if p ≡ 3
(mod 4). Moreover, the set S does not depend on the value of b.
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Examples

Let’s adopt the notation in the theorem.

For p = 5, we have S = {1} for any b ∈ Z, and the set T depends
on b as illustrated by the following table:

b 0 1 2 3 4

T {1} {0} {1} {2} {1} .

For p = 7, we have S = {1, 2} for any b ∈ Z, and the set T
depends on b as illustrated by the following table:

b 0 1 2 3 4 5 6

T {0,1} {1,2} {2,3} {1,2} {2,3} {1,2} {0,1}
.
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Two lemmas

Lemma 1 (Dirichlet). For any prime p ≡ 3 (mod 4), we have

p−1∑
z=1

z

(
z

p

)
= −ph(−p),

where h(−p) is the class number of the imaginary quadratic field
Q(
√
−p).

Lemma 2. For any prime p ≡ 3 (mod 4) with p > 3, there are
x , y , z ∈ {1, . . . , p − 1} such that(

x

p

)
=

(
x + 1

p

)
= 1,

−
(
y

p

)
=

(
y + 1

p

)
= 1,(

z

p

)
= −

(
z + 1

p

)
= 1.
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Proof of the theorem

Let a ∈ {2, . . . , p − 1}. For any x ∈ Z, it is easy to see that{
ax2 + b

p

}
+

{
(1− a)x2

p

}
−
{
x2 + b

p

}
=

{
0 if {x2 + b}p > {ax2 + b}p,
1 if {x2 + b}p < {ax2 + b}p,

where {α} denotes the fractional part of a real number α. Thus

Np(a, b) =

(p−1)/2∑
x=1

(
1 +

{
x2 + b

p

}
−
{
ax2 + b

p

}
−
{

(1− a)x2

p

})

=
p − 1

2
+

p−1
2∑

x=1

{
x2 + b

p

}
−

p−1
2∑

x=1

{
ax2 + b

p

}
−

p−1
2∑

x=1

{
(1− a)x2

p

}

=
p − 1

2
+

p−1∑
x=1

( x
p

)=1

{
x + b

p

}
−

p−1∑
y=1

(
y
p

)=( a
p

)

{
y + b

p

}
−

p−1∑
z=1

( z
p

)=( 1−a
p

)

z

p
.
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Proof of the theorem (continued)

Suppose that ( a
p ) = ε with ε ∈ {±1}. Then

Np(a, b) =
p − 1

2
+

p−1∑
x=1

( xp )=1

{
x + b

p

}
−

p−1∑
y=1

(
y
p )=ε

{
y + b

p

}
−

p−1∑
z=1

( zp )=δε

z

p
,

where δ = (a(1−a)
p ).

If ε = 1, then

Np(a, b) =
p − 1

2
− 1

p

p−1∑
z=1

( zp )=δ

z

does not depend on b.
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Proof of the theorem (continued)

If p ≡ 1 (mod 4), then (−1
p ) = 1 and hence

p−1∑
z=1

( zp )=1

z =

p−1∑
z=1

(
p−z
p )=1

(p − z) = p
p − 1

2
−

p−1∑
z=1

( zp )=1

z ,

thus
p−1∑
z=1

( zp )=1

z = p
p − 1

4

and
p−1∑
z=1

( zp )=−1

z =

p−1∑
z=1

z − p
p − 1

4
= p

p − 1

4
.

So, if p ≡ 1 (mod 4), then |S | = |T | = 1, and moreover

S =

{
p − 1

2
− p − 1

4

}
=

{
p − 1

4

}
.
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Proof of the theorem (continued)

Now assume that p ≡ 3 (mod 4). We want to show that
|S | = |T | = 2.

By Lemma 1,
p−1∑
z=1

z

(
z

p

)
= −ph(−p) 6= 0.

Thus
p−1∑
z=1

( zp )=1

z =

p−1∑
z=1

z
1 + ( zp )

2
= p

p − 1

4
− p

2
h(−p)

and hence

p−1∑
z=1

( zp )=−1

z =

p−1∑
z=1

z −
p−1∑
z=1

( zp )=1

z = p
p − 1

4
+

p

2
h(−p).
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Proof of the theorem (continued)

By Lemma 2, for some a ∈ {2, . . . , p − 2} we have

(a−1
p ) = ( a

p ) = 1 and hence (a(1−a)
p ) = −1. For a′ = p + 1− a, we

have (
a′

p

)
= −1 and

(
a′(1− a′)

p

)
=

(
(1− a)a

p

)
= −1.

