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Abstract

Lagrange’s four-square theorem asserts that any natural number
can be written as x2 + y2 + z2 + w2 with x , y , z ,w integers. The
speaker recently found that this can be refined in various ways. For
example, we show that we may require additionally that x + y + z
(or x + 2y , or x + y + 2z) is a square (or a cube). Moreover, we
have formulated lots of surprising conjectures on this topic; for
example, we conjecture that any natural number can be written as
x2 + y2 + z2 + w2 with x , y , z ,w nonnegative integers such that
x + 3y + 5z is a square. Another mysterious conjecture of the
speaker asserts that any natural number can be written as
w2 + x2 + y2 + z2 + w2 with w , x , y , z nonnegative integers such
that (10w + 5x)2 + (12y + 36z)2 is a square. This reveals a
surprising connection between Lagrange’s theorem and
Pythagorean triples. In this talk we will tell the story of such
discoveries as well as related new results on partitions of integers
motivated by our refinements of Lagrange’s theorem.
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Part I. Waring’s Problem
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Lagrange’s theorem

Lagrange’s Theorem. Each n ∈ N = {0, 1, 2, . . .} can be written
as the sum of four squares.

Examples. 3 = 12 + 12 + 12 + 02 and 7 = 22 + 12 + 12 + 12.

A. Diophantus (AD 299-215, or AD 285-201) was aware of this
theorem as indicated by examples given in his book Arithmetica.

In 1621 Bachet translated Diophantus’ book into Latin and stated
the theorem in the notes of his translation.

In 1748 L. Euler found the four-square identity

(x2
1 + x2

2 + x2
3 + x2

4 )(y2
1 + y2

2 + y2
3 + y2

4 )

=(x1y1 + x2y2 + x3y3 + x4y4)2 + (x1y2 − x2y1 − x3y4 + x4y3)2

+ (x1y3 − x3y1 + x2y4 − x4y2)2 + (x1y4 − x4y1 − x2y3 + x3y2)2.

and hence reduced the theorem to the case with n prime.

The theorem was first proved by J. L. Lagrange in 1770.
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The representation function r4(n)

It is known that only the following numbers have a unique
representation as the sum of four unordered squares:

1, 3, 5, 7, 11, 15, 23

and
22k+1m (k = 0, 1, 2, . . . and m = 1, 3, 7).

Jacobi considered the fourth power of the theta function

ϕ(q) =
∞∑

n=−∞
qn2

and this led him to show that

r4(n) = 8
∑

d |n & 4-d

d for all n = 1, 2, 3, . . . ,

where

r4(n) := |{(w , x , y , z) ∈ Z4 : w2 + x2 + y2 + z2 = n}|.
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Representations as sums of polygonal numbers

For m = 3, 4, 5, . . ., the polygonal numbers of order m (or m-gonal
numbers) are given by

pm(n) := (m − 2)

(
n

2

)
+ n (n = 0, 1, 2, . . .).

Clearly, p4(n) = n2, p5(n) = n(3n − 1)/2 and p6(n) = n(2n − 1).

Fermat’s Claim. Let m > 3 be an integer. Then any n ∈ N can
be written as the sum of m polygonal numbers of order m.

This was proved by Lagrange in the case m = 4, by Gauss in the
case m = 3, and by Cauchy in the case m > 5.

Conjecture (Z.-W. Sun, March 14, 2015). Each n ∈ N can be
written as

p5(x1) + p5(x2) + p5(x3) + 2p5(x4) (x1, x2, x3, x4 ∈ N).

Theorem (conjectured by the speaker and proved by X.-Z. Meng
and Z.-W. Sun (arxiv:1608.02022)) Any n ∈ N can be written as

p6(x1) + p6(x2) + 2p6(x3) + 4p6(x4) (x1, x2, x3, x4 ∈ N).
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Waring’s Problem

In 1770 E. Waring proposed the following famous problem.

Waring’s Problem. Whether for each integer k > 1 there is a
positive integer g(k) = r (as small as possible) such that every
n ∈ N can be written as

xk
1 + xk

2 + . . .+ xk
r with x1, . . . , xr ∈ N.

In 1909 D. Hilbert proved that g(k) always exists.

If we write 2kb(3/2)kc − 1 < 3k as a sum of nonnegative k-th
powers, the most economical way is to use b(3/2)kc − 1 terms of
2k and 2k − 1 terms of 1k . So

g(k) > 2k +

⌊(
3

2

)k
⌋
− 2.

J. A. Euler (a son of Leonhard Euler), conjectured in about 1772
that, in fact,

g(k) = 2k +

⌊(
3

2

)k
⌋
− 2.
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Known results on g(k)

It is known that

g(2) = 4 (Lagrange, 1770),

g(3) = 9 (Wieferich and A. J. Kempner, 1909-1912),

g(4) = 19 (R. Balasubramanian, F. Dress, J.-M. Deshouillers, 1986),

g(5) = 37 (Jingrun Chen, 1964),

g(6) = 73 (Pillai, 1940),

g(k) = 2k +

⌊(
3

2

)k
⌋
− 2 for large k (K. Mahler, 1957).
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Weighted sums of five cubes

In 1917 S. Ramanujan conjectured that for 54 quadruple
(a, b, c , d) with a, b, c , d ∈ Z+ = {1, 2, 3, . . .} and a 6 b 6 c 6 d
the sum aw2 + bx2 + cy2 + dz2 is universal, i.e.,

{aw2 + bx2 + cy2 + dz2 : w , x , y , z ∈ N} = N.

This was confirmed by L. E. Dickson in 1927.

