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Abstract

In this talk we introduce various series involving harmonic
numbers. In particular, we focus on how the speaker found many
conjectural series with summands involving harmonic numbers.
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Rogers & Straub [Int. JNT 9(2013)] proved the 520-series
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$520 prize for the 520-series
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Harmonic numbers
Harmonic numbers:

Hn :=
∑

0<k6n

1

k
(n = 0, 1, 2, . . .).

Harmonic numbers of order m:

H
(m)
n :=

∑
0<k6n

1

km
(n = 0, 1, 2, . . .).

J. Wolstenholme (1862): For any prime p > 3, we have

Hp−1 ≡ 0 (mod p2), H
(2)
p−1 ≡ 0 (mod p),

(
2p − 1

p − 1

)
≡ 1 (mod p3).

J.W.L. Glaisher (1900): Let p > 3 be a prime. Then

H
(m)
p−1 ≡

{
pm
m+1Bp−1−m (mod p2) if m ∈ {2, 4, . . . , p − 3},
−p2m(m+1)

2(m+2) Bp−2−m (mod p3) if m ∈ {1, 3, . . . , p − 4},

where B0,B1,B2, . . . are the Bernoulli numbers.
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Basic series involving harmonic numbers

Basic series involving harmonic numbers:

∞∑
k=1

Hk

k2
= 2ζ(3) (Euler),

∞∑
k=1

Hk

k3
=
π4

72
(Goldbach, 1742),

∞∑
k=1

H2
k

k2
=

17

360
π4 (D. Borwein and J.M. Borwein, 1995),

∞∑
k=1

Hk

k2k
=
π2

12
(S.W. Coffman, 1987),

∞∑
k=1

H
(2)
k

k2k
=

5

8
ζ(3) (B. Cloitre, 2004).
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Arithmetic theory of harmonic numbers

For any prime p, those Hk =
∑

0<j6k 1/j (k = 1, . . . , p − 1) are
p-adic integers.

Z.-W. Sun [Proc. AMS 140(2012), 415-428]: Let p > 3 be a
prime. Then

p−1∑
k=1

H2
k ≡ 2p − 2 (mod p2),

p−1∑
k=1

H3
k ≡ 6 (mod p),

and

p−1∑
k=1

k2H2
k ≡ −

4

9
(mod p)),

p−1∑
k=1

Hk

k2k
≡ 0 (mod p).

When p > 5, we have

p−1∑
k=1

H2
k

k2
≡ 0 (mod p).
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Arithmetic theory of harmonic numbers (continued)
Z.-W. Sun and L.-L. Zhao [Colloq. Math. 130(2013), 67-78]:
For any prime p > 3, we have

p−1∑
k=1

Hk

k2k
≡ 7

24
pBp−3 (mod p2)

and
p−1∑
k=1

H
(2)
k

k2k
≡ −3

8
Bp−3 (mod p),

where the first congruence was originally conjectured by Sun [Proc.
AMS 140(2012)].

Another Congruence (conjectured by Sun [Proc. AMS
140(2012)] and confirmed by R. Meštrović [Int. J. Number Theory
9(2012), 1081-1085]):

p−1∑
k=1

H2
k

k2
≡ 4

5
pBp−5 (mod p2) for any prime p > 3.
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Conjectural series involving harmonic numbers (2014)
Conjecture (Z.-W. Sun [Nanjing Univ. J. Math. Biquarterly
32(2015)] (i) We have

∞∑
k=1

H2k + 2/(3k)

k2
(
2k
k

) =ζ(3),

∞∑
k=1

H2k + 2Hk

k2
(
2k
k

) =
5

3
ζ(3),

∞∑
k=1

H2k + 17Hk

k2
(
2k
k

) =
5

2

√
3 πK ,

where K := L(2, (−3· ) =
∑∞

k=1(k3 )/k2.
(ii) Let p > 3 be a prime. Then

(p−1)/2∑
k=1

3H2k + 2/k

k2
(2k
k

) ≡Bp−3 (mod p), · · · · · ·

Remark. Part (i) was confirmed by J. Ablinger [Experiment.
Math. 26(2017)].
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More conjectures made in 2014

It is known that
∞∑
k=1

(−1)k−1

k3
(2k
k

) =
2

5
ζ(3),

which plays an important role in Apéry’s proof of the irrationality
of ζ(3).

