A talk given at *the Int. Chengdu Number Theory Confer.* (December 10-12, 2022)

New Results on Power Residues modulo Primes

Zhi-Wei Sun

Nanjing University, Nanjing 210093, P. R. China zwsun@nju.edu.cn http://math.nju.edu.cn/~zwsun

December 12, 2022

Abstract

In this talk we introduce some new results on power residues modulo primes.

Let p be an odd prime, and let a be an integer not divisible by p. When m is a positive integer with $p \equiv 1 \pmod{2m}$ and 2 is an mth power residue modulo p, the speaker determines the value of the product $\prod_{k \in R_m(p)} (1 + \tan \pi \frac{ak}{p})$, where

 $R_m(p) = \{ 0 < k < p : k \in \mathbb{Z} \text{ is an } m \text{th power residue modulo } p \}.$

Let p > 3 be a prime. Let $b \in \mathbb{Z}$ and $\varepsilon \in \{\pm 1\}$. Joint with Q.-.H. Hou and H. Pan, we prove that

$$\left|\left\{N_p(a,b): 1 < a < p \text{ and } \left(\frac{a}{p}\right) = \varepsilon\right\}\right| = \frac{3 - \left(\frac{-1}{p}\right)}{2},$$

where $N_p(a, b)$ is the number of positive integers x < p/2 with $\{x^2 + b\}_p > \{ax^2 + b\}_p$, and $\{m\}_p$ with $m \in \mathbb{Z}$ is the least nonnegative residue of m modulo p.

We will also mention some open conjectures.

Part A. Two Products related to Quadratic and Quartic Residues

The product $S_p(a, b, c)$ in the case $p \nmid ac(a + b + c)$

For $a, b, c \in \mathbb{Z}$, how to determine

$$S_p(a,b,c) := \prod_{\substack{1 \leqslant i < j \leqslant p-1 \ p \nmid a^i^2 + bij + cj^2}} (ai^2 + bij + cj^2)$$

modulo an odd prime p. This may be viewed as an analogue problem of Wilson's theorem for binary quadratic forms.

Theorem 1 (Z.-W. Sun [Finite Fields Appl. 59(2019)]). Let $a, b, c \in \mathbb{Z}$ with $ac(a + b + c) \not\equiv 0 \pmod{p}$, and set $\Delta = b^2 - 4ac$. Then

$$S_p(a,b,c) \equiv egin{cases} (rac{a(a+b+c)}{p}) \pmod{p} & ext{if } p \mid \Delta, \ -(rac{ac(a+b+c)\Delta}{p}) \pmod{p} & ext{if } p \nmid \Delta, \end{cases}$$

where $\left(\frac{1}{n}\right)$ is the Legendre symbol.

Remark. I first found this result via a computer.

 $S_p(a, b, c) \mod p$ in the case $p \mid ac(a+b+c)$

Theorem 2 (Z.-W. Sun [Int. J. Number Theory 16(2020), 1833-1858]). Let p be an odd prime. In the case $p \mid ac(a+b+c)$, we have

$$S_{p}(a, b, c) \equiv \begin{cases} 0 \pmod{p} & \text{if } p \mid a, \ p \mid b \& \ p \mid c, \\ -\left(\frac{-a}{p}\right) \pmod{p} & \text{if } p \nmid a, \ p \mid b \& \ p \mid c, \\ -\left(\frac{b}{p}\right) \pmod{p} & \text{if } p \mid a, \ p \nmid b \& \ p \mid c, \\ -\left(\frac{-b}{p}\right) \pmod{p} & \text{if } p \mid a, \ p \nmid b \& \ p \nmid c, \\ -\left(\frac{-c}{p}\right) \pmod{p} & \text{if } p \mid a, \ p \mid b \& \ p \nmid c, \\ -\left(\frac{-a}{p}\right) \pmod{p} & \text{if } p \mid a, \ p \nmid b \& \ p \mid c, \\ -\left(\frac{-a}{p}\right) \pmod{p} & \text{if } p \nmid ab, \ p \mid a + b \& \ p \mid c, \\ -\left(\frac{-a}{p}\right) \pmod{p} & \text{if } p \nmid ac, \ p \mid a - c, \ p \mid a + b + c, \\ \left(\frac{-ac}{p}\right) \pmod{p} & \text{if } p \nmid ac(a - c) \& \ p \mid a + b + c, \\ \left(\frac{-a(a+b)}{p}\right) \pmod{p} & \text{if } p \nmid ab(a+b) \& \ p \mid c, \\ \left(\frac{-c(b+c)}{p}\right) \pmod{p} & \text{if } p \mid a \& \ p \nmid bc(b+c). \end{cases}$$

Gauss' Lemma and Jenkins' extension

Gauss' Lemma. For any odd prime p and integer $x \not\equiv 0 \pmod{p}$, we have

$$\left(\frac{x}{p}\right) = (-1)^{|\{1 \le k < p/2: \{kx\}_p > p/2\}|},$$

where $\{x\}_n$ denotes the least nonnegative integer r with $x \equiv r \pmod{n}$.

This was extended to Jacobi symbols by M. Jenkins in 1867.

Jenkins (1867): For any positive odd integer n and integer x with gcd(x, n) = 1, we have

$$\left(\frac{x}{n}\right) = (-1)^{|\{1 \le k < n/2: \{kx\}_n > n/2\}|},$$

where $\left(\frac{\cdot}{n}\right)$ is the Jacobi symbol.