Conjecture (Z.-W. Sun, April 2, 2016). We have

{x3
1 + ax3

2 + bx3
3 + cx3

4 + dx3
5 : x1, . . . , x5 ∈ N} = N

whenever (a, b, c , d) is among the following 32 quadruples:

(1, 2, 2, 3), (1, 2, 2, 4), (1, 2, 3, 4), (1, 2, 4, 5), (1, 2, 4, 6), (1, 2, 4, 9),

(1, 2, 4, 10), (1, 2, 4, 11), (1, 2, 4, 18), (1, 3, 4, 6), (1, 3, 4, 9), (1, 3, 4, 10),

(2, 2, 4, 5), (2, 2, 6, 9), (2, 3, 4, 5), (2, 3, 4, 6), (2, 3, 4, 7), (2, 3, 4, 8),

(2, 3, 4, 9), (2, 3, 4, 10), (2, 3, 4, 12), (2, 3, 4, 15), (2, 3, 4, 18), (2, 3, 5, 6),

(2, 3, 6, 12), (2, 3, 6, 15), (2, 4, 5, 6), (2, 4, 5, 8), (2, 4, 5, 9), (2, 4, 5, 10),

(2, 4, 6, 7), (2, 4, 7, 10).
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Upgrade Waring’s Problem

Recently the speaker proposed the following problem upgrading
Waring’s problem.

New Problem (Z.-W. Sun, March 30-31, 2016). Determine s(k)
and t(k) for any integer k > 1, where s(k) is the smallest positive
integer s such that

{a1xk
1 + a2xk

2 + . . .+ asxk
s : x1, . . . , xs ∈ N} = N

for some a1, . . . , as ∈ Z+, and t(k) is the smallest positive integer
t such that

{a1xk
1 + a2xk

2 + . . .+ atx
k
t : x1, . . . , xt ∈ N} = N

for some a1, . . . , at ∈ Z+ with a1 + a2 + . . .+ at = g(k).

Clearly s(k) 6 t(k) 6 g(k) for all k = 2, 3, 4, . . .. It is easy to see
that s(2) = t(2) = 4. With the help of a computer, the speaker
found that

s(3) > 5, s(4) > 7, s(5) > 8 and t(6) > 10.
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A conjecture
Conjecture (Z.-W. Sun, March 30-31, 2016). (i) s(3) = t(3) = 5.
In fact,

{u3 + v3 + 2x3 + 2y3 + 3z3 : u, v , x , y , z ∈ N} = N.

(ii) s(4) = t(4) = 7. In fact, we have

{x4
1 + x4

2 + 2x4
3 + 2x4

4 + 3x4
5 + 3x4

6 + 7x4
7 : x1, . . . , x7 ∈ N} = N,

{x4
1 + x4

2 + 2x4
3 + 2x4

4 + 3x4
5 + 4x4

6 + 6x4
7 : x1, . . . , x7 ∈ N} = N.

(iii) s(5) = t(5) = 8. In fact,

{x5
1 +x5

2 +2x5
3 +3x5

4 +4x5
5 +5x5

6 +7x5
7 +14x5

8 : x1, . . . , x8 ∈ N} = N,

{x5
1 +x5

2 +2x5
3 +3x5

4 +4x5
5 +6x5

6 +8x5
7 +12x5

8 : x1, . . . , x8 ∈ N} = N.

(iv) s(6) = t(6) = 10. In fact,

{x6
1+x6

2+x6
3+2x6

4+3x6
5+5x6

6+6x6
7+10x6

8+18x6
9+26x6

10 : xi ∈ N} = N.

(v) In general, s(k) = t(k) 6 2k − 1 for any integer k > 2.
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Part II. Refining Lagrange’s Four-Square Theorem
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Gauss-Legendre Theorem

For a, b, c ∈ Z+ = {1, 2, 3, . . .}, we define

E (a, b, c) := {n ∈ N : n 6= ax2 + by2 + cz2 for any x , y , z ∈ N}.

Gauss-Legendre Theorem. E (1, 1, 1) = {4k(8l + 7) : k , l ∈ N}.

Triangular numbers are those Tn =
∑n

r=0 r = n(n + 1)/2 with
n ∈ N. Note that T−n−1 = Tn for all n ∈ N.

Corollary (Gauss). Each n ∈ N can be written as Tx + Ty + Tz

with x , y , z ∈ Z.

Proof. By the Gauss-Legendre theorem, there are u, v ,w ∈ Z such
that 8n + 3 = u2 + v2 + w2. As u2 + v2 + w2 ≡ 3 (mod 4), we
must have 2 - uvw . So we may write u = 2x + 1, v = 2y + 1 and
w = 2z + 1 with x , y , z ∈ Z. Hence

n =
u2 − 1

8
+

v2 − 1

8
+

w2 − 1

8
= Tx + Ty + Tz .
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Sums of a fourth power and three squares

Theorem (Z.-W. Sun, March 27, 2016). Each n ∈ N can be
written as w4 + x2 + y2 + z2 with w , x , y , z ∈ N.

Proof. For n = 0, 1, 2, . . . , 15, the result can be verified directly.
Now let n > 16 be an integer and assume that the result holds for
smaller values of n.

Case 1. 16 | n.
By the induction hypothesis, we can write

n

16
= x4 + y2 + z2 + w2 with x , y , z ,w ∈ N.

It follows that n = (2x)4 + (4y)2 + (4z)2 + (4w)2.

Case 2. n = 4kq with k ∈ {0, 1} and q ≡ 7 (mod 8).
In this case, n − 1 6∈ E (1, 1, 1), and hence n = 14 + y2 + z2 + w2

for some y , z ,w ∈ N.

Case 3. 16 - n and n 6= 4k(8l + 7) for any k ∈ {0, 1} and l ∈ N.
In this case, n 6∈ E (1, 1, 1) and hence there are y , z ,w ∈ N such
that n = 04 + y2 + z2 + w2.

