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OPEN CONJECTURES ON CONGRUENCES

ZHI-WEI SUN

Abstract. We collect here 100 open conjectures on congruences made by the author,

some of which have never been published. This is a new edition of the author’s preprint

arXiv:0911.5665 with those confirmed conjectures removed and some new conjectures

added. Many congruences here are related to representations of primes by binary

quadratic forms or series for powers of π; for example, we mention two new conjectural

identities
∞∑

n=0

12n+ 1

100n

(
2n

n

)
n∑

k=0

(
2k

k

)2(
2(n− k)

n− k

)(
9

4

)n−k

=
75

4π

and
∞∑

k=1

3H2
k−1 + 4Hk−1/k

k2
(

2k
k

) =
π4

360
with Hk−1 :=

∑
0<j6k−1

1

j
,

and include related congruences. We hope that this paper will interest number theorists

and stimulate further research.

1 Introduction

Congruences modulo primes have been widely investigated since the time of Fermat.
However, we find that there are still lots of new challenging congruences that cannot be
easily solved. They appeal for new powerful tools or advanced theory.

Here we collect 100 conjectures of the author on congruences. Many of them can be
found in the author’s papers available from arxiv or his homepage, but some are first
published here. Most of the congruences here are supercongruences in the sense that they
happen to hold modulo some higher power of a prime. The topic of supercongruences is
related to the p-adic Γ-function, Gauss and Jacobi sums, hypergeometric series, modular
forms, Calabi-Yau manifolds, and some sophisticated combinatorial identities involving
harmonic numbers (cf. [1, 54]). The recent theory of super congruences also involves
Bernoulli and Euler numbers (see [72, 75, 88, 101]) and various series related to π or
the Riemann zeta function (cf. [106, 73, 92, 93, 104, 114]); for van Hamme’s philosophy
to find p-adic congruences from series and the author’s philosophy to find series from
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2 ZHI-WEI SUN

congruences, see van Hamme [106] and Z.-W. Sun [84]. In particular, the author’s
previous papers [84, 90, 92] contains many conjectural congruences related to series for

powers of π. Many congruences collected here are about
∑p−1

k=0 ak/m
k modulo powers of a

prime p, where m is an integer not divisible by p and the quantity ak is a sum or a product
of some binomial coefficients which usually arises from enumerative combinatorics.

For the sake of clarity, we often state the prime version of a conjecture instead of the
general version. We do not exhaust all congruences conjectured by the author but select
some typical ones. For many new conjectures, we add the exact dates when the author
discovered them.

Now we introduce some basic notation in this paper.

As usual, we set

N = {0, 1, 2, . . .} and Z+ = {1, 2, 3, . . .}.
For an integer m and a positive odd number n, the notation (mn ) stands for the Jacobi
symbol. For a prime p and an integer a 6≡ 0 (mod p), we call

qp(a) :=
ap−1 − 1

p
∈ Z

a Fermat quotient. For a polynomial or a power series P (x), we write [xn]P (x) for the
coefficient of xn in the expansion of P (x). For k1, . . . , kn ∈ N, we define the multinomial
coefficient (

k1 + · · ·+ kn
k1, . . . , kn

)
:=

(k1 + · · ·+ kn)!

k1! · · · kn!
.

The harmonic numbers are given by

H0 = 0 and Hn =
n∑
k=1

1

k
(n = 1, 2, 3, . . .).

For each m = 2, 3, . . ., the harmonic numbers of order m are given by

H(m)
n :=

∑
0<k6n

1

km
(n ∈ N).

A classical theorem of J. Wolstenholme asserts that

Hp−1 ≡ 0 (mod p2) and H
(2)
p−1 ≡ 0 (mod p)

for any prime p > 3. Another useful result of E. Lehmer [38] states that

H(p−1)/2 ≡ −2qp(2) + p qp(2)2 (mod p2)

for each odd prime p. The Riemann zeta function is defined by

ζ(s) =
∞∑
n=1

1

ns
for Re(s) > 1.

The Catalan numbers are those integers

Cn :=
1

n+ 1

(
2n

n

)
=

(
2n

n

)
−
(

2n

n+ 1

)
(n ∈ N).
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Note that if p is an odd prime then(
2k

k

)
=

(2k)!

(k!)2
≡ 0 (mod p) for every k =

p+ 1

2
, . . . , p− 1.

The Bernoulli numbers B0, B1, B2, . . . are rational numbers given by

B0 = 1, and

n∑
k=0

(
n+ 1

k

)
Bk = 0 for n ∈ Z+.

It is well known that B2n+1 = 0 for all n ∈ Z+ and

x

ex − 1
=
∞∑
n=0

Bn
xn

n!
(0 < |x| < 2π) .

The Euler numbers E0, E1, E2, . . . are integers defined by

E0 = 1, and

n∑
k=0
2|k

(
n

k

)
En−k = 0 for n ∈ Z+.

It is well known that E2n+1 = 0 for all n ∈ N and

secx =

∞∑
n=0

(−1)nE2n
x2n

(2n)!

(
|x| < π

2

)
.

The Bernoulli polynomials and the Euler polynomials are given by

Bn(x) =
n∑
k=0

(
n

k

)
Bkx

n−k and En(x) =
n∑
k=0

(
n

k

)
Ek
2k

(
x− 1

2

)n−k
(n ∈ N).

For A,B ∈ Z, we define the Lucas sequences un = un(A,B) (n ∈ N) and vn =
vn(A,B) (n ∈ N) as follows:

u0 = 0, u1 = 1, and un+1 = Aun −Bun−1 (n = 1, 2, 3, . . .);

v0 = 2, v1 = A, and vn+1 = Avn −Bvn−1 (n = 1, 2, 3, . . .).

The sequence Fn = un(1,−1) (n ∈ N) is called the Fibonacci sequence, and those
numbers Ln = vn(1,−1) (n ∈ N) are called Lucas numbers. It is well known that
u
p−(A2−4B

p
)
(A,B) ≡ 0 (mod p) for any prime p - 2B (see, e.g., [70]).

Let p be a prime. As usual we let Zp denote the ring of all p-adic integers. For x ∈ Zp,
we use 〈x〉p to denote the unique r ∈ {0, . . . , p− 1} with x ≡ r (mod p). For a nonzero
integer m, its p-adic valuation (or p-adic order) is given by

νp(m) := max{n ∈ N : pn | m}.
We consider νp(0) as +∞. For a rational number x = a/b with a ∈ Z and b ∈ Z+, we
define νp(x) = νp(a)− νp(b).

2 Congruences mainly Involving Binomial Coefficients
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Conjecture 1. (2009-11-02) If n > 1 is an odd integer satisfying the Morley congruence(
n− 1

(n− 1)/2

)
≡ (−1)(n−1)/24n−1 (mod n3),

then n must be a prime.

Remark 1. In 1895 F. Morley [48] showed that(
p− 1

(p− 1)/2

)
≡ (−1)(p−1)/24p−1 (mod p3)

for any prime p > 3. In 2009 the author verified the conjecture for all odd numbers

1 < n < 104. If Conjecture 1 indeed holds, then we have a new characterization of

primes p > 3 via Morley’s congruence. In 1953, L. Carlitz [5] showed that

(−1)(p−1)/2
(

p− 1

(p− 1)/2

)
≡ 4p−1 +

p3

12
Bp−3 (mod p4)

for any prime p > 3. Note that Bp−3 ≡ 0 (mod p) for the prime p = 16843. For the odd

composite number n = 168432, the integer
(

n−1
(n−1)/2

)
− (−1)(n−1)/24n−1 is divisible by n2

but not divisible by n3.

Conjecture 2. Let p be an odd prime and let n ∈ Z+.

(i) (Z.-W. Sun [77]) The number

1

n
(
2n
n

) n−1∑
k=0

(
(p− 1)k

k, . . . , k

)
is always a p-adic integer, where

((p−1)k
k,...,k

)
is the multi-nomial coefficient ((p−1)k)!/(k!)p−1.

(ii) The number

1

n
((p−1)n

p−1
2
n

) n−1∑
k=0

(
(p− 1)k

k, . . . , k

)
is always a p-adic integer.

(iii) If 2 < n 6 p and 2 - n, then

1( (p−1)n
(p−1)n/2

) n−1∑
k=0

(
(p− 1)k

k, . . . , k

)
≡ 0 (mod p).

If p+ 1 < n 6 2p and 2 | n, then

1

p
( (p−1)n
(p−1)n/2

) n−1∑
k=0

(
(p− 1)k

k, . . . , k

)
≡ (n− 1)ap (mod p)
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for some p-adic integer ap not depending on n. If 2 < n < p and 2 | n, then

1( (p−1)n
(p−1)n/2

) n−1∑
k=0

(
(p− 1)k

k, . . . , k

)
≡ 2−

(
Bp−1 +

1

p

)
(mod p).

