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Abstract

In this talk we introduce various series involving harmonic
numbers. In particular, we focus on how the speaker found many
conjectural series with summands involving harmonic numbers.
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$520 prize for the 520-series

Sun’s challenge

C‘;’“J @_i1054n+233 M\ o= (0 [2k (_1ykg2ien
T 7n:0 480" n k n

e roughly, each two terms of the outer sum give one correct digit

‘ g ! would like to offer $520 (520 US dollars) for the person
who could give the first correct proof of (*) in 2012 because
May 20 is the day for Nanjing University.
Zhi-Wei Sun (2011)
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Harmonic numbers
Harmonic numbers:
1
Hoi= Y o (n=012..).
0<k<n
Harmonic numbers of order m
1
H™ = Y w (n=012..).
0<k<n

J. Wolstenholme (1862): For any prime p > 3, we have

2p—1
H,1 =0 (mod p?), Hl(f) =0 (mod p), (:_ 1) =1 (mod p3).
J.W.L. Glaisher (1900): Let p > 3 be a prime. Then
H(m)lz n‘,’lep 11m(m0dp) if me {2,4,...,p—3},
P %Bp,g,m (mod p3) if me {1,3,...,p— 4},

where By, By, By, ... are the Bernoulli numbers.



Basic series involving harmonic numbers

Basic series involving harmonic numbers:
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Arithmetic theory of harmonic numbers
For any prime p, those Hy = Zo<j<k 1/j(k=1,...,p—1) are
p-adic integers.

Z.-W. Sun [Proc. AMS 140(2012), 415-428]: Let p > 3 be a
prime. Then

p—1 p—1

H2 =2p—2 (mod p?), H =6 (mod p),
k=1 k=1

and
p—1 p—1
4 H

K2HZ = -3 (mod p)), 7’; =0 (mod p)

k=1 k=1

When p > 5, we have



Arithmetic theory of harmonic numbers (continued)

Z.-W. Sun and L.-L. Zhao [Collog. Math. 130(2013), 67-78]:
For any prime p > 3, we have

p—1

H 7

k72l;< = ﬂpo_g (mod p?)

and -

p— 2

H 3

ﬁ = _ng—?) (mOd p)7
k=1

where the first congruence was originally conjectured by Sun [Proc.

AMS 140(2012)].

Another Congruence (conjectured by Sun [Proc. AMS
140(2012)] and confirmed by R. Mestrovi¢ [Int. J. Number Theory
9(2012), 1081—1085]):

“H2 4 2
Z ké = po_5 (mod p=) for any prime p > 3.
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Conjectural series involving harmonic numbers (2014)

Conjecture (Z.-W. Sun [Nanjing Univ. J. Math. Biquarterly
32(2015)] (i) We have

> Hay +2/(3k)
e =((3),
2w
oo
Hoy +2H, 5
———— =2-((3),
2l 3
o~ Hop + 17Hy 5\/
kT ok 23K,
2 2

where K := L(2,(=2) = 3202, (5) /K2
(ii) Let p > 3 be a prime. Then

(p—1)/2
3Hok +2/k
Z i’;zk/ =B, 3 (mod p), ------
pot (%)

Remark. Part (i) was confirmed by J. Ablinger [Experiment.
Math. 26(2017)].
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More conjectures made in 2014

It is known that
S D 2
.32k & ’
k=1 k3(k) 5
which plays an important role in Apéry’s proof of the irrationality
of ¢(3).
Conjecture (Z.-W. Sun, 2014).

2 Hy — He+2/k 11
= —((5).
kgi k() 9

Remark. This was confirmed by J. Ablinger [Experiment. Math.
26(2017)] by symbolic computation via the software Sigma.
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More conjectures made in 2014
Conjecture (Z.-W. Sun, 2014).

i(_l)k_l 10H, —3/k _ =*

k=1 k3<2kk) N 30
and

S~ (_qyk-1Hek AR 2

20 e T

This was confirmed by W. Chu [Contrib. Discrete. Math.