An auxiliary theorem

Auxiliary Theorem (Z.-W. Sun [Int. J. Number Theory 16(2020), 1833-1858]). Let *n* be a positive odd integer, and let $x \in \mathbb{Z}$ with gcd(x(1-x), n) = 1. Then

$$(-1)^{|\{1 \leq k < n/2: \{kx\}_n > k\}|} = \left(\frac{2x(1-x)}{n}\right).$$

Also,

$$(-1)^{|\{1 \le k < n/2: \{kx\}_n > n/2 \& \{k(1-x)\}_n > n/2\}|} = \left(\frac{2}{n}\right),$$

$$(-1)^{|\{1 \le k < n/2: \{kx\}_n < n/2 \& \{k(1-x)\}_n < n/2\}|} = \left(\frac{2x(x-1)}{n}\right),$$

and

$$(-1)^{|\{1 \leq k < n/2: \{kx\}_n > n/2 > \{k(1-x)\}_n\}|} = \left(\frac{2x}{n}\right).$$

Lucas sequences

For any $A \in \mathbb{Z}$, we define the Lucas sequences $\{u_n(A)\}_{n \ge 0}$ and $\{v_n(A)\}_{n \ge 0}$ by

$$u_0(A) = 0, \; u_1(A) = 1, \; ext{and} \; u_{n+1}(A) = A u_n(A) + u_{n-1}(A) \; ext{for} \; n \in \mathbb{Z}^+,$$

and

$$v_0(A) = 2, \; v_1(A) = A, \; ext{and} \; v_{n+1}(A) = A v_n(A) + v_{n-1}(A) \; ext{for} \; n \in \mathbb{Z}^+.$$

It is well known that

$$u_n(A) = rac{lpha^n - eta^n}{lpha - eta}$$
 and $v_n(A) = lpha^n + eta^n$

for all $n \in \mathbb{N} = \{0, 1, 2, \ldots\}$, where

$$\alpha = \frac{A + \sqrt{A^2 + 4}}{2}$$
 and $\beta = \frac{A - \sqrt{A^2 + 4}}{2}$.

 $T_p(a, b, c)$

Let p be an odd prime. The speaker introduced for $a, b, c \in \mathbb{Z}$ the product

$$T_{p}(a,b,c) := \prod_{\substack{i,j=1 \ p \mid ai^{2}+bij+cj^{2}}}^{(p-1)/2} (ai^{2}+bij+cj^{2}),$$

and determined $T_p(a, b, c) \mod p$ in the case a + c = 0.

On $T_p(1, -A, -1) \mod p$

Theorem 3 (Z.-W. Sun [Int. J. Number Theory 16(2020)]). Let p be an odd prime and let $A \in \mathbb{Z}$.

(i) Suppose that $p \mid (A^2 + 4)$. Then $4 \mid p - 1$, $\frac{A}{2} \equiv (-1)^k \frac{p-1}{2}!$ (mod p) for some $k \in \{0, 1\}$, and

$$T_{p}(1, -A, -1) \equiv \begin{cases} (-1)^{(p+7)/8} \frac{p-1}{2}! \pmod{p} & \text{if } 8 \mid p-1, \\ (-1)^{k+(p-5)/8} \pmod{p} & \text{if } 8 \mid p-5. \end{cases}$$

(ii) When $\left(\frac{A^2+4}{p}\right) = 1$, we have

$$T_{p}(1, -A, -1) \equiv \begin{cases} -(A^{2} + 4)^{\frac{p-1}{4}} \pmod{p} & \text{if } 4 \mid p-1, \\ -(A^{2} + 4)^{\frac{p+1}{4}} u_{(p-1)/2}(A)/2 \pmod{p} & \text{if } 4 \mid p-3. \end{cases}$$

(iii) When $\left(\frac{A^2+4}{p}\right) = -1$, we have

$$T_{p}(1, -A, -1) \equiv \begin{cases} (-A^{2} - 4)^{\frac{p-1}{4}} \pmod{p} & \text{if } 4 \mid p-1, \\ (-A^{2} - 4)^{\frac{p+1}{4}} u_{(p+1)/2}(A)/2 \pmod{p} & \text{if } 4 \mid p-3. \end{cases}$$

A corollary

Corollary 1. Let p be an odd prime.

 $(i)\ \mbox{We}\ \mbox{have}$

$$T_{p}(1,-1,-1) \equiv \begin{cases} -5^{(p-1)/4} \pmod{p} & \text{if } p \equiv 1,9 \pmod{20}, \\ (-5)^{(p-1)/4} \pmod{p} & \text{if } p \equiv 13,17 \pmod{20}, \\ (-1)^{\lfloor (p-10)/20 \rfloor} \pmod{p} & \text{if } p \equiv 3,7 \pmod{20}, \\ (-1)^{\lfloor (p-5)/10 \rfloor} \pmod{p} & \text{if } p \equiv 11,19 \pmod{20}. \end{cases}$$

 (ii) We have

$$T_p(1,-2,-1) \equiv \begin{cases} -2^{(p-1)/4} \pmod{p} & \text{if } p \equiv 1 \pmod{8}, \\ 2^{(p-1)/4} \pmod{p} & \text{if } p \equiv 5 \pmod{8}, \\ (-1)^{(p-3)/8} \pmod{p} & \text{if } p \equiv 3 \pmod{8}, \\ (-1)^{(p-7)/8} \pmod{p} & \text{if } p \equiv 7 \pmod{8}. \end{cases}$$

An open conjecture

Recall that

$${\mathcal T}_p(a,b,c) := \prod_{i,j=1 \ p
eq i a^{i^2 + bij} + cj^2}^{(p-1)/2} (ai^2 + bij + cj^2).$$