Remark 2. (a) Let p be a prime. By the von Staudt-Clausen theorem (cf. [35, p. 233]),

Bp−1 + 1/p is p-adic integral. The author [77, Theorem 1.2] showed that

p−1∑
k=0

(
(p− 1)k

k, . . . , k

)
≡ pBp−1 + (−1)p−1 − 2p (mod p2)

and determined
∑n−1

k=0

((p−1)k
k,...,k

)
modulo p for any n ∈ Z+. Sun [77] also proved that an

integer n > 1 is a prime if and only if

n−1∑
k=0

(
(n− 1)k

k, . . . , k

)
≡ 0 (mod n).

(b) In 1992 N. Strauss, J. Shallit, D. Zagier [63] showed that for any n ∈ Z+ we have

ν3

( n−1∑
k=0

(
2k

k

))
= ν3

(
n

(
2n

n

))
.

So, parts (i) and (ii) of Conjecture 2 hold for p = 3. V.J.W. Guo and J. Zeng [24]

conjectured that ν5(
∑n−1

k=0

(
4k
2k

)(
2k
k

)2
) > ν5(n) for all n ∈ Z+.

Conjecture 3. (Sun [96]) Let p be an odd prime and let n ∈ Z+.

(i) For any integer m 6≡ 0 (mod p), we have

1

n
(
2n−1
n−1

)( pn−1∑
k=0

(
2k
k

)
mk
−
(

∆

p

) n−1∑
r=0

(
2r
r

)
mr

)
≡
up−(∆

p
)(m− 2, 1)

mn−1 (mod p2), (2.1)

where ∆ = m(m− 4).

(ii) We have∑pn−1
k=0

(
2k
k

)
− (p3)

∑n−1
r=0

(
2r
r

)
n2
(
2n−1
n−1

) ≡
p−1∑
k=0

(
2k

k

)
−
(p

3

)
(mod p4).

(iii) If p > 3, m ∈ {2, 3} and ∆ = m(m− 4), then there is a p-adic integer c
(m)
p only

depending on p and m such that for any n ∈ Z+ we have

mn−1

n2
(
2n−1
n−1

)( pn−1∑
k=0

(
2k
k

)
mk
−
(

∆

p

) n−1∑
r=0

(
2r
r

)
mr

)

≡
p−1∑
k=0

(
2k
k

)
mk
−
(

∆

p

)
+ p3c(m)

p (n− 1) (mod p4).
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Remark 3. The author [96] showed that if we multiply both sides of (2.1) by
(
2n−1
n−1

)
then the new version of (2.1) is true. Sun and R. Tauraso [99] proved that

∑p−1
k=0

(
2k
k

)
≡

(p3) (mod p2) for any prime p. The author [75] obtained that

p−1∑
k=0

(
2k
k

)
2k
≡
(
−1

p

)
− p2Ep−3 (mod p3) and

p−1∑
k=0

(
2k
k

)
3k
≡
(p

3

)
(mod p2)

for any prime p > 3.

Conjecture 4. (Sun [96]) Let p be an odd prime and let n ∈ Z+.

(i) If p > 3 then

1

(pn)2

( pn−1∑
k=0

(
pn− 1

k

) (
2k
k

)
(−3)k

−
(p

3

) n−1∑
r=0

(
n− 1

r

) (
2r
r

)
(−3)r

)
∈ Zp.

(ii) If n is odd, then

1

(pn)2
(

n−1
(n−1)/2

)( (pn−1)/2∑
k=0

(
2k
k

)
8k
−
(

2

p

) (n−1)/2∑
r=0

(
2r
r

)
8r

)
∈ Zp

and

1

(pn)2
(

n−1
(n−1)/2

)( (pn−1)/2∑
k=0

(
2k
k

)
16k
−
(

3

p

) (n−1)/2∑
r=0

(
2r
r

)
16r

)
∈ Zp.

Remark 4. Let p > 2 be a prime. Sun [80] determined
∑p−1

k=0

(
p−1
k

)(
2k
k

)
/(−m)k modulo

p2 for any integer m 6≡ 0 (mod p); in particular, he showed that

p−1∑
k=0

(
p− 1

k

) (
2k
k

)
(−3)k

≡
(p

3

)
(mod p2)

if p > 3. The author [82] also determined
∑(p−1)/2

k=0

(
2k
k

)
/mk modulo p2 for any integer

m 6≡ 0 (mod p); in particular, he proved that

(p−1)/2∑
k=0

(
2k
k

)
8k
≡
(

2

p

)
(mod p2) and

(p−1)/2∑
k=0

(
2k
k

)
16k
≡
(

3

p

)
(mod p2).

Conjecture 5. (Sun [82]) Let p be an odd prime and let a ∈ Z+.

(i) If p ≡ 1 (mod 3) or a > 1, then

b 5
6
pac∑

k=0

(
2k
k

)
16k
≡
(

3

pa

)
(mod p2).
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For any n ∈ N we have

1

(2n+ 1)2
(
2n
n

) n∑
k=0

(
2k
k

)
16k
≡

1 (mod 9) if 3 | n,

4 (mod 9) if 3 - n.

Also,

1

32a

(3a−1)/2∑
k=0

(
2k
k

)
16k
≡ (−1)a10 (mod 27).

(ii) Suppose p 6= 5. If pa ≡ 1, 2 (mod 5) or p ≡ 2 (mod 5) or a > 2, then

b 4
5
pac∑

k=0

(−1)k
(

2k

k

)
≡
(

5

pa

)
(mod p2).

If pa ≡ 1, 3 (mod 5) or p ≡ 3 (mod 5) or a > 2, then

b 3
5
pac∑

k=0

(−1)k
(

2k

k

)
≡
(

5

pa

)
(mod p2).

(iii) If pa ≡ 1, 2 (mod 5) or p ≡ 2 (mod 5) or a > 2, then

b 7
10
pac∑

k=0

(
2k
k

)
(−16)k

≡
(

5

pa

)
(mod p2).

If pa ≡ 1, 3 (mod 5) or p ≡ 3 (mod 5) or a > 2, then

b 9
10
pac∑

k=0

(
2k
k

)
(−16)k

≡
(

5

pa

)
(mod p2).

Remark 5. Let (Fn)n>0 be the Fibonacci sequence. For any prime p 6= 2, 5 and a ∈ Z+,

Pan and the author [57] proved that

pa−1∑
k=0

(−1)k
(

2k

k

)
≡
(
pa

5

)(
1− 2F

pa−( pa
5
)

)
(mod p3)

which is [98, Conjecture 3.1], and Sun [82] proved that

(pa−1)/2∑
k=0

(
2k
k

)
(−16)k

≡
(
pa

5

)(
1 +

F
pa−( pa

5
)

2

)
(mod p3).

Conjecture 6. (Sun [72, 92]) Let p be an odd prime. Then

p−1∑
k=1

(
2k
k

)
k2k

≡ −
H(p−1)/2

2
+

7

16
p2Bp−3 (mod p3).
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If p > 3, then
p−1∑
k=1

(
2k
k

)
k3k

≡ −2

p−1∑
k=1

k 6≡p (mod 3)

1

k
(mod p3).

If p > 5, then
p−1∑
k=1

(
2k
k

)
k24k

≡ −
H2

(p−1)/2

2
− 7

4
· Hp−1

p
(mod p3).

Remark 6. The congruences in Conjecture 6 were motivated by the following known

identities:
∞∑
k=1

2k

k2
(
2k
k

) =
π2

8
,
∞∑
k=1

3k

k2
(
2k
k

) =
2

9
π2,

∞∑
k=1

(
2k
k

)
k24k

=
π2 − 3 log2 4

6
.

The author and Tauraso [98] showed that for any prime p > 3 we have

p−1∑
k=1

(
2k
k

)
k
≡ 8

9
p2Bp−3 (mod p3).

Sun [75] also proved that

− 1

2p

(p−1)/2∑
k=1

(
2k
k

)
k
≡

(p−1)/2∑
k=1

1

k2
(
2k
k

) ≡ (−1

p

)
4

3
Ep−3 (mod p)

and
(p−1)/2∑
k=1

4k

k2
(
2k
k

) ≡ (−1

p

)
4Ep−3 (mod p)

for all primes p > 3. Tauraso [103] showed that
∑p−1

k=1

(
2k
k

)
/(k4k) ≡ −H(p−1)/2 (mod p3)

for any prime p > 5. Via computation the author recently observed that

(p−1)/2∑
k=1

2k

k2
(
2k
k

) ≡ (−2

p

)
1

4
Ep−3

(
1

4

)
(mod p)

and
(p−1)/2∑
k=1

3k

k2
(
2k
k

) ≡ (p
3

) 5

6
Bp−2

(
1

3

)
(mod p)

for any odd prime p.

Conjecture 7. (Sun [75]) Let p be an odd prime. If p > 7 then

p−1∑
k=1

(
2k
k

)
k3
≡ − 2

p2
Hp−1 −

13

27
H

(3)
p−1 (mod p4).
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If p > 5 then
p−1∑
k=1

1

k4
(
2k
k

) − Hp−1
p3
≡ − 7

45
pBp−5 (mod p2).

Remark 7. It is known that Hp−1/p
2 ≡ −Bp−3/3 (mod p) for any prime p > 3 and

H
(3)
p−1 ≡ −6

5p
2Bp−5 (mod p3) for each prime p > 5. Also,

∞∑
k=1

1

k4
(
2k
k

) =
17

36
ζ(4).