14 / 50



aw k + x2 + y 2 + z2 with a ∈ {1, 4} and k ∈ {4, 5, 6}

Via a similar method, we have proved the following result.

Theorem (Z.-W. Sun, March-June, 2016). Let a ∈ {1, 4} and
k ∈ {4, 5, 6}. Then, each n ∈ N can be written as
awk + x2 + y2 + z2 with w , x , y , z ∈ N.
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Suitable polynomials

Definition (Z.-W. Sun, 2016). A polynomial P(x , y , z ,w) with
integer coefficients is called suitable if any n ∈ N can be written as
x2 + y2 + z2 + w2 with x , y , z ,w ∈ N such that P(x , y , z ,w) is a
square.

We have seen that x is a suitable polynomial. By a similar method,
the speaker has shown that 2x , x − y and 2(x − y) are suitable.
Moreover,

xy , 2xy , x2 − y2, 2(x2 − y2), 3(x2 − y2), x2 − 3y2, 3x2 − 2y2,

x2 + ky2 (k = 2, 3, 5, 6, 8, 12), 2x2 + 7y2, 3x2 + 4y2, 4x2 + 5y2,

4x2 + 9y2, 5x2 + 11y2, 6x2 + 10y2, 7x2 + 9y2,

x2y2 + y2z2 + z2x2, x2y2 + 4y2z2 + 4z2x2

are all suitable.
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x − y and 2x − 2y are suitable

Let a ∈ {1, 2}. We claim that any n ∈ N can be written as
x2 + y2 + z2 + w2 with x , y , z ,w ∈ N such that a(x − y) is a
square, and want to prove this by induction.

For every n = 0, 1, . . . , 15, we can verify the claim directly.

Now we fix an integer n > 16 and assume that the claim holds for
smaller values of n.

Case 1. 16 | n.
In this case, by the induction hypothesis, there are x , y , z ,w ∈ N
with a(x − y) a square such that n/16 = x2 + y2 + z2 + w2, and
hence n = (4x)2 + (4y)2 + (4z)2 + (4w)2 with a(4x − 4y) a
square.

Case 2. 16 - n and n 6∈ E (1, 1, 2).
In this case, there are x , y , z ,w ∈ N with x = y and
n = x2 + y2 + z2 + w2, thus a(x − y) = 02 is a square.
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x − y and 2x − 2y are suitable

Case 3. 16 - n and n ∈ E (1, 1, 2) = {4k(16l + 14) : k , l ∈ N}.

In this case, n = 4k(16l + 14) for some k ∈ {0, 1} and l ∈ N. Note
that n/2− (2/a)2 6∈ E (1, 1, 1). So, n/2− (2/a)2 = t2 + u2 + v2

for some t, u, v ∈ N with t > u > v . As n/2− (2/a)2 > 8− 4 > 3,
we have t > 1. Thus

n =2

((
2

a

)2

+ t2

)
+ 2(u2 + v2)

=

(
2

a
+ t

)2

+

(
2

a
− t

)2

+ (u + v)2 + (u − v)2

with

a

((
2

a
+ t

)
−
∣∣∣∣2a − t

∣∣∣∣) = a

(
2

a
+ t −

(
t − 2

a

))
= 22.

This proves that x − y and 2x − 2y are both suitable.
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Suitable polynomials of the form ax ± by

Conjecture (Z.-W. Sun, April 14,2016) Let a, b ∈ Z+ with
gcd(a, b) squarefree.

(i) The polynomial ax + by is suitable if and only if
{a, b} = {1, 2}, {1, 3}, {1, 24}.

(ii) The polynomial ax − by is suitable if and only if (a, b) is
among the ordered pairs

(1, 1), (2, 1), (2, 2), (4, 3), (6, 2).

Remark. Though the speaker is unable to show that x + 2y or
2x − y is suitable, he has proved that any n ∈ N can be written as
x2 + y2 + z2 + w2 with x , y , z ,w ∈ Z such that x + 2y is a square
(or a cube).
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Write n = x2 + y 2 + z2 + w 2 with x + y a cube

Theorem (Z.-W. Sun, May 24,2016) Any n ∈ N can be written as
n = x2 + y2 + z2 + w2 (x , y , z ,w ∈ Z) with x + y a cube.

Proof. We can easily verify the desired result for all
n = 0, 1, . . . , 63.

Now let n > 64 and assume that any r = 0, 1, . . . , n − 1 can be
written as

x2 + y2 + z2 + w2 (x , y , z ,w ∈ Z)

with x + y a cube. If 64 | n, then n/64 can be written as
x2 + y2 + z2 + w2 (x , y , z ,w ∈ Z) with x + y = t3 for some t ∈ Z,
hence n = (8x)2 + (8y)2 + (8z)2 + (8w)2 with 8x + 8y = (2t)3.

Now we consider the case 64 - n. We claim that
{2n, 2n − 1, 2n − 64} 6⊆ E (1, 1, 1). If {2n, 2n − 1} ⊆ E (1, 1, 1),
then 2n = 4k(8l + 7) for some k ∈ {2, 3} and l ∈ N, hence
2n − 64 is 42(8l + 3) or 43(8l + 6), and thus 2n − 64 6∈ E (1, 1, 1).
So the claim is true.
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Write n = x2 + y 2 + z2 +w 2 with x + y a cube (continued)

By the claim, for some δ ∈ {0, 1, 8}, we can write 2n − δ2 as the
sum of three squares two of which have the same parity. Hence we
may write 2n − δ2 = (2x − δ)2 + y2 + z2 with x , y , z ∈ Z and
y ≡ z (mod 2). It follows that

n =
(2x − δ)2 + δ2

2
+

y2 + z2

2

=x2 + (δ − x)2 +

(
y + z

2

)2

+

(
y − z

2

)2

with x + (δ − x) = δ ∈ {t3 : t = 0, 1, 2}. This concludes the
induction step.
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n = x2 + y 2 + z2 + w 2 with x + y + z a square (or a cube)

Theorem (Z.-W. Sun, April-May, 2016) Let c ∈ {1, 2} and
m ∈ {2, 3}. Then any n ∈ N can be written as x2 + y2 + z2 + w2

with x , y , z ,w ∈ Z such that x + y + cz = tm for some t ∈ Z.