15(2020)] and also K. C. Au [arXiv:2201.01676].
Conjecture (Z.-W. Sun, 2014).

> 1 2
Z 3 < ;(<3)+ 5k3> = gC(3)2-
=1

This was confirmed by W. Chu [Contrib. Discrete. Math.

15(2020)].
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Ramanujan-type series for 1 /7
General forms of Classical Ramanujan-type Series for 1/7:

Sor Gl $rn@0)

k=0 k=0
S PP N3l 1)
k=0 k=0

There are totally 36 known Ramanujan-type series for 1/m with
a, b, m rational. | prefer their forms in terms of binomial
coefficients rather than hypergeometric series.

D. V. Chudnovsky and G. V. Chudnovsky (1987):

i 545140134k + 13591409 (6k> <3k> <2k> 3 x 533602

e (—640320)3 3k)\ k) \ k

Remark. This yielded the record for the calculation of 7 during
1989-1994.

" 2710005
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Long's conjecture

Motivated by the Ramanujan series

3
00 (Zk) 2\@
kz_;) (6k+1 (—512)k T

L. Long [Pacific J. Math. 249(2011)] conjectured the congruence

(p-1)/2 (2k 1
Z (6k +1) 512kz<211 16j2>:0 (mod p)

=0

for any odd prime p, which was confirmed by H. Swisher in 2015.
Note that the congruence can be rewritten as

(p—1)/2 (2k)3 @) @)
> (6k+ 1)(_5’<12)k <H2k - 16/1/ > =0 (mod p).
k=0
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Guo and Lian’s conjecture
In 2022 | conjectured further that for any prime p > 3 we have

(p—1)/2 (2k)3 @) ( | p (2
Z (6K 1)( 512) ( 2k 16 ) T4 <p> Ep-3 (mod p%),

k=0

- C (e 2) L

> (6k+1 H —-Affi PE d p?).
k_0(6 + )( 512)k ( 2k " 1g ) 16 Ep-3 <4> (mod p©)
In 2022 C. Wei [Ramanujan J.] deduced the two identities

= 5 2
§2M+1() <%?_m%ﬂ:_¢”

(—512)k 48
=0
and 3
00 (2k) 5 T
k+1 HD - 2 {P) = 2
EE%(6 * )256k ( 2k 16 K 12

conjectured by Guo and Lian [J. Difference Equ. Appl. 27(2021)],

as well as their g-analogues.
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Wei and Ruan’s work

Motivated by Bauer's series

0 (2k>3 2
kz::O(M + 1)(_k64)k ==

and Ramanujan’s series
0o 2

k=0

Wei and G. Ruan [arXiv:2210.01331] proved the two new identities:

S ey G (o 1) 7
Z( + )( 64) 2k 2 k __127

k=0
S GY°6H (Lo 5 @) V3m
§(8k+ D)~ <H2k — 25 > =

(Just like Guo and Lian, Wei and Ruan did not use second-order
harmonic numbers.)
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A series discoveries in Oct. 2022
Conjecture 1 (Z.-W. Sun, arXiv:2210.07238). We have

> (%)’ 25 2 o
(42k HE - 242 ) = =2
; +5) 4096" ( 2k 9ok 69’

3
S G (e 43 @) 5% ¢(3) 32
42k HY — —HY ) === .22 2@
g( +5)4096k 2k 352 7 7 11

where G = L(2,(=%)) =222, % is the Catalan constant.