The two congruences in Conjecture 7 modulo p have been confirmed by K. Hessami

Pilehrood and T. Hessami Pilehrood [29].

Conjecture 8. (Sun [72]) For any prime p > 5, we have

(p−3)/2∑
k=0

(
2k
k

)
(2k + 1)316k

≡
(
−1

p

)(
Hp−1
4p2

+
p2

36
Bp−5

)
(mod p3). (2.2)

Remark 8. By Sun [93, (2.10)], for any prime p > 3 we have

(p−3)/2∑
k=0

(
2k
k

)
(2k + 1)316k

≡ −
(
−1

p

)
Bp−3

12
(mod p).

By I. J. Zucker [113, (2.23)], we have the identity

∞∑
k=0

(
2k
k

)
(2k + 1)316k

=
7π3

216
.

It is also known that
∞∑
k=0

(
2k
k

)
(2k + 1)16k

=
π

3
and

∞∑
k=0

(
2k
k

)
(2k + 1)2(−16)k

=
π2

10
.

The author [72] proved that
∑(p−3)/2

k=0

(
2k
k

)
/((2k + 1)16k) ≡ 0 (mod p2) for any prime

p > 3, and his conjecture that

(p−3)/2∑
k=0

(
2k
k

)
(2k + 1)2(−16)k

≡ Hp−1
5p2

(mod p3)

for each prime p > 5, was later confirmed by K. Hessami Pilehrood, T. Hessami Pilehrood

and Tauraso [30].

Conjecture 9. (Sun [79]) Let p be an odd prime. Then

p−1∑
k=1

2k

k2

(
3k

k

)
≡
(
−1

p

)
6Ep−3 (mod p)
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and
p−1∑
k=1

2k

k

(
3k

k

)
≡ −3p qp(2)2 (mod p2).

Also,

p

p−1∑
k=1

1

k2k
(
3k
k

) ≡
0 (mod p2) if p ≡ 1 (mod 4),

−3/5 (mod p2) if p ≡ 3 (mod 4).

When p > 3 we have

p

p−1∑
k=1

1

k22k
(
3k
k

) ≡ −qp(2)

2
− p

4
qp(2)2 (mod p2).

Remark 9. L.-L. Zhao, Pan and Sun [110] proved that
∑p−1

k=1
2k

k

(
3k
k

)
≡ 0 (mod p) for

any odd prime p. The author [69] determined
∑p−1

k=0

(
3k
k

)
/mk modulo an odd prime p for

any integer m 6≡ 0 (mod p).

Conjecture 10. (2019) Let a and b be integers with 0 < a < b and gcd(a, b) = 1. Let

p > 3 be a prime with p ≡ ±1 (mod b). Then, for each n ∈ Z+, the number

wp,n(a, b) :=

∑pn−1
k=0

(−a/b
k

)((a−b)/b
k

)
− (−1)〈−a/b〉p

∑n−1
r=0

(−a/b
r

)(
(a−b)/b

r

)
p2n2

(−a/b
n

)(
(a−b)/b

n

) (2.3)

is a p-adic integer, and furthermore

wp,n(a, b) ≡ wp,1(a, b) + (n− 1)pcp (mod p2)

for some p-adic integer cp depending only on p.

Remark 10. Let p > 3 be a prime. In 2003, E. Morterson [49, 50] proved the congruences

p−1∑
k=0

(
−1/2

k

)2

− (−1)〈−1/2〉p =

p−1∑
k=0

(
2k
k

)2
16k

−
(
−1

p

)
≡ 0 (mod p2),

p−1∑
k=0

(
−1/3

k

)(
−2/3

k

)
− (−1)〈−1/3〉p =

p−1∑
k=0

(
2k
k

)(
3k
k

)
27k

−
(p

3

)
≡ 0 (mod p2),

p−1∑
k=0

(
−1/4

k

)(
−3/4

k

)
− (−1)〈−1/4〉p =

p−1∑
k=0

(
4k
2k

)(
2k
k

)
64k

−
(
−2

p

)
≡ 0 (mod p2),

p−1∑
k=0

(
−1/6

k

)(
−5/6

k

)
− (−1)〈−1/6〉p =

p−1∑
k=0

(
6k
3k

)(
3k
k

)
432k

−
(
−1

p

)
≡ 0 (mod p2),
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which were first conjectured by F. Rodriguez-Villegas [60]. In 2014 Z.-H. Sun [66] ex-

tended this by showing that

p−1∑
k=0

(
−x
k

)(
x− 1

k

)
≡ (−1)〈−x〉p (mod p2)

for any p-adic integer x; another extension given by J.-C. Liu [39] in 2017 states that for

any x ∈ {1/2, 1/3, 1/4, 1/6} we have

pn−1∑
k=0

(
−x
k

)(
x− 1

k

)
≡ (−1)〈−x〉p

n−1∑
r=0

(
−x
k

)(
x− 1

k

)
(mod p2).

In 2011, the author [75] showed that

1

4
wp,1(1, 2) =

∑p−1
k=0

(
2k
k

)2
/16k − (−1p )

p2
≡ −Ep−3 (mod p).

The author’s conjectural congruences (cf. [75, Conjecture 5.12])

2

9
wp,1(1, 3) =

∑p−1
k=0

(
2k
k

)(
3k
k

)
/27k − (p3)

p2
≡ −1

3
Bp−2

(
1

3

)
(mod p),

3

16
wp,1(1, 4) =

∑p−1
k=0

(
4k
2k

)(
2k
k

)
/64k − (−2p )

p2
≡ − 3

16
Ep−3

(
1

4

)
(mod p),

5

36
wp,1(1, 6) =

∑p−1
k=0

(
6k
3k

)(
3k
k

)
/432k − (−1p )

p2
≡ −25

9
Ep−3 (mod p),

were confirmed by Z.-H. Sun [68] in 2016.

Conjecture 11. (i) For any prime p > 3 and positive odd integer n, we have

4n−1

n2
(

n−1
(n−1)/2

)2( (pn−1)/2∑
k=0

(
2k
k

)2
16k

−
(
−1

p

) (n−1)/2∑
r=0

(
2r
r

)2
16r

)
≡ p2Ep−3 (mod p3).

(ii) (Sun [75]) Let p > 3 be a prime and let a ∈ Z+. If p ≡ 1, 3 (mod 8) or a > 1, then

b 5
8
pac∑

k=0

(
2k
k

)2
16k

≡
b 7

8
pac∑

k=0

(
2k
k

)2
16k

≡
(
−1

pa

)
(mod p3).

(iii) (2014-11-19) For any prime p > 3, we have

(p−1)/2∑
k=0

(
4k
2k

)(
2k
k

)
(2k + 1)64k

≡
(
−1

p

)(
2p−1 − (2p−1 − 1)2

)
(mod p3).

Remark 11. Let p > 3 be a prime. The author [75] showed that

(p−1)/2∑
k=0

(
2k
k

)2
16k

≡
(
−1

p

)
+ p2Ep−3 (mod p3).
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G.-S. Mao and the author [45] determined
∑b3pa/4c

k=0

(
2k
k

)2
/16k modulo p3 for any a ∈ Z+,

and proved that
(p−1)/2∑
k=0

(
4k
2k

)(
2k
k

)
(2k + 1)64k

≡
(
−1

p

)
2p−1 (mod p2).

Conjecture 12. Let p > 3 be a prime and let n ∈ Z+. Then

27n

(pn)2
(
2n
n

)(
3n
n

)( pn−1∑
k=0

(
2k
k

)(
3k
k

)
(2k + 1)27k

−
(p

3

) n−1∑
r=0

(
2r
r

)(
3r
r

)
(2r + 1)27r

)
≡ −3Bp−2

(
1

3

)
(mod p),

(2.4)

64n

(pn)2
(
4n
2n

)(
2n
n

)( pn−1∑
k=0

(
4k
2k

)(
2k
k

)
(2k + 1)64k

−
(
−1

p

) n−1∑
r=0

(
4r
2r

)(
2r
r

)
(2r + 1)64r

)
≡ −16Ep−3 (mod p)

(2.5)

and

432n

(pn)2
(
6n
3n

)(
3n
n

)( pn−1∑
k=0

(
6k
3k

)(
3k
k

)
(2k + 1)432k

−
(p

3

) n−1∑
r=0

(
6r
3r

)(
3r
r

)
(2r + 1)432r

)
≡ −15

2
Bp−2

(
1

3

)
(mod p).

(2.6)

Remark 12. Those integers

C
(2)
k :=

(
3k
k

)
2k + 1

=

(
3k

k

)
− 2

(
3k

k − 1

)
(k = 1, 2, 3, . . .)

are called the second-order Catalan numbers. In the case n = 1, (2.4) and (2.5), as well

as the fact that the left-hand side of (2.6) is p-adic integral, were originally conjectured

by the author [75, Conjecture 5.12]. In 2016 Z.-H. Sun [67] confirmed (2.4), (2.5) and

(2.6) in the case n = 1.