By Lemma 2, for some a∗, b∗ ∈ {2, . . . , p − 2} we have

−
(
a∗ − 1

p

)
=

(
a∗
p

)
= 1 and

(
b∗ − 1

p

)
= −

(
b∗
p

)
= 1.

Note that (
a∗(1− a∗)

p

)
= 1 =

(
b∗(1− b∗)

p

)
.

Now we clearly have |S | = |T | = 2. Moreover,

S =

{
p − 1

2
−
(
p − 1

4
± h(−p)

2

)}
=

{
p − 1± 2h(−p)

4

}
.
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Part C. Power Residues related to the Tangent Function
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New product formulas for tangent and cotangent functions

Theorem 5. (Z.-W. Sun, arXiv:1908.02155, Publ. Math.
Debrecen.) Let n be any positive odd integer. Then

n−1∏
r=0

(
1 + cotπ

x + r

n

)
=

(
2

n

)
2(n−1)/2

(
1 +

(
−1

n

)
cotπx

)
for all x ∈ C \ Z, and

n−1∏
r=0

(
1 + tanπ

x + r

n

)
=

(
2

n

)
2(n−1)/2

(
1 +

(
−1

n

)
tanπx

)

for all x ∈ C with x − 1/2 6∈ Z, where (−1
n ) and ( 2

n ) are Jacobi
symbols.
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A new class number formula
Theorem 6. (Z.-W. Sun, arXiv:1908.02155, Publ. Math.
Debrecen.) Let p > 3 be a prime and let a ∈ Z with p - a. Then

(p−1)/2∑
k=1

1

cotπ ak2

p − 1
=

(p−1)/2∑
k=1

1

1− tanπ ak2

p

− p − 1

2

=
p

4

((
−1

p

)
− 1

)
+

(
−2a

p

) √
p

2

(p−1)/2∑
k=1

(−1)k
(
k

p

)
.

For any prime p ≡ 1 (mod 4),
∑(p−1)/2

k=1 (kp ) = 0 and hence

(p−1)/2∑
k=1

(−1)k
(
k

p

)
=

(p−1)/2∑
k=1

(1 + (−1)k)

(
k

p

)
=

(
2

p

)
h(−p)

since h(−p)
2 =

∑
0<k<p/4(kp ), therefore we have

h(−p) =
2
√
p

(p−1)/2∑
k=1

1

cotπ k2

p − 1
.
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On
∏(p−1)/2

k=1 (1 + tan π ak2

p ) and
∏(p−1)/2

k=1 (1 + cot π ak2

p )

Theorem 7. (Z.-W. Sun, arXiv:1908.02155) Let p be an odd
prime and let a ∈ Z with p - a. Let εp and h(p) be the fundamental
unit and the class number of the field Q(

√
d) respectively.

(i) If p ≡ 1 (mod 8), then

(p−1)/2∏
k=1

(
1 + tanπ

ak2

p

)
=(−1)|{16k< p

4
: ( k

p
)=1}|2(p−1)/4,

(p−1)/2∏
k=1

(
1 + cotπ

ak2

p

)
=(−1)|{16k< p

4
: ( k

p
)=1}| 2

(p−1)/4

√
p

ε
( a
p

)h(p)
p .

If p ≡ 5 (mod 8), then

(p−1)/2∏
k=1

(
1 + tanπ

ak2

p

)
=(−1)|{16k< p

4
: ( k

p
)=−1}|2(p−1)/4

(
a

p

)
ε
−3( a

p
)h(p)

p ,

(p−1)/2∏
k=1

(
1 + cotπ

ak2

p

)
=(−1)|{16k< p

4
: ( k

p
)=1}|

(
a

p

)
2(p−1)/4

√
p

.
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Part (ii) of Theorem 7

(ii) Suppose that p ≡ 3 (mod 4) and write ε
h(p)
p = ap + bp

√
p

with ap and bp positive integers. Set

sp =
√
ap + (−1)(p+1)/4 and tp =

bp
sp
.