Remark. The first identity was later confirmed by C. Wei
[arXiv:2211.1148].
Conjecture 2 (Z.-W. Sun, arXiv:2210.07238). We have

0o 3
) @ _ 7 ,®)_5 <B)
(6k Hy) — —H — .
Z6+ 512)<2k 64") 6 27

=0

() -SR-S

where
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Zeilberger-type series
In 1993, D. Zeilberger used the Wilf-Zeilberger method to obtain
the new identity

> 21k —8 2
> s =@ =
k=1 k (k)
Define 1
F(n’ k) - 2n 1)2 2n+k+1Y2
(n)(n+ ) ( n+1 )
and . )
| |
G k) = TR,

C2(2n+ 1)1(2n+ k +2)12
where P(n, k) denotes

(n 4 1)%(21n 4 13) + 2k> + k?(13n + 11) + k(28n> + 48n + 20).

Then (F, G) is a WZ pair in the sense that
F(n+1,k)— F(n,k) = G(n, k+1) — G(n, k).
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Other Zeilberger-type series
J. Guillera [Ramanujan J. 15(2008)] used the WZ method to give

three new Zeilberger-type series:
Z(4k71)( 64)k 166,
k3 (2k)
k—1
Y (G
k(%)
— (3k — 1) 16" T

Z k3 2’< 7’

k=1

k=1

k=1

k
where G denotes the Catalan constant >~ .-, 2;+1)1)

Q.-H. Hou, C. Krattenthaler and Z.-W. Sun [Proc. Amer. Math.

Soc. 147(2019)] provided a g-analogue of the last identity
S 1-¢"2 (4:9)3(=q:9)n (4% )3
n(n+1)/2 . n —(1— 2 o)
24 i—q @ 0 (@on

o0

n—1

where |g] < 1, (a;9)n =
k=0 k=0

[1(1-2q"), (3 q)oc = 1 (1—aq").
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My serial discoveries in Oct. 2022
Conjecture 3 (Z.-W. Sun, arXiv:2210.07238). (i) We have

2. 21k — 2 4774
> ; (Héi)—l N 85H’(‘2‘)1> B 2878To’
k=1 K (k)

o~ 21k —8 ( @ | 43 (3)> 711 29 2
> Hyly + o Hiy ) = 52¢(5) = 3,7¢3).
3 -1 1
par k3(2kk) 8 28
(i) We have
2. (3k — 1)16F 5 .2 w*
S ORIt (o S )7
k=1 K (k)
(3k — 1)16* < 3) ) 2
Z CEZI2 (H®) 4L H = —((3).
3 2k—1 k—1
k=1 k3(2kk) 8 2
Remark. The first identity in part (i) was confirmed by C. Wei

[arXiv:2211.1148] and also K. C. Au [arXiv:2212.02986]. The first
identity in part (i) was confirmed by K. C. Au [arXiv:2212.02986].
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Au’s method

The rising factorial (or Pochhammer symbol):

M(a+ n)
r(a)

K. C. Au [arXiv:2212.02986] used the WZ method to obtain the
identity with a, b, ¢, d near 0:

(a)p=ala+1)---(a+n—-1)=

a+1)k(b+ 1)k

- (
; (c+k+1)(d+k+1)(c+ 1)k(d+ 1)«

B i (a4+1)p(b+1D)p(c—a+1),(d—a+1),(c—b+1),(d — b+1),P(n)
B (c+1)on(d +1)2n(c+d—a—b+1),Q(n) ’

n=1

where
Q(n)=(a+n)(b+n)(a—c—n)(a—d—n)(c—b+n)(d—b+n),

and P(n) is a very complicated polynomial in a, b, c, d, n.
20/41



Au’s method

Expanding both sides at (a, b, ¢, d) = (0,0,0,0), Au recovered
Zeilberger's series

Let [a’b/ckd'] denote the coefficient of a'b/ckd! of the identity
obtained by Au (on the last page). Via computing
L [a%] + [ac] + 3[ab], he confirmed the identity
. 21n—38 ( ) 25 (2 > 4774
S8 ()
m3 2n—1 n—1
— 3 (2n) 8 2880

conjectured by the speaker.
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New series with summands involving harmonic numbers

Via a similar method, K. C. Au [arXiv:2212.02986] also proved that

= (1)% /21k—38 7 — 4k
; (1)5 <k3 (Hak — Hi) + e ) ¢(3),
2. 4%K(1 —1 2k — 1 w2 7
Z:: (153) ( i3 (Hak — Hi) + ToRE > =3 log 2 + 6C(3)'

k

[y

On Dec. 4, 2022, | rewrote these two identities in better form. For
example, the first one has the equivalent form:

2. (21k — 8)(Hox—1 — Hx_1) — 7/2

k(%

=((3).

