SOME SIMPLE IDEAS FOR FAMOUS PROBLEMS

ZHI-WEI SUN
Department of Mathematics
Nanjing University
Nanjing 210093
People’s Republic of China
E-mail: zwsun@nju.edu.cn
Homepage: http://pweb.nju.edu.cn/zwsun

1. THE LEAST POSITIVE kTH POWER NONRESIDUE MOD p

Let p be an odd prime and k a positive integer with $(k, p-1) > 1$. A famous problem is to evaluate the smallest positive kth power nonresidue $n_k(p)$ modulo p. By Pólya’s estimate for character sums $n_k(p) < \sqrt{p} \log p$ (see L. K. Hua’s book ‘Introduction to Number Theory’, Springer-Verlag, 1982). The estimate of Pólya was later improved by D. A. Burgess in 1957, thus one can show that $n_k(p) = O(p^{1/A+\varepsilon})$ where $A = 4e^{1-1/(k,p-1)}$ (see Y. Wang, On the estimation of character sums and its applications, Sci. Record (N.S.), 7(1964), 78–83).

Here we introduce a simple elementary method due to myself.

Let n be $n_k(p)$ or $n_k(p) - 1$ according to whether -1 is a kth power residue mod p. Note that $-n$ is a kth power nonresidue mod p. For $i = 1, \cdots, n_k(p) - 1$, clearly $p - in$ is a kth power nonresidue mod p; if $p - in > 0$ then we must have $p - in \geq n_k(p) \geq n$ and hence $p - (i+1)n > 0$ since p is a prime. As $p - n > 0$, by the above $p - n_k(p)n > 0$ and so

$$p > n_k(p)(n_k(p) - 1) + \frac{1}{4} = \left(n_k(p) - \frac{1}{2} \right)^2, \quad \text{i.e. } n_k(p) < \sqrt{p} + \frac{1}{2}.$$
2. On Odd Integers not of the Form $2^n + p$

In 1849 A. de Polignac conjectured that sufficiently large odd integers are of the form $2^n + p$ where n is a positive integer and p is a prime. In 1950 P. Erdős proved that there are infinitely many odd positive integers for which the conjecture fails. In his ingenious proof he introduced the concept of cover of \mathbb{Z}.

For $a \in \mathbb{Z}$ and $n \in \mathbb{Z}^+$ we let

$$a(n) = a + n\mathbb{Z} = \{x \in \mathbb{Z} : x \equiv a \pmod{n}\}.$$

It will be called a residue class (with modulus n) or an arithmetic sequence (with difference n). A finite system

\begin{equation} \label{eq:cover_system}
A = \{a_s(n_s)\}_{s=1}^k
\end{equation}

of such sets is said to be a cover or covering system (CS) (of \mathbb{Z}) if each integer lies in at least one of the classes in (1).

Erdős [1950, Summa Brasil. Math.; MR 13,437]: There is an infinite arithmetic progression of odd integers no term of which is of the form $2^n + p$, where $n \in \mathbb{N} = \{0, 1, 2, \cdots\}$ and p is an odd prime.

In the proof of Erdős, the common difference is $2 \cdot 3 \cdot 5 \cdot 7 \cdot 13 \cdot 17 \cdot 31 \cdot 241$.

Let

$$a_1 = 0, \quad a_2 = 0, \quad a_3 = 1, \quad a_4 = 3, \quad a_5 = 7, \quad a_6 = 23;$$

$$n_1 = 2, \quad n_2 = 3, \quad n_3 = 4, \quad n_4 = 8, \quad n_5 = 12, \quad n_6 = 24.$$

It is easy to check that $A = \{a_s(n_s)\}_{s=1}^6$ forms a cover of \mathbb{Z} with distinct moduli. For each $s = 1, \cdots, 6$ we can choose a primitive prime factor p_s of $2^{n_s} - 1$, in fact we may let $p_1 = 3, \quad p_2 = 7, \quad p_3 = 5, \quad p_4 = 17, \quad p_5 = 13, \quad p_6 = 241$.