Conjecture 13. Let p > 3 be a prime and let n ∈ Z+. Then

tp(n) :=
27n

(pn)4
(
2n
n

)(
3n
n

)( pn−1∑
k=0

4k + 1

2k + 1
·
(
2k
k

)(
3k
k

)
27k

−
(p

3

) n−1∑
r=0

4r + 1

2r + 1
·
(
2r
r

)(
3r
r

)
27r

)
is a p-adic integer. Moreover, when p > 5 we have

tp(n) ≡ ap + (n− 1)pbp (mod p2)

for some ap, bp ∈ Zp not depending on n.



OPEN CONJECTURES ON CONGRUENCES 13

Remark 13. That

2

9
tp(1) =

1

p4

( p−1∑
k=0

4k + 1

2k + 1
·
(
2k
k

)(
3k
k

)
27k

−
(p

3

))
∈ Zp

for any prime p > 3 was first conjectured in [75, Conjecture 5.12(iii)], and it still remains

open.

Conjecture 14. (Sun [88]) Let p > 5 be a prime. Then

∑
p/2<k<p

(
2k
k

)2
k16k

≡ −21

2
Hp−1 (mod p4) (2.7)

and
(p−3)/2∑
k=0

(−16)k

(2k + 1)3
(
2k
k

) ≡ −3

4
· Hp−1
p2
− 47

400
p2Bp−5 (mod p3).

Remark 14. The author [88] proved (2.7) modulo p3. Tauraso [105] showed that

p−1∑
k=1

(
2k
k

)2
k16k

≡ −2H(p−1)/2 (mod p3)

for each prime p > 3. Mathematica 9 yields

∞∑
k=1

(
2k
k

)2
k16k

= 4 log 2− 8G

π
,

where G =
∑∞

k=0(−1)k/(2k + 1)2 is the Catalan constant.

Conjecture 15. (i) For any odd prime p, we have

(p−1)/2∑
k=1

(2k2 − 4k + 1)8k

k2
(
2k
k

)2 ≡ 2− 2

(
2

p

)
+

(
2

p

)
5p qp(2) (mod p2).

(ii) (Sun [72]) For each prime p ≡ 3 (mod 4), we have

p−1∑
k=0

(
2k
k

)2
(−16)k

≡ −
p−1∑
k=0

(
2k
k

)2
8k

(mod p3).

(iii) (2009-11-10) For any prime p ≡ 3 (mod 4), m ∈ {8,−16, 32} and n ∈ Z+, we

have

νp

( n−1∑
k=0

(
2k
k

)2
mk

)
>

⌊
νp(n) + 1

2

⌋
and

p2n−1∑
k=0

(
2k
k

)2
mk

≡ (−p)n (mod pn+2).
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(iv) (Sun [72]) If p is a prime with p ≡ 1 (mod 3), then

(p−1)/2∑
k=0

kC3
k

16k
≡ 2p− 2 (mod p2).

Remark 15. For any prime p ≡ 1 (mod 4), the author [72] had a conjecture on
∑p−1

k=0

(
2k
k

)2
/mk

modulo p2 with m = 8,−16, 32 which was confirmed by Z.-H. Sun [64]. By induction,

for any n ∈ N we have the identity
n∑
k=0

2k2 + 4k + 1

8k

(
2k

k

)2

=
(2n+ 1)2

8n

(
2n

n

)2

.

Conjecture 16. Let p > 3 be a prime.

(i) (Sun [75]) We have

p−1∑
k=0

(
2k
k

)(
3k
k

)
24k

≡


(2(p−1)/3
(p−1)/3

)
(mod p2) if p ≡ 1 (mod 3),

p/
(2(p+1)/3
(p+1)/3

)
(mod p2) if p ≡ 2 (mod 3).

(ii) (Sun [75]) When p ≡ 1 (mod 3) and 4p = x2 + 27y2 with x ≡ 2 (mod 3), we may

determine x mod p2 in the following way:

p−1∑
k=0

k + 2

24k

(
2k

k

)(
3k

k

)
≡ x (mod p2).

(iii) (2009-11-10) Suppose that p ≡ 2 (mod 3) and n ∈ Z+. Then

νp

( n−1∑
k=0

(
2k
k

)(
3k
k

)
24k

)
>

⌊
νp(n) + 1

2

⌋
and

p2n−1∑
k=0

(
2k
k

)(
3k
k

)
24k

≡ (−p)n (mod pn+2).

Remark 16. See [75] for more such conjectures. It is known (cf. [34]) that for any prime

p ≡ 1 (mod 3) with 4p = x2 + 27y2 (x, y ∈ Z) we have
(2(p−1)/3
(p−1)/3

)
≡ (x3 )( px − x) (mod p2).

The author [83] showed that for any prime p > 3 we have

p−1∑
k=0

(
2k
k

)(
3k
k

)
24k

≡
(p

3

) p−1∑
k=0

(
2k
k

)(
3k
k

)
(−216)k

(mod p2),

p−1∑
k=0

k
(
2k
k

)(
3k
k

)
24k

≡9
(p

3

) p−1∑
k=0

k
(
2k
k

)(
3k
k

)
(−216)k

(mod p2).

Conjecture 17. Let p > 3 be a prime. Then

p−1∑
k=1

(
4k

2k+1

)(
2k
k

)
48k

≡ 5

12
p2Bp−2

(
1

3

)
(mod p3) (2.8)
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and

p2
p−1∑
k=1

48k

k(2k − 1)
(
4k
2k

)(
2k
k

) ≡ 4
(p

3

)
+ 4p (mod p2).

Moreover, there is a p-adic integer ap depending only on p such that for any n ∈ Z+ we

have

48n

(pn)2
(
4n
2n

)(
2n
n

)( pn−1∑
k=0

(
4k

2k+1

)(
2k
k

)
48k

−
(p

3

) n−1∑
r=0

(
4r

2r+1

)(
2r
r

)
48r

)

≡ 4

p2

p−1∑
k=0

(
4k

2k+1

)(
2k
k

)
48k

+ (n− 1)pap (mod p2).

(2.9)

Remark 17. The first and the second congruences in Conjecture 17 appeared as [93,

(1.24) and (1.25)]. We even don’t know how to prove (2.8) modulo p, and the congruence

modulo p2 was first conjectured in [75, Conjecture 5.14(i)]. Conjecture 17 is related to

the author’s conjectural identity

∞∑
k=1

48k

k(2k − 1)
(
4k
2k

)(
2k
k

) =
15

2

∞∑
k=1

(k3 )

k2
(2.10)

(cf. [93, (1.23)]) which looks quite difficult, the author would like to offer 480 US

dollars as the prize for the first proof of the curious identity (2.10). In view of the

conjecture, it is interesting to investigate what primes p > 3 satisfy the congruence

Bp−2(1/3) ≡ 0 (mod p). In 2015 the author [93] reported that 205129 is the unique

prime below 2× 107 with that property.

Conjecture 18. Let p > 3 be a prime and let n ∈ Z+. Then

1

n2

( pn−1∑
k=0

( k∑
j=0

(
k

j

)(2j
j

)
2j

)2

−
(
−1

p

) n−1∑
k=0

( k∑
j=0

(
k

j

)(2j
j

)
2j

)2)
≡ 0 (mod p2)

and

1

n2

( pn−1∑
k=0

( k∑
j=0

(
k

j

) (
2j
j

)
(−6)j

)2

−
(
−1

p

) n−1∑
k=0

( k∑
j=0

(
k

j

) (
2j
j

)
(−6)j

)2)
≡ 0 (mod p2).

Remark 18. The two congruences with n = 1 were posed by the author [95, Conjecture

6.7(i)]. As pointed out in [95, Remark 6.2],

n∑
k=0

(
n

k

)(2k
k

)
2k

= 3n
n∑
k=0

(
n

k

) (
2k
k

)
(−6)k

for all n ∈ N.
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Conjecture 19. Let b, n ∈ Z+ and let p be a prime with p ≡ ±1 (mod b) and 〈−1/b〉p ≡
0 (mod 2). Then

1

n2
(−1/b

n

)(
1/b−1
n

) pn−1∑
k=0

(b2k + b− 1)

(
2k
k

)
4k

(
−1/b

k

)(
1/b− 1

k

)
≡ 0 (mod p2). (2.11)

Remark 19. The conjecture with n = 1 and b ∈ {2, 3, 4, 6} was first stated by the author

in [75, Conjecture 5.9]; for example, when b = 3 and n = 1, the conjecture says that for

any prime p ≡ 1 (mod 3) we have

p−1∑
k=0

9k + 2

108k

(
2k

k

)2(3k

k

)
≡ 0 (mod p2).

A related conjecture of Rodriguez-Villegas [60] confirmed by Mortenson [50] and the

author [77] together states that for any prime p > 3 we have

p−1∑
k=0

(
2k
k

)2(3k
k

)
108k

≡

4x2 − 2p (mod p2) if (p3) = 1 & p = x2 + 3y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 2 (mod 3),

p−1∑
k=0

(
4k

k,k,k,k

)
256k

≡

4x2 − 2p (mod p2) if (−2p ) = 1 & p = x2 + 2y2 (x, y ∈ Z),

0 (mod p2) if (−2p ) = −1, i.e., p ≡ 5, 7 (mod 8),

and
p−1∑
k=0

(
6k
3k

)(
3k
k,k,k

)
123k

=

p−1∑
k=0

(6k)!