Proof for the Case c = 1. For n = 0, . . . , 4m − 1 we can easily
verify the desired result directly.

Now let n ∈ N with n > 4m. Assume that any r ∈ {0, . . . , n − 1}
can be written as x2 + y2 + z2 + w2 with x , y , z ,w ∈ Z such that
x + y + z ∈ {tm : t ∈ Z}. If 4m | n, then there are x , y , z ,w ∈ Z
with x2 + y2 + z2 + w2 = n/4m such that x + y + z = tm for some
t ∈ Z, and hence

n = (2mx)2 + (2my)2 + (2mz)2 + (2mw)2

with 2mx + 2my + (2mz) = 2m(x + y + z) = (2t)m. Below we
suppose that 4m - n.
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Continued the proof
It suffices to show that there are x , y , z ∈ Z and δ ∈ {0, 1, 2m}
such that

n = x2 +(y +z)2 +(z−y)2 +(δ−2z)2 = x2 +2y2 +6z2−4δz +δ2.

(Note that (y + z) + (z − y) + (δ − 2z) = δ ∈ {tm : t ∈ Z}.)
Suppose that this fails for δ = 0. As

E (1, 2, 6) = {4k(8l + 5) : k , l ∈ N},

n = 4k(8l + 5) for some k, l ∈ N with k < m. Clearly,

3n − 1 =

{
3(8l + 5)− 1 = 2(12l + 7) if k = 0,

3× 4(8l + 5)− 1 = 8(12l + 7) + 3 if k = 1.

Thus, if k ∈ {0, 1}, then 3n − 1 does not belong to

E (2, 3, 6) = {3q + 1 : q ∈ N} ∪ {4k(8l + 7) : k , l ∈ N},
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Continue the proof

hence for some x , y , z ∈ Z we have

3n− 1 = 3x2 + 6y2 + 2(3z − 1)2 = 3(x2 + 2y2 + 2(3z2 − 2z)) + 2

and thus

n = x2 + 2y2 + 6z2− 4z + 1 = x2 + (y + z)2 + (z − y)2 + (1− 2z)2

as desired.

When k = 2 and m = 3, we have

3n − 64 = 3× 16(8l + 5)− 64 = 42(8(3l + 1) + 3) 6∈ E (2, 3, 6),

and hence there are x , y , z ∈ Z such that

3n−43 = 3x2+6y2+2(3z−8)2 = 3(x2+2y2+2(3z2−16z))+2×43

and thus
n = x2+2y2+6z2−32z +64 = x2+(y +z)2+(z−y)2+(23−2z)2

as desired.
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Write n = x2 + y 2 + z2 + w 2 with x + 3y a square

In 1916 Ramanujan conjectured that

(1) the only positive even numbers not of the form x2 + y2 + 10z2

are those 4k(16l + 6) (k , l ∈ N)

and

(2) sufficiently large odd numbers are of the form x2 + y2 + 10z2.

In 1927 L. E. Dickson [Bull. AMS] proved (1). In 1990 W. Duke
and R. Schulze-Pillot [Invent. Math.] confirmed (2). In 1997 K.
Ono and K. Soundararajan [Invent. Math.] proved that under the
GRH (Generalized Riemann Hypothesis) any odd number greater
than 2719 has the form x2 + y2 + 10z2.

With the help of the Ono-Soundararajan result, the speaker has
proved the following result.

Theorem (Z.-W. Sun, 2016) Under the GRH, any n ∈ N can be
written as n = x2 + y2 + z2 + w2 (x , y , z ,w ∈ Z) with x + 3y a
square.
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1-3-5-Conjecture

1-3-5-Conjecture (Z.-W. Sun, April 9, 2016): The polynomial
x + 3y + 5z is suitable. In other words, any n ∈ N can be written
as x2 + y2 + z2 + w2 with x , y , z ,w ∈ N such that x + 3y + 5z is
a square. Moreover, such a representation is unique only for

n = 0, 4k×6 (k ∈ N), 16k×m (k ∈ N, m ∈ {5, 7, 8, 31, 43, 61, 116}).
Examples.

6 =12 + 12 + 02 + 22 with 1 + 3× 1 + 5× 0 = 22,

7 =12 + 12 + 12 + 22 with 1 + 3× 1 + 5× 1 = 32,

8 =02 + 22 + 22 + 02 with 0 + 3× 2 + 5× 2 = 42,

24 =02 + 22 + 22 + 42 with 0 + 3× 2 + 5× 2 = 42,

31 =52 + 22 + 12 + 12 with 5 + 3× 2 + 5× 1 = 42,

43 =12 + 52 + 42 + 12 with 1 + 3× 5 + 5× 4 = 62,

61 =02 + 02 + 52 + 62 with 0 + 3× 0 + 5× 5 = 52,

116 =42 + 02 + 02 + 102 with 4 + 3× 0 + 5× 0 = 22.
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Graph for the number of such representations of n
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A general theorem joint with Yu-Chen Sun

Theorem (Yu-Chen Sun and Z.-W. Sun, 2016) Let a, b, c, d ∈ Z
with a, b, c , d not all zero. Let λ ∈ {1, 2} and m ∈ {2, 3} Then
any n ∈ N can be written as x2 + y2 + z2 + w2 with
x , y , z ,w ∈ Z/(a2 + b2 + c2 + d2) such that
ax + by + cz + dw = λrm for some r ∈ N.