Conjecture 1 (Z.-W. Sun [Int. J. Number Theory 16(2020)]). For any prime $p \equiv 1 \pmod{12}$, we have

$$T_p(1,\pm 4,1) \equiv -3^{(p-1)/4} \pmod{p}.$$

Remark. K.S. Williams and J.D. Currie [Canad. J. Math. 34(1982)] showed that for any prime $p \equiv 1 \pmod{4}$ we have

$$(-3)^{(p-1)/4} \equiv \begin{cases} (-1)^{h(-3p)/4} \pmod{p} & \text{if } p \equiv 1 \pmod{12}, \\ (-1)^{(h(-3p)-2)/4} \frac{p-1}{2}! \pmod{p} & \text{if } p \equiv 5 \pmod{12}, \end{cases}$$

where h(-d) denotes the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{-d})$.

Two more conjectures

1

Conjecture 2 (Z.-W. Sun, May 2022). For any prime $p \equiv 1 \pmod{8}$, we have

$$\prod_{\substack{\leq i,j \leq (p-1)/2 \\ p \nmid i^2 + 6ij + j^2}} (i^2 + 6ij + j^2) \equiv -2^{(p-1)/4} \pmod{p}$$

and

$$\prod_{\substack{1 \le i, j \le (p-1)/2 \\ p \nmid i^2 - 6ij + j^2}} (i^2 - 6ij + j^2) \equiv -2^{(p-1)/4} \pmod{p}.$$

Conjecture 3 (Z.-W. Sun, May 2022). Let p be a prime with $p \equiv 1 \pmod{8}$, and write $p = x^2 + 2y^2$ with $x, y \in \mathbb{Z}$ and $x \equiv 1 \pmod{4}$. Then

$$\prod_{\substack{1 \le i,j \le (p-1)/2 \\ p \nmid i^2 + 4ij + 2j^2}} (i^2 + 4ij + 2j^2) \equiv (-1)^{(x+3)/4} 2^{(p-1)/4} \pmod{p},$$

$$\prod_{\substack{1 \le i,j \le (p-1)/2 \\ p \mid i^2 - 4ij + 2j^2}} (i^2 - 4ij + 2j^2) \equiv (-1)^{(x+3)/4} 2^{(p-1)/4} \pmod{p}.$$

Part B. New Results on Quadratic Residues

A mysterious discovery on Sept. 15, 2018

Let p = 2n + 1 be an odd prime, and let $a_1 < ... < a_n$ be all the quadratic residues modulo p among 1, ..., p - 1. It is well known that $\{1^2\}_p, ..., \{n^2\}_p$ is a permutation of $a_1, ..., a_n$. Let π_p denote this permutation. What's the sign of the permutation π_p ?

On Sept. 14, 2018, I made computation via Mathematica but could not see any pattern. Then I thought that perhaps $sign(\pi_p)$ is distributed randomly.

After I waked up in the early morning of Sept. 15, 2018, I thought that it would be very interesting if $sign(\pi_p)$ obeys certain pattern. Thus, I computed and analyzed $sign(\pi_p)$ once again. This led to the following surprising discovery.

Conjecture (Z.-W. Sun, Sept. 15, 2018). Let $p \equiv 3 \pmod{4}$ be a prime and let h(-p) be the class number of $\mathbb{Q}(\sqrt{-p})$. Then

$$\operatorname{sign}(\pi_p) = \begin{cases} 1 & \text{if } p \equiv 3 \pmod{8}, \\ (-1)^{(h(-p)+1)/2} & \text{if } p \equiv 7 \pmod{8}. \end{cases}$$

An example

For the prime p = 11,

$$({1^2}_{11}, \ldots, {5^2}_{11}) = (1, 4, 9, 5, 3),$$

 $\quad \text{and} \quad$

$$\{ (j,k): 1 \leq j < k \leq 5 \& \{j^2\}_{11} > \{k^2\}_{11} \}$$

= $\{ (2,5), (3,4), (3,5), (4,5) \}.$

Thus

$$sign(\pi_{11}) = (-1)^4 = 1.$$

Determination of sign(π_p) for $p \equiv 3 \pmod{4}$

Theorem 4 (Z.-W. Sun [Finite Fields Appl. 59(2019), 246-283]). Let p be a prime with $p \equiv 3 \pmod{4}$. Then

$$\operatorname{sign}(\pi_p) = \begin{cases} 1 & \text{if } p \equiv 3 \pmod{8}, \\ (-1)^{(h(-p)+1)/2} & \text{if } p \equiv 7 \pmod{8}. \end{cases}$$

Moreover, for any $a \in \mathbb{Z}$ with $p \nmid a$, we have

$$\prod_{1 \le j < k \le (p-1)/2} \csc \pi \frac{a(k^2 - j^2)}{p} = \prod_{1 \le j < k \le (p-1)/2} \left(\cot \pi \frac{aj^2}{p} - \cot \pi \frac{ak^2}{p} \right)$$
$$= \begin{cases} (2^{p-1}/p)^{(p-3)/8} & \text{if } p \equiv 3 \pmod{8}, \\ (-1)^{(h(-p)+1)/2} (\frac{a}{p}) (2^{p-1}/p)^{(p-3)/8} & \text{if } p \equiv 7 \pmod{8}, \end{cases}$$

Remark. Note that for $1 \leq j < k \leq (p-1)/2$ we have

$$\{j^2\}_p>\{k^2\}_p\iff \cot\pi\frac{j^2}{p}<\cot\pi\frac{k^2}{p}$$

Our proof of the theorem involves Galois theory.