(3k)!(k!)3
1728−k

≡

(p3)(4x2 − 2p) (mod p2) if 4 | p− 1 & p = x2 + 4y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 3 (mod 4).

Conjecture 20. (2010-01-22) Let p be an odd prime.

(i) If p ≡ 1 (mod 4) then

p−1∑
k=0

(
2k
k

)3
(−8)k

≡
p−1∑
k=0

(
2k
k

)3
64k

≡
(

2

p

) p−1∑
k=0

(
2k
k

)3
(−512)k

≡
p−1∑
k=0

(
4k

k,k,k,k

)
648k

(mod p3);

if p ≡ 1 (mod 3) then

p−1∑
k=0

(
2k
k

)3
16k

≡
(
−1

p

) p−1∑
k=0

(
2k
k

)3
256k

≡
p−1∑
k=0

(
4k

k,k,k,k

)
(−144)k

(mod p3).

(ii) If p ≡ 1, 2, 4 (mod 7), then(
−1

p

) p−1∑
k=0

(
2k

k

)3

≡
p−1∑
k=0

(
2k
k

)3
4096k

≡
(
−1

p

) p−1∑
k=0

(
4k

k,k,k,k

)
81k

≡
p−1∑
k=0

(
4k

k,k,k,k

)
(−3969)k

(mod p3).
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Remark 20. Let p be an odd prime. The author’s conjectures on
∑p−1

k=0

(
2k
k

)3
/mk modulo

p2 with m ∈ {1,−8, 16,−64, 256,−512, 4096} (cf. [75]) were confirmed by J. Kibelbek,

L. Long, K. Moss, B. Sheller and H. Yuan [36] as well as Z.-H. Sun [65]. See also Z.-H.

Sun [64] for his conjectures on
∑p−1

k=0

(
4k

k,k,k,k

)
/mk mod p2 with m = −144, 648, −3969

motivated by the author’s papers [72, 75]. Most of the congruences in Conjecture 20 were

contained in Sun [75, Conjectures 5.2 and 5.3]. The author [77] noted that MacMahon’s

identity
n∑
k=0

(
n

k

)3

xk =
n∑
k=0

(
n

k

)(
n+ k

k

)(
n− k
k

)
xk(1 + x)k

with n = (p− 1)/2 implies that(
x

p

) p−1∑
k=0

(
2k
k

)3
(−64x)k

≡
(
x+ 1

p

) p−1∑
k=0

(
4k

k, k, k, k

)(
x

64(x+ 1)2

)k
(mod p)

for any p-adic integer x 6≡ 0,−1 (mod p). The author also conjectured that

p−1∑
k=0

(
2k
k

)3
(−64)k

≡
(
−1

p

) p−1∑
k=0

(
4k

k,k,k,k

)
256k

(mod p3)

for any prime p ≡ 1, 3 (mod 8), but this was recently confirmed by Pan, Tauraso and C.

Wang [58].

Conjecture 21. (i) (Sun [96]) Let p 6= 2, 5 be a prime and let n ∈ Z+. Then∑pn−1
k=0 (21k + 8)

(
2k
k

)3 − p∑n−1
r=0 (21r + 8)

(
2r
r

)3
(pn)4

(
2n
n

)3 ≡ −6
Hp−1
p2

(mod p2).

(ii) For any prime p > 3 and positive odd integer n, we have∑(pn−1)/2
k=0 (21k + 8)

(
2k
k

)3 − p∑(n−1)/2
r=0 (21r + 8)

(
2r
r

)3
(pn)3

(
n−1

(n−1)/2
)3

≡
(
−1

p

)
32Ep−3 (mod p).

(iii) (Sun [75]) If p is a prime and a is a positive integer with pa ≡ 1 (mod 3), then

b 2
3
pac∑

k=0

(21k + 8)

(
2k

k

)3

≡ 8pa (mod pa+5+(−1)p).

Remark 21. (a) The author [75] proved that for any odd prime p and a ∈ Z+ we have

1

pa

pa−1∑
k=0

(21k + 8)

(
2k

k

)3

≡ 8 + 16p3Bp−3 (mod p4).
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The author [96] guessed that all those Ramanujan-type supercongruences should have

extensions involving n ∈ Z+ similar to parts (i) and (ii) of Conjecture 21.

(b) The author [92] proved that for any prime p > 3 we have

(p−1)/2∑
k=0

(21k + 8)

(
2k

k

)3

≡ 8p+

(
−1

p

)
32p3Ep−3 (mod p4),

which has the following equivalent form:

(p−1)/2∑
k=1

21k − 8

k3
(
2k
k

)3 ≡ (−1)(p+1)/24Ep−3 (mod p).

Note that
∞∑
k=1

21k − 8

k3
(
2k
k

)3 = ζ(2) =
π2

6

by D. Zeilberger [111] (see also [27, (7)]).

Conjecture 22. Let p > 3 be a prime and let n ∈ Z+.

(i) We have

(−8)n

(pn)3
(
2n
n

)3( pn−1∑
k=0

3k + 1

(−8)k

(
2k

k

)3

−
(
−1

p

)
p
n−1∑
r=0

3r + 1

(−8)r

(
2r

r

)3)
≡ −Ep−3 (mod p), (2.12)

16n

(pn)4
(
2n
n

)3( pn−1∑
k=0

3k + 1

16k

(
2k

k

)3

− p
n−1∑
r=0

3r + 1

16r

(
2r

r

)3)
≡ 7

3
Bp−3 (mod p), (2.13)

(−64)n−1

(pn)3
(
2n−1
n−1

)3( pn−1∑
k=0

4k + 1

(−64)k

(
2k

k

)3

−
(
−1

p

)
p
n−1∑
r=0

4r + 1

(−64)r

(
2r

r

)3)
≡ Ep−3 (mod p),

(2.14)

256n−1

(pn)3
(
2n−1
n−1

)3( pn−1∑
k=0

6k + 1

256k

(
2k

k

)3

−
(
−1

p

)
p
n−1∑
r=0

6r + 1

256r

(
2r

r

)3)
≡ −Ep−3 (mod p),

(2.15)

(−512)n

(pn)3
(
2n
n

)3( pn−1∑
k=0

6k + 1

(−512)k

(
2k

k

)3

−
(
−2

p

)
p

n−1∑
r=0

6r + 1

(−512)r

(
2r

r

)3)
≡ −4Ep−3

(
1

4

)
(mod p),

(2.16)
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and

4096n−1

(pn)3
(
2n−1
n−1

)3( pn−1∑
k=0

42k + 5

4096k

(
2k

k

)3

−
(
−1

p

)
p
n−1∑
r=0

42r + 5

4096r

(
2r

r

)3)
≡ −Ep−3 (mod p).

(2.17)

(ii) Suppose that n is odd. Then

(−8)(n−1)/2

(pn)3
(

n−1
(n−1)/2

)3( (pn−1)/2∑
k=0

3k + 1

(−8)k

(
2k

k

)3

−
(
−1

p

)
p

(n−1)/2∑
r=0

3r + 1

(−8)r

(
2r

r

)3)

≡
(

2

p

)
1

4
Ep−3

(
1

4

)
(mod p),

(2.18)

4n−1

(pn)3
(

n−1
(n−1)/2

)3( (pn−1)/2∑
k=0

3k + 1

16k

(
2k

k

)3

− p
(n−1)/2∑
r=0

3r + 1

16r

(
2r

r

)3)

≡
(
−1

p

)
2Ep−3 (mod p),

(2.19)

(−64)n−1

(pn)3
(

n−1
(n−1)/2

)3( (pn−1)/2∑
k=0

4k + 1

(−64)k

(
2k

k

)3

−
(
−1

p

)
p

(n−1)/2∑
r=0

4r + 1

(−64)r

(
2r

r

)3)
≡ Ep−3 (mod p),

(2.20)

16n−1

(pn)4
(

n−1
(n−1)/2

)3( (pn−1)/2∑
k=0

6k + 1

256k

(
2k

k

)3

−
(
−1

p

)
p

(n−1)/2∑
r=0

6r + 1

256r

(
2r

r

)3)

≡
(
−1

p

)
7

24
Bp−3 (mod p)

(2.21)

and

(−512)(n−1)/2

(pn)3
(

n−1
(n−1)/2

)3( (pn−1)/2∑
k=0

6k + 1

(−512)k

(
2k

k

)3

−
(
−2

p

)
p

(n−1)/2∑
r=0

6r + 1

(−512)r

(
2r

r

)3)

≡
(

2

p

)
Ep−3

4
(mod p).

(2.22)

If p > 5, then

64n−1

(pn)4
(

n−1
(n−1)/2

)3( (pn−1)/2∑
k=0

42k + 5

4096k

(
2k

k

)3

−
(
−1

p

)
p

(n−1)/2∑
r=0

42r + 5

4096r

(
2r

r

)3)

≡ −3

4

(
−1

p

)
Hp−1
p2

(mod p2).