This form inspired me to discover many new conjectural series
involving harmonic numbers.



Series with binomial coefficients in the denominators

In 2010 Z.-W. Sun conjectured that

2 9
k=1 k° (2kk) (3kk) 2
which was confirmed by J. Guillera and M. Rogers in 2014.
Conjecture (Sun, 2022-12-05). We have

i": (10k —3)8% 72

2 8K((10k — 3)(Hak—1 — Hk_1) —1) 7
= ~¢(3
RE 2

and

o 8K((10k — 3)(H3k—1 — Hxk—1) —8/3) _ 2m*log2 + 7¢(3)

k(297 !
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Series with binomial coefficients in the denominators

In 2010 Z.-W. Sun conjectured that

o0 . k
S =
k=1 k3(k) (k)

which was later confirmed by J. Guillera.
Conjecture (Sun, 2022-12-05). We have
> 64k71((11k — 3)(2H2k,1 + kal) — 4) 7

o) ~2t®

and

[e.e]

Z 645=1((11k — 3)(3H3x_1 — 6Hk_1) — 7) _ 672 log2 — 21¢(3)

k3292 () 8
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Series with binomial coefficients in the denominators

In 2010 Z.-W. Sun conjectured that

~ (35k — 8)81k
Z (35k — 8)8 _ 102
=S ONEH
which was confirmed by J. Guillera and M. Rogers in 2014.
Conjecture (Sun, 2022-12-09). We have

>, 81%((35k — 8)(Hax_1 — Hix_1) — 35/4)

2
k=1 KBGHGH

= 1272 log 3 + 39¢(3).
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A General Conjecture

Part (i) of the General Conjecture (Z.-W. Sun, Dec. 2022). If
we have an identity

> (ak + b) ==

0
with a,b,m € Z, am # 0, c € Q\ {0}, and d is a positive
squarefree integer, then

okt py ) eVd
k=

S (2k)3 log |m|
Z :7k (6(ak + b)(Hak — Hk) + a) = cVd -
k=0
and
p—1 (2k)3
,;k (6(ak + b)(Hak — Hk) + a)
k=0

= (29) oo+ bl 1 - 1) (mod ?)

for any prime p { dm.

26
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Part (ii) of the General Conjecture

Part (ii) of the General Conjecture (Z.-W. Sun, Dec. 2022). If
we have an identity

ok by (B () evd
(ak + b) =
kz_o mk T

with a,b,m € Z, am # 0, c € Q\ {0}, and d is a positive
squarefree integer, then

= A7 jog | m|
> LKL ((ak + b)(3H3k + 2Ho — 5H) + a) = cVd ,
— mk T
and

7k) ((ak + b)(3H3k + 2Hak — 5HK) + a)

= (Z9) e+ bl =) (mod )

for any odd prime p { dm.
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Parts (iii) of the General Conjecture

Part (ii) of the General Conjecture (Z.-W. Sun, Dec. 2022). If
we have an identity

] 2 4
Z(ak+ b) (2kk) 522) — C\/a

m ™
k=0

with a,b,m € Z, am # 0, c € Q\ {0}, and d is a positive
squarefree integer, then

00 (2k)2(4k) og |l
Z %(4(ak + b)(Hax — Hi) + a) = cVd .
k=0
and
p— 1 (4k)
4(ak + b)(Hax — Hk) + a)
=0

= <_pd> (a+b(mP~t —1)) (mod p?)