The function $N_p(a, b)$

Motivated by the above work of Sun, for an odd prime p and integers a and b, Q.-H. Hou and Z.-W. Sun introduced in 2018 the notation

$$N_p(a,b) := \left| \left\{ 1 \leqslant x \leqslant \frac{p-1}{2} : \{x^2 + b\}_p > \{ax^2 + b\}_p \right\} \right|.$$

Example. We have $N_7(4,0) = 2$ since

$$\{1^2\}_7 < \{4\times 1^2\}_7, \ \{2^2\}_7 > \{4\times 2^2\}_7 \text{ and } \{3^2\}_7 > \{4\times 3^2\}_7.$$

Let *p* be a prime with $p \equiv 1 \pmod{4}$. Then $q^2 \equiv -1 \pmod{p}$ for some integer *q*, hence for $a, x \in \mathbb{Z}$ we have $\{(qx)^2\}_p > \{a(qx)^2\}_p$ if and only if $\{x^2\}_p < \{ax^2\}_p$. Thus, for each $a = 2, \ldots, p-1$ there are exactly (p-1)/4 positive integers x < p/2 such that $\{x^2\}_p > \{ax^2\}_p$. Therefore $N_p(a,0) = (p-1)/4$ for all $a = 2, \ldots, p-1$. A joint work with Q.-H. Hou and H. Pan

The following result was originally conjectured by Q.-H. Hou and Z.-W. Sun in 2018.

Theorem 5 (Q.-H. Hou, H. Pan and Z.-W. Sun [C. R. Math. Acad. Sci. Paris, 360(2022)]) Let p > 3 be a prime, and let b be any integer. Set

$$S = \left\{ N_p(a, b): \ 1 < a < p \text{ and } \left(rac{a}{p}
ight) = 1
ight\}$$

and

$$T = \left\{ N_p(a,b): \ 1 < a < p ext{ and } \left(rac{a}{p}
ight) = -1
ight\}.$$

Then |S| = |T| = 1 if $p \equiv 1 \pmod{4}$, and |S| = |T| = 2 if $p \equiv 3 \pmod{4}$. Moreover, the set S does not depend on the value of b.

Examples

Let's adopt the notation in the theorem.

For p = 5, we have $S = \{1\}$ for any $b \in \mathbb{Z}$, and the set T depends on b as illustrated by the following table:

b	0	1	2	3	4
Т	{1}	{0}	$\{1\}$	{2}	{1}

For p = 7, we have $S = \{1, 2\}$ for any $b \in \mathbb{Z}$, and the set T depends on b as illustrated by the following table:

b	0	1	2	3	4	5	6
Т	{0,1}	{1,2}	{2,3}	{1,2}	{2,3}	{1,2}	{0,1}

Two lemmas

Lemma 1 (Dirichlet). For any prime $p \equiv 3 \pmod{4}$, we have

$$\sum_{z=1}^{p-1} z\left(\frac{z}{p}\right) = -ph(-p),$$

where h(-p) is the class number of the imaginary quadratic field $\mathbb{Q}(\sqrt{-p})$.

Lemma 2. For any prime $p \equiv 3 \pmod{4}$ with p > 3, there are $x, y, z \in \{1, \dots, p-1\}$ such that

$$\begin{pmatrix} x \\ p \end{pmatrix} = \begin{pmatrix} x+1 \\ p \end{pmatrix} = 1,$$

$$- \begin{pmatrix} y \\ p \end{pmatrix} = \begin{pmatrix} y+1 \\ p \end{pmatrix} = 1,$$

$$\begin{pmatrix} z \\ p \end{pmatrix} = - \begin{pmatrix} z+1 \\ p \end{pmatrix} = 1.$$

Proof of the theorem

Let
$$a \in \{2, \dots, p-1\}$$
. For any $x \in \mathbb{Z}$, it is easy to see that

$$\left\{\frac{ax^2+b}{p}\right\} + \left\{\frac{(1-a)x^2}{p}\right\} - \left\{\frac{x^2+b}{p}\right\}$$

$$= \begin{cases} 0 & \text{if } \{x^2+b\}_p > \{ax^2+b\}_p, \\ 1 & \text{if } \{x^2+b\}_p < \{ax^2+b\}_p, \end{cases}$$

where $\{\alpha\}$ denotes the fractional part of a real number $\alpha.$ Thus

$$\begin{split} N_{p}(a,b) &= \sum_{x=1}^{(p-1)/2} \left(1 + \left\{ \frac{x^{2}+b}{p} \right\} - \left\{ \frac{ax^{2}+b}{p} \right\} - \left\{ \frac{(1-a)x^{2}}{p} \right\} \right) \\ &= \frac{p-1}{2} + \sum_{x=1}^{\frac{p-1}{2}} \left\{ \frac{x^{2}+b}{p} \right\} - \sum_{x=1}^{\frac{p-1}{2}} \left\{ \frac{ax^{2}+b}{p} \right\} - \sum_{x=1}^{\frac{p-1}{2}} \left\{ \frac{(1-a)x^{2}}{p} \right\} \\ &= \frac{p-1}{2} + \sum_{x=1}^{p-1} \left\{ \frac{x+b}{p} \right\} - \sum_{x=1}^{\frac{p-1}{2}} \left\{ \frac{y+b}{p} \right\} - \sum_{x=1}^{\frac{p-1}{2}} \frac{z}{p}. \end{split}$$