(2.23)
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Remark 22. (a) These congruences with n = 1 correspond to the two Zeilberger-type

series
∞∑
k=1

(3k − 1)(−8)k

k3
(
2k
k

)3 = −2G and
∞∑
k=1

(3k − 1)16k

k3
(
2k
k

)3 =
π2

2

given in [15, Identities 1 and 3 with a = 1/2], and the four Ramanujan-type series (cf.

[3, 4, 10, 59])

∞∑
k=0

4k + 1

(−64)k

(
2k

k

)3

=
2

π
,
∞∑
k=0

6k + 1

256k

(
2k

k

)3

=
4

π
,

∞∑
k=0

6k + 1

(−512)k

(
2k

k

)3

=
2
√

2

π
,
∞∑
k=0

42k + 5

4096k

(
2k

k

)3

=
16

π
.

Two q-analogues of the identity
∑∞

k=1(3k − 1)16k/(k
(
2k
k

)
)3 = π2/2 were given by Q.-H.

Hou, C. Krattenthaler and Sun [31].

(b) Let p > 3 be a prime. In 1997 van Hamme [106] conjectured that

p−1∑
k=0

4k + 1

(−64)k

(
2k

k

)3

≡
(
−1

p

)
p (mod p3),

(p−1)/2∑
k=0

6k + 1

256k

(
2k

k

)3

≡
(
−1

p

)
p (mod p4),

(p−1)/2∑
k=0

6k + 1

(−512)k

(
2k

k

)3

≡
(
−2

p

)
p (mod p3),

(p−1)/2∑
k=0

42k + 5

4096k

(
2k

k

)3

≡
(
−2

p

)
5p (mod p4),

and these were confirmed by E. Mortenson [52], L. Long [41], H. Swisher [102], and

R. Osburn and W. Zudilin [56] respectively. J. Guillera and Zudilin [20] proved the

congruences

p−1∑
k=0

3k + 1

(−8)k

(
2k

k

)3

≡
(
−1

p

)
p (mod p3) and

p−1∑
k=0

3k + 1

16k

(
2k

k

)3

≡ p (mod p3).

(c) The author [79] proved the congruences (2.14) and (2.20) for n = 1. The congru-

ences (2.12), (2.13), (2.15), (2.17), (2.19), (2.22) and (2.23) with n = 1 were conjectured

by the author [75]; later, in the case n = 1, (2.12), (2.15), (2.17), (2.19) and (2.23) were

confirmed by Y. G. Chen, X. Y. Xie and B. He [9], G.-S. Mao and C.-W. Wen (quite

recently), D.-W. Hu and Mao [33], Mao and T. Zhang [46], and Hu [32], respectively. In

his PhD thesis, Hu [32] proved that the left-hand side of (2.13) with n = 1 is a p-adic
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integer. Motivated by the author’s comments in the paper [96], Guo also realized that

the left-hand sides of all the congruences in Conjecture 22 with the binomial coefficients

in the denominators removed should be p-adic integers if n is a power of p, this is of

course much weaker than Conjecture 22.

Conjecture 23. Let p > 3 be a prime and let n ∈ Z+. Then

648n−1

(pn)3
(

4n
n,n,n,n

)ap,n ≡ − 5

72
Ep−3 (mod p), (2.24)

(−1024)n−1

(pn)3
(

4n
n,n,n,n

)bp,n ≡ 1

8
Ep−3 (mod p), (2.25)

(−21034)n−1

(pn)3
(

4n
n,n,n,n

)cp,n ≡ 5

72
Ep−3 (mod p), (2.26)

where

ap,n :=

pn−1∑
k=0

7k + 1

648k

(
4k

k, k, k, k

)
−
(
−1

p

)
p
n−1∑
r=0

7r + 1

648r

(
4r

r, r, r, r

)
,

bp,n :=

pn−1∑
k=0

20k + 3

(−1024)k

(
4k

k, k, k, k

)
−
(
−1

p

)
p
n−1∑
r=0

20r + 3

(−1024)r

(
4r

r, r, r, r

)
,

cp,n :=

pn−1∑
k=0

260k + 23

(−21034)k

(
4k

k, k, k, k

)
−
(
−1

p

)
p

n−1∑
r=0

260r + 23

(−21034)r

(
4r

r, r, r, r

)
.

Remark 23. (a) The congruences in this conjecture correspond to the Ramanujan series

(cf. [3], [17] and [59])

∞∑
k=0

7k + 1

648k

(
4k

k, k, k, k

)
=

9

2π
,

∞∑
k=0

20k + 3

(−1024)k

(
4k

k, k, k, k

)
=

8

π

and
∞∑
k=0

260k + 23

(−21034)k

(
4k

k, k, k, k

)
=

72

π
.

(b) In the case n = 1, the congruences (2.24) and (2.25), and (2.26) were con-

jectured by the author in [79] and [84] respectively. For any prime p > 3, the sum∑(p−1)/2
k=0

20k+3
(−1024)k

(
4k

k,k,k,k

)
modulo p3 and p4 were determined by Zudilin [114] and Sun

[79] respectively.
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Conjecture 24. (i) (Sun [75]) For any prime p > 3, we have

p−1∑
k=0

(
2k
k

)2(3k
k

)
(−192)k

≡

x2 − 2p (mod p2) if p ≡ 1 (mod 3) & 4p = x2 + 27y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 2 (mod 3).

(ii) For any prime p > 3 and n ∈ Z+, we have

(−192)n

(pn)3
(
2n
n

)2(3n
n

)ap,n ≡ −40

9
Bp−2

(
1

3

)
(mod p),

where

ap,n :=

pn−1∑
k=0

5k + 1

(−192)k

(
2k

k

)2(3k

k

)
−
(p

3

)
p
n−1∑
r=0

5r + 1

(−192)r

(
2r

r

)2(3r

r

)
.

(iii) For n ∈ Z+ set

an :=
1

n(2n+ 1)
(
2n
n

) n−1∑
k=0

(5k + 1)

(
2k

k

)2(3k

k

)
(−192)n−1−k.

Then an ∈ Z for n = 2, 3, 4, . . . unless 2n+ 1 is a power of 3 in which case 3an ∈ Z \ 3Z.

Remark 24. It is well known that for any prime p ≡ 1 (mod 3) there are unique x, y ∈ Z+

such that 4p = x2 + 27y2 (see, e.g., [13]). Also, Ramanujan [59] found that

∞∑
k=0

5k + 1

(−192)k

(
2k

k

)2(3k

k

)
=

4
√

3

π
.

Part (ii) of Conjecture 24 with n = 1 appeared in Sun [75, Conjecture 5.6]. The author

[75, 84] had many other conjectures similar to Conjecture 24.

Conjecture 25. (i) For n ∈ Z+ set

an :=
1

2n(2n+ 1)
(
2n
n

) n−1∑
k=0

(20k + 3)

(
4k

k, k, k, k

)
(−210)n−1−k.

Then (−1)n−1an ∈ Z+ for all n = 2, 3, 4, . . ..

(ii) For n ∈ Z+ set

bn :=
1

2n(2n+ 1)
(
2n
n

) n−1∑
k=0

(28k + 3)

(
4k

k, k, k, k

)
(−3× 212)n−1−k.

Then we have (−1)n−1bn ∈ Z+ for all n = 2, 3, 4, . . ..
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(iii) For n ∈ Z+ set

cn :=
1

2n(2n+ 1)
(
2n
n

) n−1∑
k=0

(10k + 1)

(
4k

k, k, k, k

)
124(n−1−k).

Given an integer n > 1, we have cn ∈ Z unless 2n + 1 is a power of 3 in which case

3cn ∈ Z \ 3Z.

(iv) For n ∈ Z+ set

dn :=
1

10n(2n+ 1)
(
2n
n

) n−1∑
k=0

(154k + 15)

(
6k

3k

)(
3k

k, k, k

)
(−215)n−1−k.

Given an integer n > 1, we have (−1)n−1dn ∈ Z+ unless 2n+ 1 is a power of 5 in which

case 5dn ∈ Z \ 5Z.

Remark 25. Recall the Ramanujan series (cf. [17, 59])
∞∑
k=0

20k + 3

(−210)k

(
4k

k, k, k, k

)
=

8

π
,
∞∑
k=0

28k + 3

(−3× 212)k

(
4k

k, k, k, k

)
=

16
√

3

3π
,

∞∑
k=0

10k + 1

124k

(
4k

k, k, k, k

)
=

9
√

2

4π
,
∞∑
k=0

154k + 15

(−215)k

(
6k

3k

)(
3k

k, k, k

)
=

32
√

2

π
.

Actually, for each Ramanujan-type series for 1/π we have a conjecture similar to Con-

jecture 25.

Conjecture 26. Let p be an odd prime.

(i) (Sun [75]) We have

p−1∑
k=0

(
2k
k

)2(3k
k

)
8k

≡

4x2 − 2p (mod p2) if (−2p ) = 1 & p = x2 + 2y2 (x, y ∈ Z),

0 (mod p2) if (−2p ) = −1.