for any odd prime p { dm.
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Parts (iv) of the General Conjecture

Part (iv) of the General Conjecture (Z.-W. Sun, Dec. 2022). If
we have an identity

S ok 4 5y GICIED _ v

m s

k=0

with a,b,m € Z, am # 0, c € Q\ {0}, and d is a positive
squarefree integer, then

) (2k) (3k) (Gk) jog |
Z %(3(31‘ + b)(2Hex — Hax — Hy) + a) = C\Fd77
k=0

and

p—1 3k (6k
)< )( ) ak + b)(2H6k — H3k - Hk) + a)
k=0

- (‘pd) (a4 b(mP™t ~ 1) (mod 7)

for any odd prime p { dm.

Remark. Having seen this conjecture posted to MathOverflow, K.
C. Au provided a rough idea for proving those identities.
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More conjectural series

Conjecture (Z.-W. Sun, arXiv:2210.07238). We have

oo (2k 3k
() () k2)16(k ) ((6k + 1)(Hax — 2Hy) +3) = 9‘[7':%3
k=0
oo (2k 3k
(k2)16(kk) (6k + 1)(3H3k - Hk) = 9\/§7:0g 2’7
k=0
0o 2k\2 (4k
5 L) 120 (g 1) b — a1) + ) — 20V 182,

Remark. This is motivated by the Ramanujan series

2V3

i(6k +1) G () = 3{ and i 8k +1) () 31 =

216k 482k

. .
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Powers of arcsin x

By taking derivatives of both sides of the identity
o (2k) 2k+1

. 3 1
(arcsm%) :3zm Z W (Ix] < 2),

we get
X\ 2 1/2 > 1
3 (arcsin 7) X ————on =3 -
2 V1= (x/2)? Z 16’< 0<Z<k (2 +1)2
and hence

(arcsin(x/2))? (2kk)xk k 1
2 (

VA —x2 _k < 168 £ (2 1)

Thus we have

(aresin(x/2))* _ = G (o) 1
Va—2 g 16 v
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Series with summands involving only one binomial
coefficient

Conjecture (Sun, 2022-11-14) We have the identity

oo (2k

G (o 1,m) _35v2 V2

2 g (sz ~ g ) = o T

k=0

Remark. In contrast, we have

oo 2k

s ) (o Lye) - o
— 8k 2k 4 k 16\5.

Mathematica yields that

i @Hk = —V/2log(12 — 8v2)
8k

k=0

and
2k | 3/2 + \@
Zkzo (kk) Hoy og( /ﬂ )
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Series with summands involving only one binomial
coefficient

Conjecture (Sun, 2022-11-14) We have the identity

3 C) (o Lym)_XE) 7K
par CURCAE: M 33 87
(5
3)

(2 (2) -1

Remark In contrast, we have

oo 2k 2
> G) (o 1@ _ 7
— 16k 2k 4 'k 36\/§'
Mathematica yields that

where

oo 2k oo
Z (162 Hi = —7 log(84—48+/3) and Z 16k _ log((7+4v3)/9)

V3
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Series with summands involving two binomial coefficients
Conjecture (Sun, 2022-12-30). We have
N (i") (3k) N

k:O

Remark For any prime p > 3, we have

p—

Z = () "Z_l GG

2
216 k —\3 g4k (mod P
k=0
by Sun [Finite Fields Appl., 2013], and
R 1 3") (((2;(212))/13;)/3 (mod p?)  ifp=1 (mod3),
— p/((;+1)/3) (mod p?) if p=2 (mod 3),

as conjectured by Z.-W. Sun [Sci. China Math., 2011] and proved
by C. Wang and Sun [J. Math. Anal. Appl., 2022].