Then

(p−1)/2∏
k=1

(
1 + tanπ

ak2

p

)
= (−1)δp,3+b p+1

8 c+
h(−p)+1

2 · p+1
4 2

p−3
4

(
sp +

(
a

p

)
tp
√
p

)
,

where the Kronecker symbol δp,3 takes 1 or 0 according as p = 3
or not. Also,

(p−1)/2∏
k=1

(
1 + cotπ

ak2

p

)
= (−1)b

p−3
8 c+

h(−p)−1
2 · p−3

4 2
p−3

4

(
tp +

(
a

p

)
sp√
p

)
.
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On
∏(p−1)/2

k=1 (i − e2πik2/p)

For an odd prime p, we define

Gp(x) :=

(p−1)/2∏
k=1

(x − e2πik2/p).

In the case p ≡ 3 (mod 4), Dirichlet realized that
(i − ( 2

p ))Gp(i) ∈ Z[
√
p], and K. S. Williams [J. Number Theory 15

(1982)] determined the exact value of Gp(±i). To prove Theorem
5, we also need to determine Gp(±i) in the case p ≡ 1 (mod 4).

Theorem 8 (Z.-W. Sun, arXiv:1908.02155, Publ. Math.
Debrecen) Let p ≡ 1 (mod 4) be a prime. If p ≡ 1 (mod 8), then

Gp(i) = (−1)
p−1

8
+|{1≤k< p

4
: ( k

p
)=1}|

.

If p ≡ 5 (mod 8), then

Gp(i) = i(−1)
p−5

8
+|{1≤k< p

4
: ( k

p
)=1}|

ε
−h(p)
p .
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On Gp(±ω) with p ≡ 1 (mod 4)

Let ω := e2πi/3 = (−1 +
√
−3)/2.

Theorem 9 (Z.-W. Sun, arXiv:1908.02155, Publ. Math.
Debrecen) Let p ≡ 1 (mod 4) be a prime. Then

(−1)|{16k6b p+1
3
c: ( k

p
)=−1}|Gp(ω) =

{
1 if p ≡ 1 (mod 12),

ωε
h(p)
p if p ≡ 5 (mod 12);

Gp(−ω) =


1 if p ≡ 1 (mod 12),

−ωε−2h(p)
p if p ≡ 5 (mod 24),

ω if p ≡ 17 (mod 24).

A Key Lemma. Let p ≡ 1 (mod 4) be a prime. Then

(−1)|{16k< p
3

: ( k
p

)=−1}|(−3)(p−1)/4 ≡

{
1 (mod p) if 12 | p − 1,
p−1

2 ! (mod p) if 12 | p − 5,

where h(−3p) is the class number of the field Q(
√
−3p).
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On Gp(ω) with p ≡ 3 (mod 4)

Conjecture 4 (Z.-W. Sun, arXiv:1908.02155, Publ. Math.
Debrecen). Let p > 3 be a prime with p ≡ 3 (mod 4). Then

Gp(ω±1) =(−1)(h(−p)+1)/2
(p

3

) xp
√

3∓ yp
√
p

2

×

{
i±1 if p ≡ 7 (mod 12),

(−1)|{1≤k<
p
3

: ( k
p

)=1}|(iω)±1 if p ≡ 11 (mod 12),

where (xp, yp) is the least positive integer solution to the
diophantine equation 3x2 + 4(p3 ) = py2.

Example. For the primes p = 79, 227, Conjecture 4 predicts that

G79(ω) = i

√
79− 5

√
3

2
and G227(ω) = iω(1338106

√
3−153829

√
227).
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On Gp(ζ) with ζ10 = 1

Conjecture 5 (Z.-W. Sun, arXiv:1908.02155, Publ. Math.
Debrecen). Let ζ be any primitive tenth root of unity. Then

(p−1)/2∏
k=1

(ζ − e2πik2/p) = (−1)|{1≤k≤
p+9
10

: ( k
p

)=−1}|

for each prime p ≡ 21 (mod 40), and

(p−1)/2∏
k=1

(ζ − e2πik2/p) = (−1)|{1≤k≤
p+1
10

: ( k
p

)=−1}|
ζ2

for any prime p ≡ 29 (mod 40).
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mth power residues modulo primes

Let m ∈ Z+ = {1, 2, 3, . . .}, and let p be a prime with p ≡ 1
(mod m). If a ∈ Z is not divisible by p, and xm ≡ a (mod p) for
some integer x , then a is called an mth power residue modulo p.
The set

Rm(p) = {k ∈ {1, . . . , p−1} : k is an mth power residue modulo p}

has cardinality (p − 1)/m.