(ii) For any n ∈ Z+, we have

8n

(pn)4
(
2n
n

)2(3n
n

)( pn−1∑
k=0

10k + 3

8k

(
2k

k

)2(3k

k

)
− p

n−1∑
r=0

10r + 3

8r

(
2r

r

)2(3r

r

))
≡ −49Hp−1

4p2
(mod p).

(2.27)

Remark 26. The congruence (2.27) with n = 1, and the conjectural identity
∞∑
k=0

(10k − 3)8k

k3
(
2k
k

)2(3k
k

) =
π2

2

were posed by the author [75]. The last identity was later confirmed by J. Guillera and

M. Rogers [19].
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Conjecture 27. Let p > 3 be a prime.

(i) (Sun [75]) We have

p−1∑
k=0

(
2k
k

)2(3k
k

)
(−27)k

≡


4x2 − 2p (mod p2) if p ≡ 1, 4 (mod 15) & p = x2 + 15y2 (x, y ∈ Z),

20x2 − 2p (mod p2) if p ≡ 2, 8 (mod 15) & p = 5x2 + 3y2 (x, y ∈ Z),

0 (mod p2) if ( p15) = −1.

(ii) For any n ∈ Z+, we have

(−27)n

(pn)3
(
2n
n

)2(3n
n

)ap,n ≡ −3Bp−2

(
1

3

)
(mod p), (2.28)

where

ap,n :=

pn−1∑
k=0

15k + 4

(−27)k

(
2k

k

)2(3k

k

)
−
(p

3

)
p
n−1∑
r=0

15r + 4

(−27)r

(
2r

r

)2(3r

r

)
.

Remark 27. (a) Let p > 5 be a prime. By the theory of binary quadratic forms (cf.

[13]), if p ≡ 1, 4 (mod 15) then p = x2 + 15y2 for some x, y ∈ Z; if p ≡ 2, 8 (mod 15)

then p = 5x2 + 3y2 for some x, y ∈ Z.

(b) The congruence (2.28) with n = 1, and the conjectural identity
∞∑
k=1

(15k − 4)(−27)k−1

k3
(
2k
k

)2(3k
k

) =
∞∑
k=1

(k3 )

k2
,

were proposed by the author [75]. K. Hessami Pilehrood and T. Hessami Pilehrood [28]

confirmed the last identity and proved the congruence

p−1∑
k=0

15k + 4

(−27)k

(
2k

k

)2(3k

k

)
≡
(p

3

)
p (mod p2)

for any prime p > 3.

Conjecture 28. Let p be an odd prime.

(i) (Sun [72]) We have

p−1∑
k=0

(
2k
k

)2(3k
k

)
64k

≡

x2 − 2p (mod p2) if ( p11) = 1 & 4p = x2 + 11y2 (x, y ∈ Z),

0 (mod p2) if ( p11) = −1, i.e., p ≡ 2, 6, 7, 8, 10 (mod 11).
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(ii) For any n ∈ Z+, we have

64n

(pn)4
(
2n
n

)2(3n
n

)( pn−1∑
k=0

11k + 3

64k

(
2k

k

)2(3k

k

)
− p

n−1∑
r=0

11r + 3

64r

(
2r

r

)2(3r

r

))
≡ −56

Hp−1
p2

(mod p).

(2.29)

Remark 28. It is well-known that the quadratic field Q(
√
−11) has class number one

and hence for any odd prime p with ( p11) = 1 we can write 4p = x2 + 11y2 with x, y ∈ Z.

Concerning the parameters in the representation 4p = x2 + 11y2, Jacobi (see, e.g.,

[34]) proved the following result: If p = 11f + 1 is a prime (with f ∈ N) and 4p =

x2 + 11y2 (x, y ∈ Z) with x ≡ 2 (mod 11), then x ≡
(
6f
3f

)(
3f
f

)
/
(
4f
2f

)
(mod p). The

congruence (2.29) with n = 1, and the conjectural identity

∞∑
k=0

(11k − 3)64k

k3
(
2k
k

)2(3k
k

) = 8π2,

were posed by the author [75]. The last identity was later confirmed by Guillera [18].

Conjecture 29. Let p > 3 be a prime.

(i) (Sun [75]) We have

p−1∑
k=0

(
2k
k

)2(4k
2k

)
81k

≡

4x2 − 2p (mod p2) if p ≡ 1, 2, 4 (mod 7) & p = x2 + 7y2 (x, y ∈ Z),

0 (mod p2) if (p7) = −1, i.e., p ≡ 3, 5, 6 (mod 7).

(ii) For any n ∈ Z+, we have

81n

(pn)4
(
2n
n

)2(4n
2n

)( pn−1∑
k=0

35k + 8

81k

(
2k

k

)2(4k

2k

)
− p

n−1∑
r=0

35r + 8

81r

(
2r

r

)2(4r

2r

))
≡ 52Bp−3 (mod p).

(2.30)

Also, the number

(pn−1)/2∑
k=0

35k + 8

81k

(
2k

k

)2(4k

2k

)
− p

(n−1)/2∑
r=0

35r + 8

81r

(
2r

r

)2(4r

2r

)
divided by p2n

(
n−1

(n−1)/2
)2(2n−2

n−1
)

is a p-adic integer for each positive odd integer n, and

1

pa

(pa−1)/2∑
k=0

35k + 8

81k

(
2k

k

)2(4k

2k

)
≡ 8× 3p−1 (mod p2)
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for any a ∈ Z+.

Remark 29. The congruence (2.30) with n = 1, and the last congruence, as well as the

conjectural identity
∞∑
k=1

(35k − 8)81k

k3
(
2k
k

)2(4k
2k

) = 12π2

were proposed by the author [75]. The last identity were later confirmed by Guillera

and Rogers [19].

Conjecture 30. (i) For any prime p > 3 and n ∈ Z+, the number

pn−1∑
k=0

28k2 + 18k + 3

(−64)k

(
2k

k

)4(3k

k

)
− p2

n−1∑
r=0

28r2 + 18r + 3

(−64)r

(
2r

r

)4(3r

r

)

divided by (pn)5
(
2n
n

)4(3n
n

)
is a p-adic integer. For any odd prime p and positive odd

integer n, the number

(pn−1)/2∑
k=0

28k2 + 18k + 3

(−64)k

(
2k

k

)4(3k

k

)
− p2

(n−1)/2∑
r=0

28r2 + 18r + 3

(−64)r

(
2r

r

)4(3r

r

)

divided by p4n3
(

n−1
(n−1)/2

)4(3(n−1)/2
(n−1)/2

)
is a p-adic integer.

(ii) (2010-04-05) For any odd prime p, we have

p−1∑
k=0

28k2 + 18k + 3

(−64)k

(
2k

k

)4(3k

k

)
≡ 3p2 − 7

2
p5Bp−3 (mod p6)

and
(p−1)/2∑
k=0

28k2 + 18k + 3

(−64)k

(
2k

k

)4(3k

k

)
≡ 3p2 +

(
−1

p

)
6p4Ep−3 (mod p5).

(ii) (2010-04-05) For any integer n > 1, we have

n−1∑
k=0

(28k2 + 18k + 3)

(
2k

k

)4(3k

k

)
(−64)n−1−k ≡ 0

(
mod (2n+ 1)n2

(
2n

n

)2)
.

Remark 30. Parts (ii) and (iii), as well as the author’s conjectural identity

∞∑
k=1

(28k2 − 18k + 3)(−64)k

k5
(
2k
k

)4(3k
k

) = −14ζ(3),

appeared in [81, Conjecture 8].
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Conjecture 31. Let p be an odd prime.

(i) If p > 3 and n ∈ Z+, then the number

pn−1∑
k=0

10k2 + 6k + 1

(−256)k

(
2k

k

)5

− p2
n−1∑
r=0

10r2 + 6r + 1

(−256)r

(
2r

r

)5

divided by (pn)5
(
2n
n

)5
, and the number

pn−1∑
k=0

74k2 + 27k + 3

4096k

(
2k

k

)4(3k

k

)
− p2

n−1∑
r=0

74r2 + 27r + 3

4096r

(
2r

r

)4(3r

r

)
divided by (pn)5

(
2n
n

)4(3n
n

)
, are both p-adic integers.

(ii) (2010-04-05) If p > 3, then

p−1∑
k=0

10k2 + 6k + 1

(−256)k

(
2k

k

)5

≡ p2 − 7

6
p5Bp−3 (mod p6)

and
(p−1)/2∑
k=0

10k2 + 6k + 1

(−256)k

(
2k

k

)5

≡ p2 +
7

3
p5Bp−3 (mod p6).

(iii) (2010-04-05) If p 6= 5, then

p−1∑
k=0

74k2 + 27k + 3

4096k

(
2k

k

)4(3k

k

)
≡ 3p2 + 7p5Bp−3 (mod p6)

and
(p−1)/2∑
k=0

74k2 + 27k + 3

4096k

(
2k

k

)4(3k

k

)
≡ 3p2 − 9

4
p3Hp−1 (mod p7).