Conjecture (Z.-W. Sun, 2014).

∞∑
k=1

H2k − Hk + 2/k

k4
(2k
k

) =
11

9
ζ(5).

Remark. This was confirmed by J. Ablinger [Experiment. Math.
26(2017)] by symbolic computation via the software Sigma.
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More conjectures made in 2014

Conjecture (Z.-W. Sun, 2014).

∞∑
k=1

(−1)k−1
10Hk − 3/k

k3
(2k
k

) =
π4

30

and
∞∑
k=1

(−1)k−1
H2k + 4Hk

k3
(2k
k

) =
2

75
π4.

This was confirmed by W. Chu [Contrib. Discrete. Math.
15(2020)] and also K. C. Au [arXiv:2201.01676].

Conjecture (Z.-W. Sun, 2014).

∞∑
k=1

(−1)k−1

k3
(2k
k

) (H
(3)
k +

1

5k3

)
=

2

5
ζ(3)2.

This was confirmed by W. Chu [Contrib. Discrete. Math.
15(2020)].
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Ramanujan-type series for 1/π
General forms of Classical Ramanujan-type Series for 1/π:

∞∑
k=0

(ak + b)

(2k
k

)3
mk

,

∞∑
k=0

(ak + b)

(2k
k

)2(3k
k

)
mk

,

∞∑
k=0

(ak + b)

(2k
k

)2(4k
2k

)
mk

,

∞∑
k=0

(ak + b)

(2k
k

)(3k
k

)(6k
3k

)
mk

.

There are totally 36 known Ramanujan-type series for 1/π with
a, b,m rational. I prefer their forms in terms of binomial
coefficients rather than hypergeometric series.

D. V. Chudnovsky and G. V. Chudnovsky (1987):

∞∑
k=0

545140134k + 13591409

(−640320)3k

(
6k

3k

)(
3k

k

)(
2k

k

)
=

3× 533602

2π
√

10005
.

Remark. This yielded the record for the calculation of π during
1989-1994.

12 / 41



Long’s conjecture

Motivated by the Ramanujan series

∞∑
k=0

(6k + 1)

(2k
k

)3
(−512)k

=
2
√

2

π

L. Long [Pacific J. Math. 249(2011)] conjectured the congruence

(p−1)/2∑
k=0

(6k + 1)

(2k
k

)3
(−512)k

k∑
j=1

(
1

(2j − 1)2
− 1

16j2

)
≡ 0 (mod p)

for any odd prime p, which was confirmed by H. Swisher in 2015.
Note that the congruence can be rewritten as

(p−1)/2∑
k=0

(6k + 1)

(2k
k

)3
(−512)k

(
H

(2)
2k −

5

16
H

(2)
k

)
≡ 0 (mod p).
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Guo and Lian’s conjecture

In 2022 I conjectured further that for any prime p > 3 we have

(p−1)/2∑
k=0

(6k + 1)

(2k
k

)3
(−512)k

(
H

(2)
2k −

5

16
H

(2)
k

)
≡ p

4

(
2

p

)
Ep−3 (mod p2),

p−1∑
k=0

(6k + 1)

(2k
k

)3
(−512)k

(
H

(2)
2k −

5

16
H

(2)
k

)
≡ p

16
Ep−3

(
1

4

)
(mod p2).

In 2022 C. Wei [Ramanujan J.] deduced the two identities

∞∑
k=0

(6k + 1)

(2k
k

)3
(−512)k

(
H

(2)
2k −

5

16
H

(2)
k

)
= −
√

2

48
π

and
∞∑
k=0

(6k + 1)

(2k
k

)3
256k

(
H

(2)
2k −

5

16
H

(2)
k

)
=

π

12

conjectured by Guo and Lian [J. Difference Equ. Appl. 27(2021)],
as well as their q-analogues.
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Wei and Ruan’s work

Motivated by Bauer’s series

∞∑
k=0

(4k + 1)

(2k
k

)3
(−64)k

=
2

π

and Ramanujan’s series

∞∑
k=0

(8k + 1)

(2k
k

)2(4k
2k

)
482k

=
2
√

3

π
,

Wei and G. Ruan [arXiv:2210.01331] proved the two new identities:

∞∑
k=0

(4k + 1)

(2k
k

)3
(−64)k

(
H

(2)
2k −

1

2
H

(2)
k

)
= − π

12
,

∞∑
k=0

(8k + 1)

(2k
k

)2(4k
2k

)
482k

(
H

(2)
2k −

5

18
H

(2)
k

)
=

√
3π

54
.