Suppose that $\left(\frac{a}{p}\right) = \varepsilon$ with $\varepsilon \in \{\pm 1\}$. Then

$$N_p(a,b) = \frac{p-1}{2} + \sum_{\substack{x=1\\ (\frac{x}{p})=1}}^{p-1} \left\{\frac{x+b}{p}\right\} - \sum_{\substack{y=1\\ (\frac{y}{p})=\varepsilon}}^{p-1} \left\{\frac{y+b}{p}\right\} - \sum_{\substack{z=1\\ (\frac{z}{p})=\delta\varepsilon}}^{p-1} \frac{z}{p},$$

where $\delta = \left(\frac{a(1-a)}{p}\right)$. If $\varepsilon = 1$, then $N_p(a, b) = \frac{p-1}{2} - \frac{1}{p} \sum_{\substack{z=1\\ (\frac{z}{p})=\delta}}^{p-1} z$

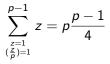
does not depend on b.

(

If $p \equiv 1 \pmod{4}$, then $\left(\frac{-1}{p}\right) = 1$ and hence

$$\sum_{\substack{z=1\\p \neq j=1}}^{p-1} z = \sum_{\substack{z=1\\(\frac{p-z}{p})=1}}^{p-1} (p-z) = p \frac{p-1}{2} - \sum_{\substack{z=1\\(\frac{z}{p})=1}}^{p-1} z,$$

thus



and

$$\sum_{\substack{z=1\\ \binom{p}{2}=-1}}^{p-1} z = \sum_{z=1}^{p-1} z - p \frac{p-1}{4} = p \frac{p-1}{4}.$$

So, if $p \equiv 1 \pmod{4}$, then $|S| = |\mathcal{T}| = 1$, and moreover

$$S = \left\{\frac{p-1}{2} - \frac{p-1}{4}\right\} = \left\{\frac{p-1}{4}\right\}.$$

Now assume that $p \equiv 3 \pmod{4}$. We want to show that |S| = |T| = 2.

By Lemma 1,

$$\sum_{z=1}^{p-1} z\left(\frac{z}{p}\right) = -ph(-p) \neq 0.$$

Thus

$$\sum_{\substack{z=1\\ (\frac{z}{p})=1}}^{p-1} z = \sum_{z=1}^{p-1} z \frac{1 + (\frac{z}{p})}{2} = p \frac{p-1}{4} - \frac{p}{2}h(-p)$$

and hence

$$\sum_{\substack{z=1\\ (\frac{p}{p})=-1}}^{p-1} z = \sum_{z=1}^{p-1} z - \sum_{\substack{z=1\\ (\frac{p}{p})=1}}^{p-1} z = p \frac{p-1}{4} + \frac{p}{2}h(-p).$$

By Lemma 2, for some $a \in \{2, \ldots, p-2\}$ we have $\left(\frac{a-1}{p}\right) = \left(\frac{a}{p}\right) = 1$ and hence $\left(\frac{a(1-a)}{p}\right) = -1$. For a' = p + 1 - a, we have

$$\left(\frac{a'}{p}\right) = -1 \text{ and } \left(\frac{a'(1-a')}{p}\right) = \left(\frac{(1-a)a}{p}\right) = -1.$$

By Lemma 2, for some $a_*, b_* \in \{2, \dots, p-2\}$ we have

$$-\left(\frac{a_*-1}{p}\right) = \left(\frac{a_*}{p}\right) = 1$$
 and $\left(\frac{b_*-1}{p}\right) = -\left(\frac{b_*}{p}\right) = 1.$

Note that

$$\left(rac{a_*(1-a_*)}{p}
ight)=1=\left(rac{b_*(1-b_*)}{p}
ight)$$

Now we clearly have |S| = |T| = 2. Moreover,

$$S = \left\{ \frac{p-1}{2} - \left(\frac{p-1}{4} \pm \frac{h(-p)}{2} \right) \right\} = \left\{ \frac{p-1 \pm 2h(-p)}{4} \right\}$$

Part C. Power Residues related to the Tangent Function

New product formulas for tangent and cotangent functions

Theorem 5. (Z.-W. Sun, arXiv:1908.02155, Publ. Math. Debrecen.) Let *n* be any positive odd integer. Then

$$\prod_{r=0}^{n-1} \left(1 + \cot \pi \frac{x+r}{n} \right) = \left(\frac{2}{n}\right) 2^{(n-1)/2} \left(1 + \left(\frac{-1}{n}\right) \cot \pi x \right)$$

for all $x \in \mathbb{C} \setminus \mathbb{Z}$, and

$$\prod_{r=0}^{n-1} \left(1 + \tan \pi \frac{x+r}{n} \right) = \left(\frac{2}{n}\right) 2^{(n-1)/2} \left(1 + \left(\frac{-1}{n}\right) \tan \pi x \right)$$

for all $x \in \mathbb{C}$ with $x - 1/2 \notin \mathbb{Z}$, where $\left(\frac{-1}{n}\right)$ and $\left(\frac{2}{n}\right)$ are Jacobi symbols.