Proof. Let n ∈ N. By a result of Z.-W. Sun, we can write
(a2 + b2 + c2 + d2)n as (λrm)2 + t2 + u2 + v2 with r , t, u, v ∈ N.
Set s = λrm, and define x , y , z ,w by

x = as−bt−cu−dv
a2+b2+c2+d2 ,

y = bs+at+du−cv
a2+b2+c2+d2 ,

z = cs−dt+au+bv
a2+b2+c2+d2 ,

w = ds+ct−bu+av
a2+b2+c2+d2 .
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Proof of the general theorem

Then 
ax + by + cz + dw = s,

ay − bx + cw − dz = t,

az − bw − cx + dy = u,

aw + bz − cy − dx = v .

With the help of Euler’s four-square identity,

x2 + y2 + z2 + w2 =
s2 + t2 + u2 + v2

a2 + b2 + c2 + d2
= n

and
ax + by + cz + dw = s = λrm.

This concludes the proof.
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Progress on the 1-3-5-Conjecture

Theorem (Yu-Chen Sun and Z.-W. Sun, 2016) (i) Let λ ∈ {1, 2}
and m ∈ {2, 3}. Then any n ∈ N can be written as
x2 + y2 + z2 + w2 (x , y , z ,w ∈ Z) with x + y + z + 2w = λrm for
some r ∈ N.

(ii) Any n ∈ N can be written as x2 + y2 + z2 + w2 (x , y , z ,w ∈ Z)
with x + 2y + 3z a square (or twice a square).

(iii) Let λ ∈ {1, 2}, m ∈ {2, 3} and n ∈ N. Then we can write n as
x2 + y2 + z2 + w2 with x , y , 5z , 5w ∈ Z such that
x + 3y + 5z ∈ {λrm : r ∈ N}. Also, any n ∈ N can be written as
x2 + y2 + z2 + w2 with x , y , z ,w ∈ Z/7 such that
x + 3y + 5z ∈ {λrm : r ∈ N}.

Similar to part (ii), we are also able to show that any n ∈ N can be
written as x2 + y2 + z2 + w2 (x , y , z ,w ∈ Z) with x + y + 3z a
square (or twice a square).

30 / 50



1-2-3-Conjecture (Companion of 1-3-5-Conjecture)

1-2-3-Conjecture (Z.-W. Sun, July 24, 2016): Any n ∈ N can be
written as x2 + y2 + z2 + 2w2 with x , y , z ,w ∈ N such that
x + 2y + 3z is a square. Moreover, such a representation is unique
only for n ∈ {0, 1, 3, 5, 7, 14, 15, 16, 25, 30, 84, 169, 225}.
Examples.

14 =12 + 12 + 22 + 2× 22 with 1 + 2× 1 + 3× 2 = 32,

15 =32 + 02 + 22 + 2× 12 with 3 + 2× 0 + 3× 2 = 32,

16 =42 + 02 + 02 + 2× 02 with 4 + 2× 0 + 3× 0 = 22,

25 =12 + 42 + 02 + 2× 22 with 1 + 2× 4 + 3× 0 = 32,

30 =32 + 22 + 32 + 2× 22 with 3 + 2× 2 + 3× 3 = 42,

33 =12 + 02 + 02 + 2× 42 with 1 + 2× 0 + 3× 0 = 12,

84 =42 + 62 + 02 + 2× 42 with 4 + 2× 6 + 3× 0 = 42,

169 =102 + 62 + 12 + 2× 42 with 10 + 2× 6 + 3× 1 = 52,

225 =102 + 62 + 92 + 2× 22 with 10 + 2× 6 + 3× 9 = 72.
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Graph for the number of such representations of n
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Conjectures involving higher powers

Conjecture (Z.-W. Sun, May 23, 2016): For each c = 1, 2, 4, any
n ∈ N can be written as x2 + y2 + z2 + w2 with x , y , z ,w ∈ N
such that 2x + y − z = ct3 for some t ∈ N.

Conjecture (Z.-W. Sun, May 31, 2016): Any positive integer n
can be written as x2 + y2 + z2 + w2 with x ∈ Z+, y ∈ N and
z ,w ∈ Z such that xy + yz + zw is a fourth power.

Example. 1016 = 22 + 202 + 62 + (−24)2 with
2× 20 + 20× 6 + 6× (−24) = 24.

Conjecture (Z.-W. Sun, June 6, 2016): Any n ∈ N can be written
as x2 + y2 + z2 + w2 with x , y , z ,w ∈ Z such that
xy + yz + 2zw + 2wx is a fifth power.
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Two related theorems on partitions of integers

Theorem 1 (Z.-W. Sun, April 11, 2016). Let n > 2 be an integer.

(i) We can write n = x + y + z with x , y , z ∈ Z+ such that
x + 11y + 13z is a square.

(ii) We can write n = x + y + z with x , y , z ∈ Z+ such that
x + 240y + 720z is a square.

Theorem 2 (Z. W. Sun, April 2016). Let a, b, c ,m ∈ Z+ with
a < b 6 c and gcd(b − a, c − a) = 1. Then any sufficiently large
integer can be written as x + y + z with x , y , z ∈ Z+ such that
ax + by + cz = pm for some prime number p.

P. Dusart [Math. Comp. 68(1999)] proved that for x > 3275 there
is a prime p with x 6 p 6 x + x/(2 log2 x). With the help of this,
we can modify our proof of Theorem 2 to show some concrete
results (e.g., any integer n > 6 can be written as x + y + z
(x , y , z ∈ Z+) with x + 3y + 6z = p2 for some prime p).
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Suitable polynomials of the form ax − by − cz or
ax + by − cz

Conjecture (Z.-W. Sun, April 14, 2016): Let a, b, c ∈ Z+ with
b 6 c and gcd(a, b, c) squarefree. Then ax − by − cz is suitable if
and only if (a, b, c) is among the five triples

(1, 1, 1), (2, 1, 1), (2, 1, 2), (3, 1, 2), (4, 1, 2).