(Just like Guo and Lian, Wei and Ruan did not use second-order
harmonic numbers.)
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A series discoveries in Oct. 2022
Conjecture 1 (Z.-W. Sun, arXiv:2210.07238). We have

∞∑
k=0

(42k + 5)

(
2k
k

)3
4096k

(
H

(2)
2k −

25

92
H

(2)
k

)
=

2π

69
,

∞∑
k=0

(42k + 5)

(
2k
k

)3
4096k

(
H

(3)
2k −

43

352
H

(3)
k

)
=

555

77
· ζ(3)

π
− 32

11
G ,

where G = L(2, (−4· )) =
∑∞

k=0
(−1)k

(2k+1)2
is the Catalan constant.

Remark. The first identity was later confirmed by C. Wei
[arXiv:2211.1148].

Conjecture 2 (Z.-W. Sun, arXiv:2210.07238). We have

∞∑
k=0

(6k + 1)

(
2k
k

)3
(−512)k

(
H

(3)
2k −

7

64
H

(3)
k

)
=

57

16
· ζ(3)√

2π
− L,

where

L = L

(
2,

(
−8

·

))
=
∞∑
n=1

(−8n )

n2
=
∞∑
k=0

(−1)k(k−1)/2

(2k + 1)2
.

16 / 41



Zeilberger-type series
In 1993, D. Zeilberger used the Wilf-Zeilberger method to obtain
the new identity

∞∑
k=1

21k − 8

k3
(2k
k

)3 = ζ(2) =
π2

6
.

Define

F (n, k) =
1(2n

n

)
(n + 1)2

(2n+k+1
n+1

)2
and

G (n, k) =
n!4(n + k)!2

2(2n + 1)!(2n + k + 2)!2
P(n, k),

where P(n, k) denotes

(n + 1)2(21n + 13) + 2k3 + k2(13n + 11) + k(28n2 + 48n + 20).

Then 〈F ,G 〉 is a WZ pair in the sense that

F (n + 1, k)− F (n, k) = G (n, k + 1)− G (n, k).
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Other Zeilberger-type series
J. Guillera [Ramanujan J. 15(2008)] used the WZ method to give
three new Zeilberger-type series:

∞∑
k=1

(4k − 1)(−64)k

k3
(
2k
k

)3 =− 16G ,

∞∑
k=1

(3k − 1)(−8)k

k3
(
2k
k

)3 =− 2G ,

∞∑
k=1

(3k − 1)16k

k3
(
2k
k

)3 =
π2

2
,

where G denotes the Catalan constant
∑∞

k=0
(−1)k

(2k+1)2 .

Q.-H. Hou, C. Krattenthaler and Z.-W. Sun [Proc. Amer. Math.
Soc. 147(2019)] provided a q-analogue of the last identity:

∞∑
n=0

qn(n+1)/2 1− q3n+2

1− q
· (q; q)3n(−q; q)n

(q3; q2)3n
= (1− q)2

(q2; q2)4∞
(q; q2)4∞

,

where |q| < 1, (a; q)n =
n−1∏
k=0

(1− aqk), (a; q)∞ =
∞∏
k=0

(1− aqk).
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My serial discoveries in Oct. 2022

Conjecture 3 (Z.-W. Sun, arXiv:2210.07238). (i) We have

∞∑
k=1

21k − 8

k3
(2k
k

)3 (H
(2)
2k−1 −

25

8
H

(2)
k−1

)
=

47π4

2880
,

∞∑
k=1

21k − 8

k3
(2k
k

)3 (H
(3)
2k−1 +

43

8
H

(3)
k−1

)
=

711

28
ζ(5)− 29

14
π2ζ(3).

(ii) We have

∞∑
k=1

(3k − 1)16k

k3
(2k
k

)3 (
H

(2)
2k−1 −

5

4
H

(2)
k−1

)
=
π4

24
,

∞∑
k=1

(3k − 1)16k

k3
(2k
k

)3 (
H

(3)
2k−1 +

7

8
H

(3)
k−1

)
=
π2

2
ζ(3).