A new class number formula

Theorem 6. (Z.-W. Sun, arXiv:1908.02155, Publ. Math. Debrecen.) Let p > 3 be a prime and let $a \in \mathbb{Z}$ with $p \nmid a$. Then

$$\sum_{k=1}^{(p-1)/2} \frac{1}{\cot \pi \frac{ak^2}{p} - 1} = \sum_{k=1}^{(p-1)/2} \frac{1}{1 - \tan \pi \frac{ak^2}{p}} - \frac{p-1}{2}$$
$$= \frac{p}{4} \left(\left(\frac{-1}{p} \right) - 1 \right) + \left(\frac{-2a}{p} \right) \frac{\sqrt{p}}{2} \sum_{k=1}^{(p-1)/2} (-1)^k \left(\frac{k}{p} \right).$$

For any prime $p \equiv 1 \pmod{4}$, $\sum_{k=1}^{(p-1)/2} \left(\frac{k}{p}\right) = 0$ and hence

$$\sum_{k=1}^{(p-1)/2} (-1)^k \left(\frac{k}{p}\right) = \sum_{k=1}^{(p-1)/2} (1+(-1)^k) \left(\frac{k}{p}\right) = \left(\frac{2}{p}\right) h(-p)$$

since $\frac{h(-p)}{2} = \sum_{0 < k < p/4} (\frac{k}{p})$, therefore we have

$$h(-p) = \frac{2}{\sqrt{p}} \sum_{k=1}^{(p-1)/2} \frac{1}{\cot \pi \frac{k^2}{p} - 1}$$

On
$$\prod_{k=1}^{(p-1)/2} (1 + \tan \pi \frac{ak^2}{p})$$
 and $\prod_{k=1}^{(p-1)/2} (1 + \cot \pi \frac{ak^2}{p})$

Theorem 7. (Z.-W. Sun, arXiv:1908.02155) Let p be an odd prime and let $a \in \mathbb{Z}$ with $p \nmid a$. Let ε_p and h(p) be the fundamental unit and the class number of the field $\mathbb{Q}(\sqrt{d})$ respectively. (i) If $p \equiv 1 \pmod{8}$, then

$$\prod_{k=1}^{(p-1)/2} \left(1 + \tan \pi \frac{ak^2}{p}\right) = (-1)^{|\{1 \le k < \frac{p}{4}: (\frac{k}{p}) = 1\}|} 2^{(p-1)/4},$$
$$\prod_{k=1}^{(p-1)/2} \left(1 + \cot \pi \frac{ak^2}{p}\right) = (-1)^{|\{1 \le k < \frac{p}{4}: (\frac{k}{p}) = 1\}|} \frac{2^{(p-1)/4}}{\sqrt{p}} \varepsilon_p^{(\frac{a}{p})h(p)}.$$

If
$$p \equiv 5 \pmod{8}$$
, then

$$\prod_{k=1}^{(p-1)/2} \left(1 + \tan \pi \frac{ak^2}{p}\right) = (-1)^{|\{1 \le k < \frac{p}{4}: (\frac{k}{p}) = -1\}|} 2^{(p-1)/4} \left(\frac{a}{p}\right) \varepsilon_p^{-3(\frac{a}{p})h(p)}$$

$$\prod_{k=1}^{(p-1)/2} \left(1 + \cot \pi \frac{ak^2}{p}\right) = (-1)^{|\{1 \le k < \frac{p}{4}: (\frac{k}{p}) = 1\}|} \left(\frac{a}{p}\right) \frac{2^{(p-1)/4}}{\sqrt{p}}.$$

Part (ii) of Theorem 7

(ii) Suppose that $p \equiv 3 \pmod{4}$ and write $\varepsilon_p^{h(p)} = a_p + b_p \sqrt{p}$ with a_p and b_p positive integers. Set

$$s_p = \sqrt{a_p + (-1)^{(p+1)/4}}$$
 and $t_p = \frac{b_p}{s_p}$.

Then

$$\prod_{k=1}^{(p-1)/2} \left(1 + \tan \pi \frac{ak^2}{p} \right) = (-1)^{\delta_{p,3} + \lfloor \frac{p+1}{8} \rfloor + \frac{h(-p)+1}{2} \cdot \frac{p+1}{4}} 2^{\frac{p-3}{4}} \left(s_p + \left(\frac{a}{p} \right) t_p \sqrt{p} \right),$$

where the Kronecker symbol $\delta_{p,3}$ takes 1 or 0 according as p = 3 or not. Also,

$$\prod_{k=1}^{(p-1)/2} \left(1 + \cot \pi \frac{ak^2}{p} \right) = (-1)^{\lfloor \frac{p-3}{8} \rfloor + \frac{h(-p)-1}{2} \cdot \frac{p-3}{4}} 2^{\frac{p-3}{4}} \left(t_p + \left(\frac{a}{p} \right) \frac{s_p}{\sqrt{p}} \right).$$

On $\prod_{k=1}^{(p-1)/2} (i - e^{2\pi i k^2/p})$

For an odd prime p, we define

$$G_p(x) := \prod_{k=1}^{(p-1)/2} (x - e^{2\pi i k^2/p}).$$

In the case $p \equiv 3 \pmod{4}$, Dirichlet realized that $(i - (\frac{2}{p}))G_p(i) \in \mathbb{Z}[\sqrt{p}]$, and K. S. Williams [J. Number Theory 15 (1982)] determined the exact value of $G_p(\pm i)$. To prove Theorem 5, we also need to determine $G_p(\pm i)$ in the case $p \equiv 1 \pmod{4}$.