We conjecture that there are totally 52 concrete triples (a, b, c)
with a, b, c ∈ Z+ and a 6 b, and gcd(a, b, c) squarefree such that
ax + by − cz is suitable. Two of them are (48, 49, 48) and
(48, 121, 48), and the other 50 triples satisfying a, b, c 6 32.

Conjecture (Z.-W. Sun, April 14, 2016): If (a, b, c) is among the
triples

(1, 1, 1), (1, 1, 2), (1, 2, 1), (1, 2, 2), (1, 2, 3), (1, 3, 1),

(1, 3, 3), (1, 4, 4), (1, 5, 1), (1, 6, 6), (1, 8, 6), (2, 2, 2), (2, 2, 4),

(2, 3, 2), (2, 3, 3), (2, 4, 1), (2, 4, 2), (2, 6, 1), (2, 6, 6), (2, 7, 4),

then ax + by − cz is suitable.
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A theorem joint with Yu-Chen Sun

Conjecture (Z.-W. Sun, May 2016) (i) Any positive integer can
be written as w2 + x2 + y2 + z2 with w + x + y − z a square,
where w ∈ Z and x , y , z ∈ N with |w | 6 x > y 6 z < x + y .

(ii) Each n ∈ N can be written as w2 + x2 + y2 + z2 with
w + x + y − z a nonnegative cube, where w , x , y , z are integers
with |x | 6 y > z > 0.

Theorem (Y.-C. Sun and Z.-W. Sun, arXiv:1605.03074). (i) Any
n ∈ N can be written as x2 + y2 + z2 + w2 with x , y , z ,w ∈ Z
such that x + y + z + w is a square (or a cube).

(ii) Any n ∈ N can be written as x2 + y2 + z2 + w2 with
x , y , z ,w ∈ Z such that x + 2y + 2z is a square (or a cube).

In the case 2 - n, we actually proved part (i) of the Theorem by
showing that n can be written as x2 + y2 + z2 + w2

(x , y , z ,w ∈ Z) with x + y + z + w = 1.
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Suitable polynomials of the form ax + by + cz − dw or
ax + by − cz − dw

Conjecture (Z.-W. Sun, April 14, 2016): Let a, b, c , d ∈ Z+ with
a 6 b 6 c , and gcd(a, b, c , d) squarefree. Then ax + by + cz − dw
is suitable if and only if (a, b, c , d) is among the 12 quadruples

(1, 1, 2, 1), (1, 2, 3, 1), (1, 2, 3, 3), (1, 2, 4, 2),

(1, 2, 4, 4), (1, 2, 5, 5), (1, 2, 6, 2), (1, 2, 8, 1),

(2, 2, 4, 4), (2, 4, 6, 4), (2, 4, 6, 6), (2, 4, 8, 2).

Conjecture (Z.-W. Sun, April 14, 2016): Let a, b, c , d ∈ Z+ with
a 6 b and c 6 d , and gcd(a, b, c , d) squarefree. Then
ax + by − cz − dw is suitable if and only if (a, b, c , d) is among
the 9 quadruples

(1, 2, 1, 1), (1, 2, 1, 2), (1, 3, 1, 2), (1, 4, 1, 3),

(2, 4, 1, 2), (2, 4, 2, 4), (8, 16, 7, 8), (9, 11, 2, 9), (9, 16, 2, 7).
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Suitable polynomials of the form ax2 + by 2 + cz2

Conjecture (Z.-W. Sun, April 9, 2016): (i) Any natural number
can be written as x2 + y2 + z2 + w2 with x , y , z ,w ∈ N and x > y
such that ax2 + by2 + cz2 is a square, provided that the triple
(a, b, c) is among

(1, 8, 16), (4, 21, 24), (5, 40, 4), (9, 63, 7), (16, 80, 25),

(16, 81, 48), (20, 85, 16), (36, 45, 40), (40, 72, 9).

(ii) ax2 + by2 + cz2 is suitable if (a, b, c) is among the triples

(1, 3, 12), (1, 3, 18), (1, 3, 21), (1, 3, 60), (1, 5, 15),

(1, 8, 24), (1, 12, 15), (1, 24, 56), (3, 4, 9), (3, 9, 13),

(4, 5, 12), (4, 5, 60), (4, 9, 60), (4, 12, 21), (4, 12, 45), (5, 36, 40).

(iii) If a, b, c are positive integers with ax2 + by2 + cz2 suitable,
then a, b, c cannot be pairwise coprime.
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On ax2 − by 2 − cz2 and ax2 + by 2 − cz2 − dw 2

Conjecture (Z.-W. Sun, April 14, 2016): (i) Any natural number
can be written as x2 + y2 + z2 + w2 with x , y , z ,w ∈ N and x > y
such that ax2 − by2 − cz2 is a square, provided that the triple
(a, b, c) is among

(21, 5, 15), (36, 3, 8), (48, 8, 39), (64, 7, 8),

(40, 15, 144), (45, 20, 144), (69, 20, 60).

(ii) ax2 + by2 − cz2 − dw2 is suitable if (a, b, c , d) is among the
quadruples

(3, 9, 3, 20), (5, 9, 5, 20), (5, 25, 4, 5), (9, 81, 9, 20), (12, 16, 3, 12),

(16, 64, 15, 16), (20, 25, 4, 20), (27, 81, 20, 27), (30, 64, 15, 30).