Remark. The first identity in part (ii) was confirmed by C. Wei
[arXiv:2211.1148] and also K. C. Au [arXiv:2212.02986]. The first
identity in part (i) was confirmed by K. C. Au [arXiv:2212.02986].
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Au’s method

The rising factorial (or Pochhammer symbol):

(a)n = a(a + 1) · · · (a + n − 1) =
Γ(a + n)

Γ(a)
.

K. C. Au [arXiv:2212.02986] used the WZ method to obtain the
identity with a, b, c , d near 0:

∞∑
k=0

(a + 1)k(b + 1)k
(c + k + 1)(d + k + 1)(c + 1)k(d + 1)k

=
∞∑
n=1

(a + 1)n(b + 1)n(c − a + 1)n(d − a + 1)n(c − b + 1)n(d − b + 1)nP(n)

(c + 1)2n(d + 1)2n(c + d − a− b + 1)2nQ(n)
,

where

Q(n) = (a + n)(b + n)(a− c − n)(a− d − n)(c − b + n)(d − b + n),

and P(n) is a very complicated polynomial in a, b, c , d , n.
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Au’s method

Expanding both sides at (a, b, c, d) = (0, 0, 0, 0), Au recovered
Zeilberger’s series

∞∑
n=1

(21n − 8)(1)6n
n3(1)32n

= ζ(2).

Let [aibjckd l ] denote the coefficient of aibjckd l of the identity
obtained by Au (on the last page). Via computing
11
4 [a2] + [ac] + 5

8 [ab], he confirmed the identity

∞∑
n=1

21n − 8

n3
(2n
n

)3 (H
(2)
2n−1 −

25

8
H

(2)
n−1

)
=

47π4

2880

conjectured by the speaker.
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New series with summands involving harmonic numbers

Via a similar method, K. C. Au [arXiv:2212.02986] also proved that

∞∑
k=1

(1)6k
(1)32k

(
21k − 8

k3
(H2k − Hk) +

7− 4k

k4

)
= ζ(3),

∞∑
k=1

42k(1)6k
(1)32k

(
3k − 1

k3
(H2k − Hk) +

2k − 1

2k4

)
=
π2

3
log 2 +

7

6
ζ(3).

On Dec. 4, 2022, I rewrote these two identities in better form. For
example, the first one has the equivalent form:

∞∑
k=1

(21k − 8)(H2k−1 − Hk−1)− 7/2

k3
(2k
k

)3 = ζ(3).

This form inspired me to discover many new conjectural series
involving harmonic numbers.
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Series with binomial coefficients in the denominators

In 2010 Z.-W. Sun conjectured that

∞∑
k=1

(10k − 3)8k

k3
(2k
k

)2(3k
k

) =
π2

2
,

which was confirmed by J. Guillera and M. Rogers in 2014.

Conjecture (Sun, 2022-12-05). We have

∞∑
k=1

8k((10k − 3)(H2k−1 − Hk−1)− 1)

k3
(2k
k

)2(3k
k

) =
7

2
ζ(3)

and

∞∑
k=1

8k((10k − 3)(H3k−1 − Hk−1)− 8/3)

k3
(2k
k

)2(3k
k

) =
2π2 log 2 + 7ζ(3)

4
.
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Series with binomial coefficients in the denominators

In 2010 Z.-W. Sun conjectured that

∞∑
k=1

(11k − 3)64k

k3
(2k
k

)2(3k
k

) = 8π2,

which was later confirmed by J. Guillera.

Conjecture (Sun, 2022-12-05). We have

∞∑
k=1

64k−1((11k − 3)(2H2k−1 + Hk−1)− 4)

k3
(2k
k

)2(3k
k

) =
7

2
ζ(3)

and

∞∑
k=1

64k−1((11k − 3)(3H3k−1 − 6Hk−1)− 7)

k3
(2k
k

)2(3k
k

) =
6π2 log 2− 21ζ(3)

8
.
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Series with binomial coefficients in the denominators

In 2010 Z.-W. Sun conjectured that

∞∑
k=1

(35k − 8)81k

k3
(2k
k

)2(4k
2k

) = 12π2,

which was confirmed by J. Guillera and M. Rogers in 2014.