Let x be any integer satisfying the following congruences:

$$x \equiv 1 \pmod{2}, \quad x \equiv 3 \pmod{31}, \quad x \equiv 2^{n_s} \pmod{p_s} \quad (s = 1, \cdots, 6).$$
As \(|\{2^n + p_s \mod 31 : n \in \mathbb{N}, 1 \leq s \leq 6\}| \leq 5 \times 6, there is an r \in \mathbb{Z} such that 2^n + p_s \not\equiv r \pmod{31} for all n \in \mathbb{N} and s = 1, \cdots, 6, in fact we can take r = 3.

Suppose that \(x = 2^n + p\) where \(n \in \mathbb{N}\) and \(p\) is an odd prime. Since \(A\) is a cover of \(\mathbb{Z}\), for some \(s = 1, \cdots, 6\) we have \(n \equiv a_s \pmod{n_s}\) and hence \(p = p_s\) because

\[
p = x - 2^n = x - 2^{a_s}(2^{n_s})^{\frac{n - a_s}{n_s}} \equiv x - 2^{a_s} \cdot 1 \equiv 0 \pmod{p_s}.
\]

But no \(x - p_s\) with \((1 \leq s \leq 6)\) can equal \(2^n\) because \(x \equiv 3 \not\equiv 2^n + p_s \pmod{31}\). This contradiction ends the proof.

In this direction some other important things are as follows.

R. Crocker [1971, Pacific J. Math.]: There are infinitely many positive odd integers not of the form \(2^u + 2^v + p\) where \(u, v\) are positive integers and \(p\) is an odd prime.

J. L. Selfridge [Richard K. Guy, Unsolved Problems in Number Theory, 1994, 2ed.]: One of \(3, 5, 7, 13, 17, 19, 73\) always divides \(78557 \cdot 2^n + 1\).

\[
x \equiv 47867742232066880047611079 \pmod{M}
\]

where \(M\) is a \(29\)-digit number given by

\[
\prod_{p \leq 19} p \times 31 \times 37 \times 41 \times 61 \times 73 \times 97 \times 109 \times 151 \times 241 \times 257 \times 331 = 6643084961588510124010691590,
\]

then \(x\) is not of the form \(\pm p^a \pm q^b\) where \(p, q\) are primes and \(a, b\) are nonnegative integers.

Z. W. Sun and M. H. Le [Acta Arith. 99(2001)]: If \(n > 3,\) then \(2^{2^n} - 1 \neq 2^a + 2^b + p^\alpha\) where \(a, b, \alpha \in \mathbb{N}, a \neq b\) and \(p\) is a prime.

Open Questions [Erdös, 1981, Recent Progress in Analytic Number Theory; R.K. Guy, 1981, A19]: Whether for some \(r\) every integer can be written in the form
p + 2^{a_1} + \cdots + 2^{a_s} \text{ with } s \leq r? \text{ Whether every } n \not\equiv 0 \pmod{4} \text{ is of the form } 2^k + \theta \text{ where } \theta \text{ is squarefree?}

3. COVERS WITH DISTINCT MODULI CANNOT BE EXACT

Let \(N = [n_1, \ldots, n_k] \). Observe that

\[
\left| \left\{ 0 \leq x < N : x \in \bigcup_{s=1}^{k} a_s(n_s) \right\} \right| \leq \sum_{s=1}^{k} \left| \left\{ 0 \leq x < N : x \in a_s(n_s) \right\} \right| = \sum_{s=1}^{k} \frac{N}{n_s}.
\]

So, when (1) forms a cover we have \(\sum_{s=1}^{k} \frac{1}{n_s} \geq 1 \) and the equality holds if and only if (1) covers each integer exactly once.

Soon after his invention of CS, Erdős made the following conjecture.

Erdős’ Conjecture. If system

\[
(2) \quad A = \{a_s(n_s)\}_{s=1}^{k} \quad (1 < n_1 < \cdots < n_k)
\]

forms a cover of \(\mathbb{Z} \), then \(\sum_{s=1}^{k} \frac{1}{n_s} > 1 \), i.e. (2) covers some integer more than once.