For an integer a 6≡ 0 (mod p), the mth power residue symbol ( a
p )m

is a unique mth root ζ of unity such that

a(p−1)/m ≡ ζ (mod p)

in the ring of all algebraic integers. (Note that a primitive root g
modulo p has order p − 1 which is a multiple of m.) In particular,(

−1

p

)
m

= (−1)(p−1)/m.
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Our main result
Theorem 10 (Z.-W. Sun, arXiv:2208.05928, Czechslovak Math.
J.) Let m ∈ Z+, and let p be a prime with p ≡ 1 (mod 2m).
Suppose that 2 is an mth power residue modulo p. For any integer
a not divisible by p, we have∏
k∈Rm(p)

(
1 + tanπ

ak

p

)
=

(
−2

p

)
2m

(−2)(p−1)/(2m) =

(
2

p

)
2m

2(p−1)/(2m).

Corollary 2. Let p = x2 + 27y2 be a prime with x , y ∈ Z+. For
any integer a 6≡ 0 (mod p), we have∏

k∈R3(p)

(
1 + tanπ

ak

p

)
= (−1)xy/2(−2)(p−1)/6.

Corollary 3. Let p = x2 + 64y2 be a prime with x , y ∈ Z+. For
any integer a 6≡ 0 (mod p), we have∏

k∈R4(p)

(
1 + tanπ

ak

p

)
= (−1)y (−2)(p−1)/8.
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An auxiliary theorem

Theorem 11 (Z.-W. Sun, arXiv:2208.05928, Czechslovak Math.
J.). Let m be a positive integer, and let p be a prime with p ≡ 1
(mod 2m). Suppose that 2 is an mth power residue modulo p. For
any integer a 6≡ 0 (mod p), we have∏

k∈Rm(p)

(i − e2πiak/p) =

(
−2

p

)
2m

i (p−1)/(2m)

and ∏
k∈Rm(p)

(i + e2πiak/p) =

(
2

p

)
2m

i (p−1)/(2m).

Remark. The two identities in the theorem are equivalent.

Lemma. Let m be a positive integer, and let p be a prime with
p ≡ 1 (mod 2m). Then we have∑

k∈Rm(p)

k =
p(p − 1)

2m
.
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Proof of the first identity Theorem 11

Let c :=
∏

k∈Rm(p)

(
i − e2πiak/p

)
. As k ∈ Z is an mth power

residue modulo p if and only if −k is an mth power residue modulo
p, we also have c =

∏
k∈Rm(p)

(
i − e2πia(−k)/p

)
. Thus

c2 =
∏

k∈Rm(p)

(
i − e2πiak/p

)(
i − e−2πiak/p

)
=

∏
k∈Rm(p)

(
i2 + 1− i

(
e2πiak/p + e−2πiak/p

))
= (−i)|Rm(p)|

∏
k∈Rm(p)

(
e2πiak/p + e−2πiak/p

)
= (−i)(p−1)/m

∏
k∈Rm(p)

e−2πiak/p
(

1 + e4πiak/p
)

= (−1)(p−1)/(2m)e−2πi
∑

k∈Rm(p) ak/p
∏

k∈Rm(p)

1− e2πia(4k)/p

1− e2πia(2k)/p
.
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Proof of the first identity in Theorem 11

Note that

e−2πi
∑

k∈Rm(p) ak/p = e−2πia(p−1)/(2m) = 1

by the lemma. As 2 is an mth power residue modulo p, we also
have ∏

k∈Rm(p)

(
1− e2πiak/p

)
=

∏
k∈Rm(p)

(
1− e2πia(2k)/p

)
=

∏
k∈Rm(p)

(
1− e2πia(4k)/p

)
.

Combining the above, we see that

c2 = (−1)(p−1)/(2m) × 1× 1 = (−1)(p−1)/(2m).
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Proof of the first identity in Theorem 11

Write c = δi (p−1)/(2m) with δ ∈ {±1}. In the ring of all algebraic
integers, we have

cp =
∏

k∈Rm(p)

(i − e2πiak/p)p

≡
∏

k∈Rm(p)

(ip − 1) = (ip − 1)(p−1)/m

= ((ip − 1)2)(p−1)/(2m) = (−2ip)(p−1)/(2m) (mod p).

Thus

δip(p−1)/(2m) = cp ≡ (−2)(p−1)/(2m)ip(p−1)/(2m) (mod p)

and hence

δ ≡ (−2)(p−1)/(2m) ≡
(
−2

p

)
2m

(mod p).

Therefore δ = (−2
p )2m and hence c = (−2

p )2mi
(p−1)/(2m) as desired.
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