The speaker actually has made several similar conjectures
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Conjectural series for ((4) and ((5)

In 2010, via p-adic congruences the speaker conjectured that

Z (28k2 — 18k + 3)(—64)k — 14c(3).
k=1

2k\4 3k

k() ()
This was confirmed by K. C. Au in 2022.
Conjecture (Sun, 2022-12-09) (i) We have

—  (—64) 2 ™
> ———7—— ((28K* — 18k + 3)(4Hak—1 — 3Hy_1) — 20k +6) = —
k=1 k® (2kk) (3kk) 2

and
i (—64)%((28K> — 18k + 3)(2HS2 | — 3HP),) - 2) = —31¢(5)
o) ) o

Remark. We also have corresponding conjectural p-adic

congruences.
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Conjectural series for (log24)/m?

The following conjecture was motivated by the known series

S K\ 3 (3k\ (4k
;(252/(2 + 63k + 5)W _ %{-2;

Conjecture (Sun, 2022-12-09) (i) We have

s () ()6 () (244)( ) (252K° 4 63k + 5)(#Hes + 3Hay — TH,) + 504k + 63)
k=0

_ 192log24

7T2
ii) For any prime p > 3, we have
1

ZO (& () 24 4))( 3y ((252k* + 63k + 5)(4Hak + 3Hsk — THy) + 504k + 63)

5
= 63p + 5p”qp(24") — 5 p’,(24%)? (mod p),

where g,(m) denotes the Fermat quotient (mP~1 —1)/p.

36
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Conjectural series for (log 10) /72

The following conjecture was motivated by the conjectural identity

oo 2k\2 (3k\ 2 (6k
2 (%) C) (G _ 3715
kg 0(532k + 126k +9) 106 =2

Conjecture (Sun, 2023-01-16) (i) We have

(9] (2k> (3k> (6k)
> % (3(532k? + 126k + 9)(Hex — H) + 532k + 63)
k=0

_ 1125l0g 10
N 42
(ii) For any odd prime p # 5, we have

p—1 2k> (3k> (6k)
106% (3(532k? + 126k + 9)(Hex — Hi) + 532k + 63)
k=0

9 9
= 63p + 5 p’p(10°) — ;p*p(10°)*  (mod p?).
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More such conjectural series
Conjecture (Z.-W. Sun, 2023-01-17). (i) For k € N, set
H(k) = 6Hg) + 4Hyy — 3H3 — 2H>, — 5H,.

Then
S RIENIEH,
DK g (164K + 278K + 15)H(K) + 3280 + 278)
k=0
256
= 5 log(2223%).

(ii) For k € N, set
H(k) = 4Hg) — 2H4, + Hyi — 3Hy.

Then
o~ ()" (30 ()
D gy ((1920K7 + 304k + 15)24(k) + 1920k + 152)
k=0
56[

(9log2 + 2log7).
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A conjectural series for (log2) /73

The following conjecture was motivated by the identity

S 168K° + 7642 (' _ 2
> _(168K° +76k% + 14k + 1) 550 = —3
k=0

conjectured by B. Gourevich.
Conjecture (Sun, 2022-12-09) We have

> (QzOk (168k> + 76k* + 14k + 1)(Hax — Hy) + 252k + 76k +7)

k=0
320log2
= 7T3 .
Also,
=GO eai 7657 4 14k HO — s1®) 1 86k + 1)) = &
oo ((168 +76k2 + 14k + 1)(16H2 — 5H®) 1 8(6 +1))73W.
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A conjectural series for 7°

The following conjecture is motivated by the identity

o (21k® — 22k? + 8k — 1)256F 7
2K\ 7 8
K7 (%) 8

k=1
conjectured by Guillera in 2003.
Conjecture (Sun, 2022-12-09) (i) We have

6

o~ 256 3 > @) @) _
kzl , <(21k — 22Kk? + 8k — 1)(4H2 | — 5H? )—6k+2>724.

= k()
(ii) For any odd prime p, we have

(p—1)/2 (2k)7
> ok ((21k3 +22k2 + 8k + 1)(4H2) — 5HP)) + 6k + 2)
k=0

=2p (mod p°).
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Thank you!
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