Davenport-Mirsky-Newman-Rado [1950’s, see Guy,1981, F14]. If

\[
(3) \quad A = \{a_s(n_s)\}_{s=1}^{k} \quad (1 < n_1 \leq \cdots \leq n_{k-1} \leq n_k)
\]

covers each integer exactly once then \(n_{k-1} = n_k \).

Proof. Without loss of generality we let \(0 \leq a_s < n_s \) (1 \(s \leq k \)). For \(|z| < 1 \) we have

\[
\sum_{s=1}^{k} \frac{z^{a_s}}{1 - z^{n_s}} = \sum_{s=1}^{k} \sum_{q=0}^{\infty} z^{a_s+qn_s} = \sum_{n=0}^{\infty} z^{n} = \frac{1}{1 - z}.
\]

If \(n_{k-1} < n_k \) then

\[
\infty = \lim_{|z|<1} \frac{z^{a_k}}{1 - z^{n_k}} = \lim_{|z|<1} \left(\frac{1}{1 - z} - \sum_{s=1}^{k-1} \frac{z^{a_s}}{1 - z^{n_s}} \right) < \infty,
\]

a contradiction!
Observe that (3) is an exact cover if and only if \(\sum_{s=1}^{k} \chi_s(x) \equiv 1 \) where

\[
\chi_s(x) = \begin{cases}
1, & \text{if } x \equiv a_s \pmod{n_s}; \\
0, & \text{otherwise}.
\end{cases}
\]

Sun [1991, J. Nanjing Univ. (Nat. Sci. Edi.)]. For \(s = 1, \cdots, k \) let \(\psi_s \) be an arithmetical function periodic mod \(n_s \) such that \(\sum_{r=0}^{n_s-1} \psi_s(r) \xi^r \neq 0 \) for some primitive \(n_s \)th root \(\xi \) of unity. If \([n_1, \cdots, n_k] \) is not the smallest positive period of the function \(\psi = \psi_1 + \cdots + \psi_k \) then there must exist some \(s, t \) such that \(n_s = n_t \) and \(\psi_s \neq \psi_t \).

A nice generalization of Erdös’ conjecture is

Herzög-Schönheim’s Conjecture [1974, Canad. Math. Bull.]. Let \(G \) be a group and \(G_1, \cdots, G_k \) its subgroups of distinct indices. Then, for any \(a_1, \cdots, a_k \in G \) system

\[
\{a_s G_s\}_{s=1}^{k}
\]

cannot be an exact cover (i.e. a partition) of \(G \).

Z. W. Sun [On the Herzog-Schönheim conjecture for uniform covers of groups, J. Algebra, 2004]: Let \(G \) be a group and \(G_1, \cdots, G_k \) its subnormal subgroups with \([G : G_1] \leq \cdots \leq [G : G_k] \) such that (4) covers each element of \(G \) with the same multiplicity for some \(a_1, \cdots, a_k \in G \). Then the indices \([G : G_1] \), \(\cdots \), \([G : G_k] \) cannot be distinct unless \(k = 1 \), and if each of them occurs at most \(M \geq 2 \) times then the (natural) logarithm of the smallest index \([G : G_1] \) is not more than \(\frac{e^2}{\log 2} M \log^2 M + O(M \log M \log \log M) \) where the \(O \)-constant is absolute.

4. Some Local-Global Results

S. K. Stein’s Conjecture [1958, Math. Ann., MR 20#17]: If (2) is disjoint
(i.e. the residue classes in (2) are pairwise disjoint) then there is an integer \(x \notin \bigcup_{s=1}^{k} a_s(n_s) \) with \(1 \leq x \leq 2^k \).

Erdős [1962, Mat. Lapok 13, MR 33#4020]: Stein’s conjecture is true if \(2^k \) is replaced by \(k \cdot 2^k \).

Erdős’ Conjecture: If \(A = \{a_s(n_s)\}_{s=1}^{k} \) covers integers from 1 to \(2^k \) then it is a cover.