It seems that there are infinitely many quadruples (a, b, c , d) with
a, b, c, d ∈ Z+ and gcd(a, b, c , d) squarefree such that
ax2 + by2 + cz2− dw2 is suitable. For example, we conjecture that
x2 + 3y2 + 5z2 − 8w2 is suitable.
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Suitable polynomials related to Pythagorean triples

Conjecture (Z.-W. Sun, April 16, 2016). Both
(x + 2y)2 + 8z2 + 40w2 and 9(x + 2y)2 + 16z2 + 24w2 are all
suitable.

Conjecture (Z.-W. Sun, April 12, 2016). Any n ∈ Z+ can be
written as w2 + x2 + y2 + z2 with w ∈ Z+ and x , y , z ∈ N such
that (10w + 5x)2 + (12y + 36z)2 is a square.

Examples.

3 = 12 + 12 + 02 + 12 with (10× 1 + 5× 1)2 + (12 · 0 + 36 · 1)2 = 392,

4 = 22 + 02 + 02 + 02 with (10 · 2 + 5 · 0)2 + (12 · 0 + 36 · 0)2 = 202,

7 = 12 + 22 + 12 + 12 with (10 · 1 + 5 · 2)2 + (12 · 1 + 36 · 1)2 = 522,

19 = 32 + 02 + 32 + 12 with (10 · 3 + 5 · 0)2 + (12 · 3 + 36 · 1)2 = 782,

133 = 92 + 02 + 62 + 42 with (10 · 9 + 5 · 0)2 + (12 · 6 + 36 · 4)2 = 2342,

and 589 = 172 + 102 + 22 + 142 with

(10 · 17 + 5 · 10)2 + (12 · 2 + 36 · 14)2 = 2202 + 5282 = 5722.
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More things related to Pythagorean triples

Conjecture (Z.-W. Sun, May 15, 2016). (i) Any positive integer n
can be written as x2 + y2 + z2 + w2 with x , y , z ,w ∈ N and y > z
such that (x + y)2 + (4z)2 is a square.

(ii) Any integer n > 5 can be written as x2 + y2 + z2 + w2 with
x , y , z ,w ∈ N such that 8x + 12y and 15z are the two legs of a
right triangle with positive integer sides.

Theorem (Z.-W. Sun, May 16, 2016). Any n ∈ Z+ can be written
as x2 + y2 + z2 + w2 with x , y , z ,w ∈ N and y > 0 such that
x + 4y + 4z and 9x + 3y + 3z are the two legs of a right triangle
with positive integer sides.
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An easier conjecture related to Pythagorean triples

Conjecture (Z.-W. Sun, April 12, 2016). Any integer n > 10 can
be written as x + y + z with x , y , z ∈ Z+, x > y and
gcd(x , y , z) = 1 such that x2 + (2y + z)2 is a square.

Examples. We have

11 =6 + 3 + 2 with gcd(6, 3, 2) = 1, 62 + (2× 3 + 2)2 = 102,

14 =5 + 3 + 6 with gcd(5, 3, 6) = 1, 52 + (2× 3 + 6)2 = 132,

24 =7 + 7 + 10 with gcd(7, 7, 10) = 1, 72 + (2× 7 + 10)2 = 252,

54 =28 + 19 + 7 with gcd(28, 19, 7) = 1, 282 + (2× 19 + 7)2 = 532.
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When n = x2 + y 2 + z2 + w 2 with x + y = z?
A Lemma. Let n ∈ N. Then n 6∈ E (1, 2, 6) if and only if
n = x2 + y2 + z2 + w2 for some x , y , z ,w ∈ N with x + y = z .

Proof. Assume that n 6∈ E (1, 2, 6). Then, there are x , y , z ∈ N for
which n = x2 + 2y2 + 6z2 = x2 + (y + z)2 + |y − z |2 + (2z)2.
Clearly (y + z) + |y − z | = 2z if y 6 z , and |y − z |+ 2z = y + z if
y > z . Therefore n = x2 + u2 + v2 + w2 for some u, v ,w ∈ N with
u + v = w .

Now suppose that n = x2 + y2 + z2 + w2 with x , y , z ,w ∈ N and
x + y = z . If x ≡ y (mod 2), then

n = w2 + 2

(
x − y

2

)2

+ 6

(
x + y

2

)2

and hence n 6∈ E (1, 2, 6). When x 6≡ y (mod 2), without loss of
generality we assume that y ≡ z (mod 2), hence

n = w2 + 2

(
y + z

2

)2

+ 6

(
y − z

2

)2

and thus n 6∈ E (1, 2, 6). 43 / 50



x2y 2 + y 2z2 + z2x2 is suitable

Theorem (Z.-W. Sun, May 6, 2016). Any n ∈ Z+ can be written
as w2 + x2 + y2 + z2 with w ∈ Z+ and x , y , z ∈ N such that
x2y2 + y2z2 + z2x2 is a square.

Proof. If n can be written as the sum of three squares, then
n = x2 + y2 + 02 + w2 for some x , y ∈ N and w ∈ Z+. Clearly
x2y2 + y202 + 02x2 = (xy)2 is a square.
If n ∈ E (1, 1, 1), then n has the form 4k(8l + 7) with k, l ∈ N, and
hence n 6∈ E (1, 2, 6) = {4k(8l + 5) : k , l ∈ N}. Thus, by the
lemma, there are x , y , z ,w ∈ N with x + y = z such that
n = x2 + y2 + z2 + w2. Clearly w 6= 0. Observe that

x2y2 + y2z2 + z2x2 =(xy)2 + (x2 + y2)(x + y)2

=(xy)2 + (x2 + xy + y2 − xy)(x2 + xy + y2 + xy)

=(x2 + xy + y2)2.

In contrast with the Theorem, we conjecture that the polynomial
x2y2 + 9y2z2 + 9z2x2 is suitable.
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More results and conjectures

Theorem (Z.-W. Sun, May 2016). For (b, c) = (8, 8), (16, 64),
any n ∈ Z+ can be written as x2 + y2 + z2 + w2 with x , y , z ∈ N
and w ∈ Z+ such that x4 + by3z + cyz3 is a fourth power.