Conjecture (Sun, 2022-12-09). We have

∞∑
k=1

81k((35k − 8)(H4k−1 − Hk−1)− 35/4)

k3
(2k
k

)2(4k
2k

) = 12π2 log 3 + 39ζ(3).
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A General Conjecture

Part (i) of the General Conjecture (Z.-W. Sun, Dec. 2022). If
we have an identity

∞∑
k=0

(ak + b)

(2k
k

)3
mk

=
c
√

d

π

with a, b,m ∈ Z, am 6= 0, c ∈ Q \ {0}, and d is a positive
squarefree integer, then

∞∑
k=0

(2k
k

)3
mk

(6(ak + b)(H2k − Hk) + a) = c
√

d
log |m|
π

,

and
p−1∑
k=0

(2k
k

)3
mk

(6(ak + b)(H2k − Hk) + a)

≡
(
−d

p

)
(a + b(mp−1 − 1)) (mod p2)

for any prime p - dm. 26 / 41



Part (ii) of the General Conjecture

Part (ii) of the General Conjecture (Z.-W. Sun, Dec. 2022). If
we have an identity

∞∑
k=0

(ak + b)

(2k
k

)2(3k
k

)
mk

=
c
√

d

π

with a, b,m ∈ Z, am 6= 0, c ∈ Q \ {0}, and d is a positive
squarefree integer, then

∞∑
k=0

(2k
k

)2(3k
k

)
mk

((ak + b)(3H3k + 2H2k − 5Hk) + a) = c
√

d
log |m|
π

,

and
p−1∑
k=0

(2k
k

)2(3k
k

)
mk

((ak + b)(3H3k + 2H2k − 5Hk) + a)

≡
(
−d

p

)
(a + b(mp−1 − 1)) (mod p2)

for any odd prime p - dm. 27 / 41



Parts (iii) of the General Conjecture

Part (ii) of the General Conjecture (Z.-W. Sun, Dec. 2022). If
we have an identity

∞∑
k=0

(ak + b)

(2k
k

)2(4k
2k

)
mk

=
c
√

d

π

with a, b,m ∈ Z, am 6= 0, c ∈ Q \ {0}, and d is a positive
squarefree integer, then

∞∑
k=0

(2k
k

)2(4k
2k

)
mk

(4(ak + b)(H4k − Hk) + a) = c
√

d
log |m|
π

,

and
p−1∑
k=0

(2k
k

)2(4k
2k

)
mk

(4(ak + b)(H4k − Hk) + a)

≡
(
−d

p

)(
a + b(mp−1 − 1)

)
(mod p2)

for any odd prime p - dm.
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Parts (iv) of the General Conjecture
Part (iv) of the General Conjecture (Z.-W. Sun, Dec. 2022). If
we have an identity

∞∑
k=0

(ak + b)

(
2k
k

)(
3k
k

)(
6k
3k

)
mk

=
c
√

d

π

with a, b,m ∈ Z, am 6= 0, c ∈ Q \ {0}, and d is a positive
squarefree integer, then

∞∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
mk

(3(ak + b)(2H6k − H3k − Hk) + a) = c
√

d
log |m|
π

,

and
p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
mk

(3(ak + b)(2H6k − H3k − Hk) + a)

≡
(
−d

p

)(
a + b(mp−1 − 1)

)
(mod p2)

for any odd prime p - dm.

Remark. Having seen this conjecture posted to MathOverflow, K.
C. Au provided a rough idea for proving those identities. 29 / 41



More conjectural series

Conjecture (Z.-W. Sun, arXiv:2210.07238). We have

∞∑
k=0

(2k
k

)2(3k
k

)
216k

((6k + 1)(H2k − 2Hk) + 3) =
9
√

3 log 3

2π
,

∞∑
k=0

(2k
k

)2(3k
k

)
216k

(6k + 1)(3H3k − Hk) =
9
√

3 log 2

π
,

∞∑
k=0

(2k
k

)2(4k
2k

)
482k

((8k + 1)(3H2k − 4Hk) + 6) =
16
√

3 log 2

π
.