It should be mentioned that the proof given by Critten-Vanden Eynden is long, indirect and awkward. Since \(\{2^{s-1}(2^s)\}_{s=1}^{k} \) covers \(\{1, 2, \cdots, 2^k - 1\} \) but does not cover \(0(2^k) \), \(2^k \) above is best possible.

Crittenden-Eynden’s Conjecture: Let \(A = \{a_s(n_s)\}_{s=1}^{k} \) where \(k, n_1, \cdots, n_k \) are integers greater than a given nonnegative integer \(l \). Then \(A \) forms a cover whenever it covers integers from 1 to \(2^{k-l}(l + 1) \).

Observe that the system consisting of residue classes

\[
 r(m) \ (r = 1, \cdots, m - 1), \ 2^{s-1}m(2^sm) \ (s = 1, \cdots, k - m + 1)
\]

covers integers from 1 to \(2^{k-m+1}m - 1 \), but does not cover \(2^{k-m+1}m \). So if the Crittenden-Eynden conjecture holds it’s best possible in some sense.

Since 1989 some progress has happened dramatically.

M. Z. Zhang [1989, J. Sichuan Univ.]: If \(A = \{a_s(n_s)\}_{s=1}^{k} \) forms a cover then \(\sum_{i \in I} \frac{1}{n_i} \in \mathbb{Z}^+ \) for some \(I \subseteq \{1, \cdots, k\} \).
Proof. (Zhang) For $s > 1$ we have

$$0 = \sum_{n=1}^{\infty} \frac{1}{n^s} \prod_{t=1}^{k} \left(1 - e^{2\pi i \frac{n + a_t}{n_t}} \right)$$

$$= \sum_{n=1}^{\infty} \frac{1}{n^s} \left(1 + \sum_{\emptyset \neq I \subseteq \{1, \ldots, k\}} (-1)^{|I|} e^{2\pi i \sum_{s \in I} \frac{n_s + a_t}{n_t}} \right)$$

$$= \zeta(s) + \sum_{\emptyset \neq I \subseteq \{1, \ldots, k\}} (-1)^{|I|} e^{2\pi i \sum_{s \in I} \frac{n_s + a_t}{n_t}} \sum_{n=1}^{\infty} \frac{e^{2\pi i \sum_{s \in I} 1/n_t}}{n^s}.$$

If $\sum_{t \in I} \frac{1}{n_t} \not\in \mathbb{Z}^+$ for all $I \subseteq \{1, \ldots, k\}$ then

$$\infty = \lim_{s \to 1^+} \zeta(s) = -\sum_{\emptyset \neq I \subseteq \{1, \ldots, k\}} (-1)^{|I|} e^{2\pi i \sum_{s \in I} \frac{n_s + a_t}{n_t}} \sum_{n=1}^{\infty} \frac{e^{2\pi i \sum_{s \in I} 1/n_t}}{n^s} < \infty,$$

a contradiction!

Sun [1992, Israel J. Math.]: Let $A = \{a_s(n_s)\}_{s=1}^{k}$ be an exact m-cover. Then for each $n = 0, 1, \ldots, m$ there exist at least $\binom{m}{n}$ subsets I of $\{1, \ldots, k\}$ such that $\sum_{t \in I} \frac{1}{n_t}$ equals n. The bounds $\binom{m}{n}$ ($0 \leq n \leq m$) are best possible.

Inspired by these work, soon Sun obtained the following surprising result:

Sun [Acta Arith. 72(1995)]: For system

(5) $A = \{\alpha_s + \beta_s \mathbb{Z}\}_{s=1}^{k}$ where $\alpha_1, \ldots, \alpha_k \in \mathbb{R}$ and $\beta_1, \ldots, \beta_k \in \mathbb{R}^+$,

it forms an m-cover of \mathbb{Z} (i.e. each integer is covered at least m times) if it covers $|S|$ consecutive integers at least m times where

$$S = \left\{ \left\{ \frac{\sum_{s \in I} 1}{\beta_s} \right\} : I \subseteq \{1, \ldots, k\} \right\}.$$

Let’s prove this in the case $m = 1$.