Theorem 8 (Z.-W. Sun, arXiv:1908.02155, Publ. Math. Debrecen) Let $p \equiv 1 \pmod{4}$ be a prime. If $p \equiv 1 \pmod{8}$, then

$$G_p(i) = (-1)^{\frac{p-1}{8} + |\{1 \le k < \frac{p}{4}: (\frac{k}{p}) = 1\}|}.$$

If $p \equiv 5 \pmod{8}$, then

$$G_{p}(i) = i(-1)^{\frac{p-5}{8} + |\{1 \le k < \frac{p}{4}: (\frac{k}{p}) = 1\}|} \varepsilon_{p}^{-h(p)}$$

On $G_p(\pm \omega)$ with $p \equiv 1 \pmod{4}$

Let $\omega := e^{2\pi i/3} = (-1 + \sqrt{-3})/2.$

Theorem 9 (Z.-W. Sun, arXiv:1908.02155, Publ. Math. Debrecen) Let $p \equiv 1 \pmod{4}$ be a prime. Then

$$(-1)^{|\{1 \leq k \leq \lfloor \frac{p+1}{3} \rfloor: \ \binom{k}{p} = -1\}|} G_p(\omega) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{12}, \\ \omega \varepsilon_p^{h(p)} & \text{if } p \equiv 5 \pmod{12}; \end{cases}$$
$$G_p(-\omega) = \begin{cases} 1 & \text{if } p \equiv 1 \pmod{12}, \\ -\omega \varepsilon_p^{-2h(p)} & \text{if } p \equiv 5 \pmod{24}, \\ \omega & \text{if } p \equiv 17 \pmod{24}. \end{cases}$$

A Key Lemma. Let $p \equiv 1 \pmod{4}$ be a prime. Then

$$(-1)^{|\{1 \leq k < \frac{p}{3}: (\frac{k}{p}) = -1\}|} (-3)^{(p-1)/4} \equiv \begin{cases} 1 \pmod{p} & \text{if } 12 \mid p-1, \\ \frac{p-1}{2}! \pmod{p} & \text{if } 12 \mid p-5, \end{cases}$$

where h(-3p) is the class number of the field $\mathbb{Q}(\sqrt{-3p})$.

On $G_p(\omega)$ with $p \equiv 3 \pmod{4}$

Conjecture 4 (Z.-W. Sun, arXiv:1908.02155, Publ. Math. Debrecen). Let p > 3 be a prime with $p \equiv 3 \pmod{4}$. Then

$$\begin{aligned} G_{p}(\omega^{\pm 1}) = & (-1)^{(h(-p)+1)/2} \left(\frac{p}{3}\right) \frac{x_{p}\sqrt{3} \mp y_{p}\sqrt{p}}{2} \\ & \times \begin{cases} i^{\pm 1} & \text{if } p \equiv 7 \pmod{12}, \\ (-1)^{|\{1 \le k < \frac{p}{3}: (\frac{k}{p}) = 1\}|} (i\omega)^{\pm 1} & \text{if } p \equiv 11 \pmod{12}, \end{cases} \end{aligned}$$

where (x_p, y_p) is the least positive integer solution to the diophantine equation $3x^2 + 4(\frac{p}{3}) = py^2$.

Example. For the primes p = 79, 227, Conjecture 4 predicts that

$$G_{79}(\omega) = i \frac{\sqrt{79} - 5\sqrt{3}}{2}$$
 and $G_{227}(\omega) = i\omega(1338106\sqrt{3} - 153829\sqrt{227})$.

On $G_p(\zeta)$ with $\zeta^{10} = 1$

Conjecture 5 (Z.-W. Sun, arXiv:1908.02155, Publ. Math. Debrecen). Let ζ be any primitive tenth root of unity. Then

$$\prod_{k=1}^{(p-1)/2} (\zeta - e^{2\pi i k^2/p}) = (-1)^{|\{1 \le k \le \frac{p+9}{10}: \ (\frac{k}{p}) = -1\}|}$$

for each prime $p \equiv 21 \pmod{40}$, and

$$\prod_{k=1}^{(p-1)/2} (\zeta - e^{2\pi i k^2/p}) = (-1)^{|\{1 \le k \le \frac{p+1}{10} : \ (\frac{k}{p}) = -1\}|} \zeta^2$$

for any prime $p \equiv 29 \pmod{40}$.

mth power residues modulo primes

Let $m \in \mathbb{Z}^+ = \{1, 2, 3, ...\}$, and let p be a prime with $p \equiv 1 \pmod{m}$. If $a \in \mathbb{Z}$ is not divisible by p, and $x^m \equiv a \pmod{p}$ for some integer x, then a is called an mth power residue modulo p. The set

 $R_m(p) = \{k \in \{1, \dots, p-1\} : k \text{ is an } m \text{th power residue modulo } p\}$ has cardinality (p-1)/m.

For an integer $a \not\equiv 0 \pmod{p}$, the *m*th power residue symbol $\left(\frac{a}{p}\right)_m$ is a unique *m*th root ζ of unity such that

$$a^{(p-1)/m}\equiv \zeta\pmod{p}$$

in the ring of all algebraic integers. (Note that a primitive root g modulo p has order p - 1 which is a multiple of m.) In particular,

$$\left(\frac{-1}{p}\right)_m = (-1)^{(p-1)/m}$$

Our main result

Theorem 10 (Z.-W. Sun, arXiv:2208.05928, Czechslovak Math. J.) Let $m \in \mathbb{Z}^+$, and let p be a prime with $p \equiv 1 \pmod{2m}$. Suppose that 2 is an *m*th power residue modulo p. For any integer a not divisible by p, we have

$$\prod_{k \in R_m(p)} \left(1 + \tan \pi \frac{ak}{p} \right) = \left(\frac{-2}{p} \right)_{2m} (-2)^{(p-1)/(2m)} = \left(\frac{2}{p} \right)_{2m} 2^{(p-1)/(2m)}.$$