Remark. This is motivated by the Ramanujan series

∞∑
k=0

(6k + 1)

(2k
k

)2(3k
k

)
216k

=
3
√

3

π
and

∞∑
k=0

(8k + 1)

(2k
k

)2(4k
2k

)
482k

=
2
√

3

π
.
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Powers of arcsin x

By taking derivatives of both sides of the identity(
arcsin

x

2

)3
= 3

∞∑
k=0

(2k
k

)
x2k+1

(2k + 1)16k

∑
06j<k

1

(2j + 1)2
(|x | < 2),

we get

3
(

arcsin
x

2

)2
× 1/2√

1− (x/2)2
= 3

∞∑
k=0

(2k
k

)
x2k

16k

∑
06j<k

1

(2j + 1)2

and hence

(arcsin(x/2))2√
4− x2

=
∞∑
k=1

(2k
k

)
xk

16k

k∑
j=1

1

(2j − 1)2
.

Thus we have

(arcsin(x/2))2√
4− x2

=
∞∑
k=1

(2k
k

)
x2k

16k

(
H

(2)
2k −

1

4
H

(2)
k

)
.
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Series with summands involving only one binomial
coefficient

Conjecture (Sun, 2022-11-14) We have the identity
∞∑
k=0

(2k
k

)
8k

(
H

(3)
2k −

1

8
H

(3)
k

)
=

35
√

2

64
ζ(3)−

√
2

8
πG .

Remark. In contrast, we have
∞∑
k=0

(2k
k

)
8k

(
H

(2)
2k −

1

4
H

(2)
k

)
=

π2

16
√

2
.

Mathematica yields that
∞∑
k=0

(2k
k

)
8k

Hk = −
√

2 log(12− 8
√

2)

and
∞∑
k=0

(2k
k

)
8k

H2k =
log(3/2 +

√
2)√

2
.
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Series with summands involving only one binomial
coefficient

Conjecture (Sun, 2022-11-14) We have the identity

∞∑
k=0

(2k
k

)
16k

(
H

(3)
2k −

1

8
H

(3)
k

)
=

2ζ(3)

3
√

3
− πK

8
,

where

K := L

(
2,

(
−3

·

))
=
∞∑
k=1

(k3 )

k2
.

Remark In contrast, we have
∞∑
k=0

(2k
k

)
16k

(
H

(2)
2k −

1

4
H

(2)
k

)
=

π2

36
√

3
.

Mathematica yields that
∞∑
k=0

(
2k
k

)
16k

Hk = − 2√
3

log(84−48
√

3) and
∞∑
k=0

(
2k
k

)
16k

H2k =
log((7 + 4

√
3)/9)√

3
.
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Series with summands involving two binomial coefficients

Conjecture (Sun, 2022-12-30). We have

∞∑
k=0

(2k
k

)(3k
k

)
(−216)k

(3H3k − Hk) =

(
log

8

9

) ∞∑
k=0

(2k
k

)(3k
k

)
(−216)k

.

Remark For any prime p > 3, we have

p−1∑
k=0

(2k
k

)(3k
k

)
(−216)k

≡
(p

3

) p−1∑
k=0

(2k
k

)(3k
k

)
24k

(mod p2)

by Sun [Finite Fields Appl., 2013], and

p−1∑
k=0

(2k
k

)(3k
k

)
24k

≡

{((2p−2)/3
(p−1)/3

)
(mod p2) if p ≡ 1 (mod 3),

p/
((2p+2)/3
(p+1)/3

)
(mod p2) if p ≡ 2 (mod 3),

as conjectured by Z.-W. Sun [Sci. China Math., 2011] and proved
by C. Wang and Sun [J. Math. Anal. Appl., 2022].

The speaker actually has made several similar conjectures.
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Conjectural series for ζ(4) and ζ(5)

In 2010, via p-adic congruences the speaker conjectured that

∞∑
k=1

(28k2 − 18k + 3)(−64)k

k5
(2k
k

)4(3k
k

) = −14ζ(3).

This was confirmed by K. C. Au in 2022.

Conjecture (Sun, 2022-12-09) (i) We have

∞∑
k=1

(−64)k

k5
(2k
k

)4(3k
k

) ((28k2 − 18k + 3)(4H2k−1 − 3Hk−1)− 20k + 6
)

=
π4

2

and

∞∑
k=1

(−64)k((28k2 − 18k + 3)(2H
(2)
2k−1 − 3H

(2)
k−1)− 2)

k5
(2k
k

)4(3k
k

) = −31ζ(5).