Note that $x \in \mathbb{Z}$ is covered by \mathcal{A} if and only if

$$0 = \prod_{s=1}^{k} \left(1 - e^{2\pi i (\alpha_s - x) / \beta_s} \right)$$

$$= \sum_{I \subseteq \{1, \ldots, k\}} (-1)^{|I|} e^{2\pi i \sum_{s \in I} \frac{\alpha_s}{\beta_s}} \left(e^{-2\pi i \sum_{s \in I} 1/\beta_s} \right)^x.$$
So

\[A \text{ covers } |S| \text{ consecutive integers } x, x + 1, \cdots, x + |S| \]

\[\iff \sum_{I \subseteq \{1, \cdots, k\}} (-1)^{|I|} e^{2\pi i \sum_{s \in I} \frac{s}{n_s}} \left(e^{-2\pi i \sum_{s \in I} \frac{1}{n_s}} \right)^{x+j} = 0 \text{ for } j = 0, \cdots, |S| - 1 \]

\[\iff \sum_{\theta \in S} \sum_{I \subseteq \{1, \cdots, k\}} (-1)^{|I|} e^{2\pi i \sum_{s \in I} \frac{s}{n_s}} \left(e^{-2\pi i \theta} \right)^{j} = 0 \text{ for } j = 0, 1, \cdots, |S| - 1 \]

\[\iff \sum_{I \subseteq \{1, \cdots, k\}} (-1)^{|I|} e^{2\pi i \sum_{s \in I} \frac{s}{n_s}} = 0 \text{ for all } \theta \in S \]

\[\iff \sum_{I \subseteq \{1, \cdots, k\}} (-1)^{|I|} e^{2\pi i \sum_{s \in I} \frac{s}{n_s}} \left(e^{-2\pi i \sum_{s \in I} \frac{1}{n_s}} \right)^{q} = 0 \text{ for all } q \in \mathbb{Z} \]

\[\iff A \text{ covers every integer } q. \]

It follows from the above result that

Sun [Acta Arith. 72(1995)]: Let \(k \geq l \geq 0 \) be integers. Then \(2^{k-l}(l+1) \) is the smallest \(n \in \mathbb{Z}^+ \) such that any system of \(k \) residue classes with at least \(l \) equal moduli forms an \(m \)-cover whenever it covers \(n \) consecutive integers at least \(m \) times.

5. Equivalence of Two Systems

For a finite system \(A = \{a_s(n_s)\}_{s=1}^k \) of residue classes we define its covering map \(w_A : \mathbb{Z} \to \mathbb{Z} \) as follows:

\[w_A(x) = |\{1 \leq s \leq k : x \equiv a_s \text{ (mod } n_s)\}| \]

If two such systems \(A \) and \(B \) have the same covering map then we say that they are equivalent which is written as \(A \sim B \). Notice that \(A \) forms an exact cover if and only if \(A \sim \{0(1)\} \), in particular \(\{r(n)\}_{r=0}^{n-1} \sim \{0(1)\} \).

Znám [1975, Acta Arith.] Let \(A = \{a_s(n_s)\}_{s=1}^k \) (\(0 \leq a_s < n_s \)) and \(B = \{b_t(m_t)\}_{t=1}^l \) (\(0 \leq b_t < m_t \)). If \(n_1 < \cdots < n_k, m_1 < \cdots < m_l \) and \(\{a_s(n_s)\}_{s=1}^k \sim \{b_t(m_t)\}_{t=1}^l \) then \(A = B \).
Let \(F \) be a complex-valued function \(F \) such that \((x, ny) \in \text{Dom}(F)\) for all \(r = 0, 1, \cdots, n - 1 \) whenever \((x, y) \in \text{Dom}(F)\) and \(n \in \mathbb{Z}^+ \). Then the following statements are equivalent:

(a) Whenever \(\{a_s(n_s)\}_{s=1}^k \sim \{b_t(m_t)\}_{t=1}^l \),
\[
\sum_{s=1}^k F\left(\frac{x + a_s}{n_s}, n_s y\right) = \sum_{t=1}^l F\left(\frac{x + b_t}{m_t}, m_t y\right) \quad \text{for all } (x, y) \in \text{Dom}(F).
\]

(b) For all \((x, y) \in \text{Dom}(F)\) and \(n \in \mathbb{Z}^+ \) we have
\[
\sum_{r=0}^{n-1} F\left(\frac{x + r}{n}, ny\right) = F(x, y).
\]

If function \(F \) has the above required property then we call it a uniform function.