Conjecture (Z.-W. Sun, May 2016) (i) If (a, b) is among the
ordered pairs

(1, 1), (1, 15), (1, 20), (1, 36), (1, 60), (9, 260),

then any positive integer can be written as x2 + y2 + z2 + w2 with
ax4 + by3z a square, where x , y , z ∈ N and w ∈ Z+.

(ii) For each triple (a, b, c) = (1, 20, 60), (1,24,56), (9,20,60),
(9,32,96), any n ∈ Z+ can be written as x2 + y2 + z2 + w2 with
x , y , z ∈ N and w ∈ Z+ such that ax4 + by3z + cyz3 is a square.

Theorem (Conjectured by Z.-W. Sun and essentially proved by
You-Ying Deng and Yu-Chen Sun) Any n ∈ N can be written as
x2 + y2 + z2 + w2 (x , y , z ,w ∈ N) with x2 + 4yz (or x2 + 8yz) a
square.
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Other interesting suitable polynomials

Conjecture (Z. W. Sun). (i) (April 11, 2016) Any n ∈ Z+ can be
written as w2 + x2 + y2 + z2 with w ∈ Z+ and x , y , z ∈ N such
that wx + 2xy + 2yz is a square.

(ii) (April 12, 2016) Any n ∈ Z+ can be written as
w2 + x2 + y2 + z2 with w ∈ Z+ and x , y , z ∈ N such that
w2 + 4xy + 8yz + 32zx is a square.

(iii) (April 13, 2016) Any n ∈ Z+ can be written as
w2 + x2 + y2 + z2 with x ∈ Z+ and w , y , z ∈ N such that
w(x + 2y + 3z) is a square.

(iv) (April 17, 2016) The polynomial w(x2 + 8y2 − z2) is suitable.

(v) (April 17, 2016) The polynomials w2x2 + 3x2y2 + 2y2z2 and
36x2y + 12y2z + z2x are suitable.

(vi) (April 19, 2016) Any n ∈ Z+ can be written as
x2 + y2 + z2 + w2 with x , y , z ,w ∈ N and z < w such that
4x2 + 5y2 + 20zw is a square.

46 / 50



Other interesting suitable polynomials (continued)

(vii) (April 17, 2016) Any n ∈ Z+ can be written as
w2 + x2 + y2 + z2 with w ∈ Z+ and x , y , z ∈ N such that
w2x2 + 5x2y2 + 80y2z2 + 20z2w2 is a square.

(viii) (April 30, 2016) Any n ∈ N can be written as
x2 + y2 + z2 + w2 with x , y , z ,w ∈ N and y > z such that
xyz(x + 3y + 13z) is a square.

(ix) (May 1, 2016) Any n ∈ N can be written as x2 + y2 + z2 + w2

with x , y , z ,w ∈ N such that xyz(x + 9y + 11z + 10w) is a square.

(x) (May 4, 2016) For each triple
(a, b, c) = (1, 2, 4), (1, 2, 9), (1, 3, 4), (2, 3, 4), (2, 4, 6), (4, 8, 10),
any n ∈ Z+ can be written as x2 + y2 + z2 + w2 with x , y , z ∈ N
and w ∈ Z+ such that w(25w + 24(ax + by + cz)) is a square.

47 / 50



Two more conjectures

Conjecture (Z.-W. Sun, May 7, 2016). (i) Any n ∈ N can be
written as x2 + y2 + z2 + w2 with x , y , z ,w ∈ N such that
xy + 2zw or xy − 2zw is a square.

(ii) Any n ∈ N can be written as x2 + y2 + z2 + w2 with
x , y , z ,w ∈ N and max{x , y} > min{z ,w} such that xy + zw/2 or
xy − zw/2 is a square.

Conjecture (Z.-W. Sun, May 12, 2016). (i) Any n ∈ Z+ can be
written as x2 + y2 + z2 + w2 with x , y , z ∈ N, x > z and
w ∈ Z \ {0} such that 3x2y + z2w is a square.

(ii) For each ordered pair (a, b) = (7, 1), (8, 1), (9, 2), any n ∈ Z+

can be written as x2 + y2 + z2 + w2 with x , y , z ∈ N and
w ∈ Z \ {0} such that ax2y + bz2w is a square.

Remark. It seems hopeless to prove the above two conjectures.

48 / 50



Recent work of the speaker
Conjecture (Z.-W. Sun, August 7, 2016). Any n ∈ Z+ can be
written as w2 + x2(1 + y2 + z2) with w , x , y , z ∈ N, x > 0 and
y ≡ z (mod 2). Moreover, any n ∈ Z+ with n 6= 449 can be
written as 4k(1 + x2 + y2) + z2 with k , x , y , z ∈ N and x ≡ y
(mod 2).

Theorem (i) The above conjecture holds provided that for any
integer n > 432 we can write 16n + 1 = 32x2 + 32y2 + z2 with
x , y , z ∈ Z.
(ii) Any n ∈ Z+ can be written as 4k(1 + 4x2 + y2) + z2 with
k , x , y , z ∈ N.
(iii) Under the GRH, any n ∈ Z+ can be written as
4k(1 + 5x2 + y2) + z2 with k , x , y , z ∈ N, and also any n ∈ Z+ can
be written as 4k(1 + x2 + y2) + 5z2 with k , x , y , z ∈ N.

Our proof of part (iii) of the Theorem uses the main result of Ben
Kane and Zhi-Wei Sun [Trans. AMS 362(2010), 6425–6455] where
the authors determined for what a, b, c ∈ Z+ sufficiently large
integers can be expressed as ax2 + by2 + cTz with x , y , z ∈ Z.
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