Remark. We also have corresponding conjectural p-adic
congruences.
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Conjectural series for (log 24)/π2

The following conjecture was motivated by the known series

∞∑
k=0

(252k2 + 63k + 5)

(
2k
k

)3(3k
k

)(
4k
2k

)
(−244)k

=
48

π2
.

Conjecture (Sun, 2022-12-09) (i) We have

∞∑
k=0

(
2k
k

)3(3k
k

)(
4k
2k

)
(−244)k

(
(252k2 + 63k + 5)(4H4k + 3H3k − 7Hk) + 504k + 63

)
=

192 log 24

π2
.

(ii) For any prime p > 3, we have

p−1∑
k=0

(
2k
k

)3(3k
k

)(
4k
2k

)
(−244)k

(
(252k2 + 63k + 5)(4H4k + 3H3k − 7Hk) + 504k + 63

)
≡ 63p + 5p2qp(244)− 5

2
p3qp(244)2 (mod p4),

where qp(m) denotes the Fermat quotient (mp−1 − 1)/p.
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Conjectural series for (log 10)/π2

The following conjecture was motivated by the conjectural identity

∞∑
k=0

(532k2 + 126k + 9)

(2k
k

)2(3k
k

)2(6k
3k

)
106k

=
375

4π2
.

Conjecture (Sun, 2023-01-16) (i) We have

∞∑
k=0

(2k
k

)2(3k
k

)2(6k
3k

)
106k

(
3(532k2 + 126k + 9)(H6k − Hk) + 532k + 63

)
=

1125 log 10

4π2
.

(ii) For any odd prime p 6= 5, we have

p−1∑
k=0

(2k
k

)2(3k
k

)2(6k
3k

)
106k

(
3(532k2 + 126k + 9)(H6k − Hk) + 532k + 63

)
≡ 63p +

9

2
p2qp(106)− 9

4
p3qp(106)2 (mod p4).
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More such conjectural series

Conjecture (Z.-W. Sun, 2023-01-17). (i) For k ∈ N, set

H(k) := 6H6k + 4H4k − 3H3k − 2H2k − 5Hk .

Then
∞∑
k=0

(2k
k

)2(3k
k

)(4k
2k

)(6k
3k

)
(−22233)k

(
(1640k2 + 278k + 15)H(k) + 3280k + 278

)
=

256√
3π2

log(22233).

(ii) For k ∈ N, set

H(k) := 4H8k − 2H4k + H2k − 3Hk .

Then
∞∑
k=0

(2k
k

)3(4k
2k

)(8k
4k

)
(21874)k

(
(1920k2 + 304k + 15)H(k) + 1920k + 152

)
=

56
√

7

π2
(9 log 2 + 2 log 7).
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A conjectural series for (log 2)/π3

The following conjecture was motivated by the identity

∞∑
k=0

(168k3 + 76k2 + 14k + 1)

(2k
k

)7
220k

=
32

π3

conjectured by B. Gourevich.

Conjecture (Sun, 2022-12-09) We have

∞∑
k=0

(
2k
k

)7
220k

(
7(168k3 + 76k2 + 14k + 1)(H2k − Hk) + 252k2 + 76k + 7

)
=

320 log 2

π3
.

Also,

∞∑
k=0

(
2k
k

)7
220k

(
(168k3 + 76k2 + 14k + 1)(16H

(2)
2k − 5H

(2)
k ) + 8(6k + 1)

)
=

80

3π
.
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A conjectural series for π6

The following conjecture is motivated by the identity

∞∑
k=1

(21k3 − 22k2 + 8k − 1)256k

k7
(2k
k

)7 =
π4

8

conjectured by Guillera in 2003.

Conjecture (Sun, 2022-12-09) (i) We have

∞∑
k=1

256k

k7
(
2k
k

)7 ((21k3 − 22k2 + 8k − 1)(4H
(2)
2k−1 − 5H

(2)
k−1)− 6k + 2

)
=
π6

24
.

(ii) For any odd prime p, we have

(p−1)/2∑
k=0

(2k
k

)7
256k

(
(21k3 + 22k2 + 8k + 1)(4H

(2)
2k − 5H

(2)
k ) + 6k + 2

)
≡ 2p (mod p5).
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