There are many uniform functions.

An identity of Hermite is as follows:
\[
\sum_{r=0}^{n-1} \left[x + \frac{r}{n} \right] = [nx] \quad \text{for } x \in \mathbb{R} \text{ and } n \in \mathbb{Z}^+.
\]
This shows that \(F(x, y) = [x] \) is a uniform function.

Let \(m \) be a nonnegative integer and \(B_m(x) \) the \(m \)th Bernoulli polynomial. A theorem of Rabbe states that
\[
\sum_{r=0}^{n} B_m\left(\frac{z + r}{n}\right) = n^{1-m} B_m(nz) \quad \text{for } n \in \mathbb{Z}^+ \text{ and } z \in \mathbb{C},
\]
i.e. \(G(x, y) \) is a uniform function where \(G(x, y) = B_m(x)y^{m-1} \).

Let
\[
f(x, y) = \Gamma(x)y^{x-\frac{1}{2}}/\sqrt{2\pi} \quad \text{for } x \neq 0, -1, -2, \cdots \text{ and } y > 0.
\]
The multiplication formula of Gauss says that
\[
\prod_{r=0}^{n-1} \Gamma\left(\frac{z + r}{n}\right) = (2\pi)^{\frac{n-1}{2}} n^{\frac{1}{2} - n z} \Gamma(nz) \quad \text{for } n \in \mathbb{Z}^+ \text{ and } z \neq 0, -1, -2, \cdots.
\]
Equivalently, \(\log f \) is a uniform function where
\[
f(x, y) = \Gamma(x)y^{x-\frac{1}{2}}/\sqrt{2\pi} \quad \text{for } x, y > 0.
\]
6. On $B_{p-1}(a/q) - B_{p-1} \pmod{p}$

In this section we introduce recent work of A. Granville and Sun [Pacific J. Math. 117(1996)].

It has long been known that the nth Bernoulli polynomial $B_n(t)$, where

$$B_n(t) = \sum_{k=0}^{n} \binom{n}{k} B_k t^{n-k}$$

and B_k, the kth Bernoulli number, defined by the power series

$$\frac{x}{e^x - 1} = \sum_{k=0}^{\infty} B_k \frac{x^k}{k!},$$

take ‘special’ values at certain rational numbers with small denominators:

(1) \[B_n(1) = B_n(0) = B_n \quad \text{for} \quad n \neq 1 \]

(2) \[B_n\left(\frac{1}{2}\right) = (2^{1-n} - 1)B_n; \]

and for all even $n \geq 2$,

(3) \[B_n\left(\frac{1}{3}\right) = B_n\left(\frac{2}{3}\right) = (3^{1-n} - 1)\frac{B_n}{2}, \]

(4) \[B_n\left(\frac{1}{4}\right) = B_n\left(\frac{3}{4}\right) = (4^{1-n} - 2^{1-n})\frac{B_n}{2}, \]

(5) \[B_n\left(\frac{1}{6}\right) = B_n\left(\frac{5}{6}\right) = (6^{1-n} - 3^{1-n} - 2^{1-n} + 1)\frac{B_n}{2}. \]

It is not known if $B_n(a/q)$ has as simple a ‘closed form’ for any other rational a/q with $1 \leq a \leq q - 1$ and $(a, q) = 1$, though this has long been considered an interesting question.