Corollary 2. Let $p = x^2 + 27y^2$ be a prime with $x, y \in \mathbb{Z}^+$. For any integer $a \neq 0 \pmod{p}$, we have

$$\prod_{k \in R_3(p)} \left(1 + \tan \pi \frac{ak}{p} \right) = (-1)^{xy/2} (-2)^{(p-1)/6}.$$

Corollary 3. Let $p = x^2 + 64y^2$ be a prime with $x, y \in \mathbb{Z}^+$. For any integer $a \neq 0 \pmod{p}$, we have

$$\prod_{k \in R_4(p)} \left(1 + \tan \pi \frac{ak}{p} \right) = (-1)^y (-2)^{(p-1)/8}.$$

An auxiliary theorem

Theorem 11 (Z.-W. Sun, arXiv:2208.05928, Czechslovak Math. J.). Let *m* be a positive integer, and let *p* be a prime with $p \equiv 1 \pmod{2m}$. Suppose that 2 is an *m*th power residue modulo *p*. For any integer $a \not\equiv 0 \pmod{p}$, we have

$$\prod_{k \in R_m(p)} (i - e^{2\pi i ak/p}) = \left(\frac{-2}{p}\right)_{2m} i^{(p-1)/(2m)}$$

and

$$\prod_{k\in R_m(p)} (i+e^{2\pi i ak/p}) = \left(\frac{2}{p}\right)_{2m} i^{(p-1)/(2m)}$$

Remark. The two identities in the theorem are equivalent.

Lemma. Let *m* be a positive integer, and let *p* be a prime with $p \equiv 1 \pmod{2m}$. Then we have

$$\sum_{k\in R_m(p)}k=\frac{p(p-1)}{2m}.$$

Proof of the first identity Theorem 11

Let $c := \prod_{k \in R_m(p)} (i - e^{2\pi i ak/p})$. As $k \in \mathbb{Z}$ is an *m*th power residue modulo *p* if and only if -k is an *m*th power residue modulo *p*, we also have $c = \prod_{k \in R_m(p)} (i - e^{2\pi i a(-k)/p})$. Thus

$$\begin{split} c^2 &= \prod_{k \in R_m(p)} \left(i - e^{2\pi i ak/p} \right) \left(i - e^{-2\pi i ak/p} \right) \\ &= \prod_{k \in R_m(p)} \left(i^2 + 1 - i \left(e^{2\pi i ak/p} + e^{-2\pi i ak/p} \right) \right) \\ &= (-i)^{|R_m(p)|} \prod_{k \in R_m(p)} \left(e^{2\pi i ak/p} + e^{-2\pi i ak/p} \right) \\ &= (-i)^{(p-1)/m} \prod_{k \in R_m(p)} e^{-2\pi i ak/p} \left(1 + e^{4\pi i ak/p} \right) \\ &= (-1)^{(p-1)/(2m)} e^{-2\pi i \sum_{k \in R_m(p)} ak/p} \prod_{k \in R_m(p)} \frac{1 - e^{2\pi i a(4k)/p}}{1 - e^{2\pi i a(2k)/p}}. \end{split}$$

Proof of the first identity in Theorem 11

Note that

$$e^{-2\pi i \sum_{k \in R_m(p)} ak/p} = e^{-2\pi i a(p-1)/(2m)} = 1$$

by the lemma. As 2 is an mth power residue modulo p, we also have

$$\prod_{k \in R_m(p)} \left(1 - e^{2\pi i ak/p} \right) = \prod_{k \in R_m(p)} \left(1 - e^{2\pi i a(2k)/p} \right)$$
$$= \prod_{k \in R_m(p)} \left(1 - e^{2\pi i a(4k)/p} \right)$$

Combining the above, we see that

$$c^{2} = (-1)^{(p-1)/(2m)} \times 1 \times 1 = (-1)^{(p-1)/(2m)}.$$

Proof of the first identity in Theorem 11

Write $c = \delta i^{(p-1)/(2m)}$ with $\delta \in \{\pm 1\}$. In the ring of all algebraic integers, we have

$$c^{p} = \prod_{k \in R_{m}(p)} (i - e^{2\pi i ak/p})^{p}$$

$$\equiv \prod_{k \in R_{m}(p)} (i^{p} - 1) = (i^{p} - 1)^{(p-1)/m}$$

$$= ((i^{p} - 1)^{2})^{(p-1)/(2m)} = (-2i^{p})^{(p-1)/(2m)} \pmod{p}.$$

Thus

$$\delta i^{p(p-1)/(2m)} = c^p \equiv (-2)^{(p-1)/(2m)} i^{p(p-1)/(2m)} \pmod{p}$$

and hence

$$\delta \equiv (-2)^{(p-1)/(2m)} \equiv \left(\frac{-2}{p}\right)_{2m} \pmod{p}.$$

Therefore $\delta = (\frac{-2}{p})_{2m}$ and hence $c = (\frac{-2}{p})_{2m}i^{(p-1)/(2m)}$ as desired.

Main references:

1. Q.-H. Hou, H. Pan and Z.-W. Sun, *A new theorem on quadratic residues modulo primes*, C. R. Math. Acad. Sci. Paris **360** (2022), 1065–1069.

2. Z.-W. Sun, *Quadratic residues and related permutations and identities*, Finite Fields Appl. **59** (2019), 246-283.

3. Z.-W. Sun, *Trigonometric identities and quadratic residues*, accepted by Publ. Math. Debrecen. See also arXiv:1908.02155.

4. Z.-W. Sun, *The tangent function and power residues modulo primes*, accepted by Czechslovak Math. J. (arXiv:2208.05928)

Thank you!