In 1938 E. Lehmer [Ann. Math.] showed amongst other things that (1) and (2) imply

(3) \[B_{p-1}\left(\frac{1}{2}\right) - B_{p-1} \equiv \frac{2^p - 2}{p} \pmod{p} \]

(4) \[B_{p-1}\left(\frac{1}{3}\right) - B_{p-1} \equiv B_{p-1}\left(\frac{2}{3}\right) - B_{p-1} \equiv \frac{1}{2} \cdot \frac{3^{p-3} - 3}{p} \pmod{p} \]

(5) \[B_{p-1}\left(\frac{1}{4}\right) - B_{p-1} \equiv B_{p-1}\left(\frac{3}{4}\right) - B_{p-1} \equiv \frac{3}{2} \cdot \frac{2^p - 2}{p} \pmod{p} \]

(6) \[B_{p-1}\left(\frac{1}{6}\right) - B_{p-1} \equiv B_{p-1}\left(\frac{5}{6}\right) - B_{p-1} \equiv \frac{1}{2} \cdot \frac{3^{p-3} - 3}{p} + \frac{2^p - 2}{p} \pmod{p} \]
The two important things to note about (3) are that,
(i): We’ve evaluated $B_{p-1}(\frac{a}{q}) - B_{p-1} \pmod{p}$ where $\phi(q) = 1$ or 2 (ϕ is Euler’s totient function);
(ii): Each of the terms of the right hand side, like 2^p, 3^p, are numbers taken from a first-order linear recurrence sequence ($u_{n+1} = 2u_n$ and $u_{n+1} = 3u_n$ respectively).

The next class of examples are those q for which $\phi(q) = 4$, namely $q = 5, 8, 10, 12$.

Theorem (A. Granville and Z. W. Sun, 1996). Let p be an odd prime relatively prime to a fixed $q \in \{5, 8, 10, 12\}$. Then we can determine $B_{p-1}(a/q) - B_{p-1} \pmod{p}$ (with $1 \leq a \leq q$ and $(a, q) = 1$) as follows:

\[
B_{p-1}(\frac{a}{5}) - B_{p-1} \equiv \frac{5}{4} \left(\frac{ap}{5} \right) \frac{1}{p} F_{p-\left(\frac{a}{p}\right)} + \frac{5^{p-1} - 1}{p} \pmod{p};
\]

\[
B_{p-1}(\frac{a}{8}) - B_{p-1} \equiv \left(\frac{2}{ap} \right) \frac{2}{p} P_{p-\left(\frac{a}{p}\right)} + 4 \cdot \frac{2^{p-1} - 1}{p} \pmod{p};
\]

\[
B_{p-1}(\frac{a}{10}) - B_{p-1} \equiv \frac{15}{4} \left(\frac{ap}{5} \right) \frac{1}{p} F_{p-\left(\frac{a}{p}\right)} + \frac{5}{4} \cdot \frac{5^{p-1} - 1}{p} + \frac{2(2^{p-1} - 1)}{p} \pmod{p};
\]

\[
B_{p-1}(\frac{a}{12}) - B_{p-1} \equiv \left(\frac{3}{a} \right) \frac{3}{p} S_{p-\left(\frac{a}{p}\right)} + \frac{3(2^{p-1} - 1)}{p} + \frac{3}{2} \cdot \frac{3^{p-1} - 1}{p} \pmod{p};
\]

where $(-)$ is the Jacobi symbol, and we define the following second-order linear recurrence sequences:

\[
F_0 = 0, \quad F_1 = 1, \quad \text{and} \quad F_{n+2} = F_{n+1} + F_n \quad \text{for all} \quad n \geq 0
\]

\[
P_0 = 0, \quad P_1 = 1, \quad \text{and} \quad P_{n+2} = 2P_{n+1} + P_n \quad \text{for all} \quad n \geq 0
\]

\[
S_0 = 0, \quad S_1 = 1, \quad \text{and} \quad S_{n+2} = 4S_{n+1} - S_n \quad \text{for all} \quad n \geq 0.
\]

In general Granville and Sun showed that $B_{p-1}(a/q) - B_{p-1} \equiv q(U_p - 1)/(2p)$ (mod p), where U_n is a certain linear recurrence of order $[q/2]$ which depends only on a, q and the least positive residue of p (mod q). This can be re-written as a sum of linear recurrence sequences of order $\leq \phi(q)/2$.