Remark 31. By [15, Identity 8] and [16], we have

∞∑
k=1

(10k2 − 6k + 1)(−256)k

k5
(
2k
k

)5 = −28ζ(3)

and
∞∑
k=0

74k2 + 27k + 3

4096k

(
2k

k

)4(3k

k

)
=

48

π2
.

Conjecture 32. (i) Let p 6= 2, 5 be a prime. Then the number

pn−1∑
k=0

21k3 + 22k2 + 8k + 1

256k

(
2k

k

)7

− p3
n−1∑
r=0

21r3 + 22r2 + 8r + 1

256r

(
2r

r

)7
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divided by (pn)8
(
2n
n

)7
is a p-adic integer for every n ∈ Z+, and also the number

(pn−1)/2∑
k=0

168k3 + 76k2 + 14k + 1

220k

(
2k

k

)7

−
(
−1

p

)
p3

(n−1)/2∑
r=0

168r3 + 76r2 + 14r + 1

220r

(
2r

r

)7

divided by (pn)8
(

n−1
(n−1)/2

)7
is a p-adic integer for any positive odd integer n.

(ii) (2010-04-06) For any integer n > 1, we have

n−1∑
k=0

(21k3 + 22k2 + 8k + 1)

(
2k

k

)7

256n−1−k ≡ 0

(
mod 2n3

(
2n

n

)3)
and

n−1∑
k=0

(168k3 + 76k2 + 14k + 1)

(
2k

k

)7

220(n−1−k) ≡ 0

(
mod 2n3

(
2n

n

)3)
.

Remark 32. B. Gourevich and Guillera (see [14, Section 4]) conjectured
∞∑
k=0

168k3 + 76k2 + 14k + 1

220k

(
2k

k

)7

=
32

π3

and
∞∑
k=1

(21k3 − 22k2 + 8k − 1)256k

k7
(
2k
k

)7 =
π4

8

respectively. Zudilin [114, (31)] suggested that for any odd prime p we might have

p−1∑
k=0

168k3 + 76k2 + 14k + 1

220k

(
2k

k

)7

≡
(
−1

p

)
p3 (mod p7),

which is much weaker than the second assertion in part (i).

Conjecture 33. (i) (2014–07-22) Let p be an odd prime and let m ∈ Z with m 6= 1 and

p - m. Then

p−1∑
n=0

1

mn

n∑
k=0

(
n

k

)(
2k

k

)(
m− 1

4

)k
≡ p+ 2p

1− (mp )

m− 1
(mod p2).

(ii) (Sun [92]) For any prime p > 3, we have

p−1∑
n=0

n+ 1

8n

n∑
k=0

(
2k

k

)2(2n− 2k

n− k

)2

≡(−1)(p−1)/2p+ 5p3Ep−3 (mod p4),

p−1∑
n=0

2n+ 1

(−16)n

n∑
k=0

(
2k

k

)2(2n− 2k

n− k

)2

≡(−1)(p−1)/2p+ 3p3Ep−3 (mod p4).
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Remark 33. We are able to show the congruence in part (i) modulo p. The two con-

gruences in part (ii) modulo p3 were proved by the author [77, Lemma 3.2]. Note also

that

16n
n∑
k=0

(
−1/2

k

)2(−1/2

n− k

)2

=

n∑
k=0

(
2k

k

)2(2(n− k)

n− k

)2

=

n∑
k=0

(
2k

k

)3( k

n− k

)
(−16)n−k

by [77, (3.1)].

Conjecture 34. Let

an :=
n∑
k=0

(
−1/4

k

)2(−3/4

n− k

)2

for all n ∈ N.

(i) (2013-08-21) For any odd prime p, we have(
2

p

)
det[ai+j ]06i,j6(p−1)/2 ≡

4x2 (mod p) if p = x2 + 4y2 (x, y ∈ Z),

−p (mod p2) if p ≡ 3 (mod 4).

(ii) For any odd prime p and n ∈ Z+, we have

1

(pn)3
(
2n
n

)2( pn−1∑
k=0

18k2 + 7k + 1

(−128)k

(
2k

k

)2

ak −
(

2

p

)
p2

n−1∑
k=0

18k2 + 7k + 1

(−128)k

(
2k

k

)2

ak

)
∈ Zp.

(2.31)

Remark 34. Part (ii) corresponds to the author’s conjectural series

∞∑
k=0

18k2 + 7k + 1

(−128)k

(
2k

k

)2 k∑
j=0

(
−1/4

j

)2(−3/4

k − j

)2

=
4
√

2

π2

(cf. [75, (1.22)]), and (2.31) with n = 1 was first posed by the author in [75, Conjecture

5.15(i)]. By Sun [91, (3.1)], for all n ∈ N we have

64n
n∑
k=0

(
−1/4

k

)2(−3/4

n− k

)2

=

n∑
k=0

(
2k

k

)3(2(n− k)

n− k

)
16n−k.

Recall that a polynomial P (x) ∈ Q[x] is called integer-valued if P (m) ∈ Z for all
m ∈ Z.

Conjecture 35. (i) For any ε ∈ {±1} and l,m, n ∈ Z+, the polynomial

1

n

n−1∑
k=0

εk(2k + 1)2l−1
k∑
j=0

(
−x
j

)m(x− 1

k − j

)m
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is integer-valued.

(ii) For any l, n ∈ Z+, the polynomial

(2l − 1)!!

n2

n−1∑
k=0

(2k + 1)2l−1
k∑
j=0

(
−x
j

)2(x− 1

k − j

)2

is integer-valued.

(iii) Let p > 3 be a prime. For any x ∈ Zp with 3x 6≡ 1, 2 (mod p), we have

p−1∑
k=0

(−1)k(2k + 1)
k∑
j=0

(
−x
j

)3(x− 1

k − j

)3

≡ 0 (mod p2).

For any x ∈ Zp with x ≡ 1/3 (mod p), we have

p−1∑
k=0

(−1)k(2k + 1)
k∑
j=0

(
−x
j

)3(x− 1

k − j

)3

≡ x+
p(p3)− 1

3
(mod p2).

Moreover,

p−1∑
k=0

(−1)k(2k + 1)

k∑
j=0

(
−1/2

j

)3(−1/2

k − j

)3

≡ p2 +
7

2
p5Bp−3 (mod p6)

and
p−1∑
k=0

(−1)k(2k + 1)

k∑
j=0

(
−1/3

j

)3(−2/3

k − j

)3

≡ p

3

((p
3

)
+ 2p

)
(mod p4).

(iv) Let p be an odd prime. For any x ∈ Zp with 3x 6≡ ±1, 2, 4 (mod p), we have

p−1∑
k=0

(−1)k(2k + 1)3
k∑
j=0

(
−x
j

)3(x− 1

k − j

)3

≡ 0 (mod p2).

Moreover,

p−1∑
k=0

(−1)k(2k + 1)3
k∑
j=0

(
−1/2

j

)3(−1/2

k − j

)3

≡ −3

5
p2 (mod p5).

If p > 5, then for x = ±(p− (p3))/3 we have

p−1∑
k=0

(−1)k(2k + 1)3
k∑
j=0

(
−x
j

)3(x− 1

k − j

)3

≡ 0 (mod p2).

(v) Let p be an odd prime. If p ≡ 5, 7 (mod 8), then

p−1∑
k=0

(2k + 1)

k∑
j=0

(
−1/2

j

)3(−1/2

k − j

)3

≡ 0 (mod p3).
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If p ≡ 2 (mod 3), then

p−1∑
k=0

(2k + 1)

k∑
j=0

(
−1/3

j

)3(−2/3

k − j

)3

≡ 0 (mod p3).

Also,
p−1∑
k=0

(−1)k(2k + 1)
k∑
j=0

(
−1/4

j

)3(−3/4

k − j

)3

≡ p2 (mod p3)

if p 6≡ 5 (mod 8), and

p−1∑
k=0

(−1)k(2k + 1)
k∑
j=0

(
−1/6

j

)3(−5/6

k − j

)3

≡ p2 (mod p4)

if p ≡ ±1 (mod 12).

Remark 35. Those congruences modulo p2 in this conjecture might not be very difficult.

Conjecture 36. (i) For each prime p > 3, we have

p−1∑
k=0

(2k + 1)
k∑
j=0

(
−1/6

j

)4(−5/6

k − j

)4

≡ 0 (mod p2).

For any prime p > 7, we have

p−1∑
k=0

(2k + 1)3
k∑
j=0

(
−1/6

j

)4(−5/6

k − j

)4

≡ 0 (mod p2)

and
p−1∑
k=0

(−1)k(2k + 1)

k∑
j=0

(
−1/6

j

)5(−5/6

k − j

)5

≡ 0 (mod p2).

Also, for each prime p > 20 we have

p−1∑
k=0

(2k + 1)3
(
−1/6

j

)5(−5/6

k − j

)5

≡ 0 (mod p2).

(ii) Let p be an odd prime. If p ≡ 3 (mod 4), then

p−1∑
k=0

(2k + 1)
k∑
j=0

(
−1/4

j

)4(−3/4

k − j

)4

≡ 0 (mod p2)

and
p−1∑
k=0

(2k + 1)
k∑
j=0

(
−1/2

j

)5(−1/2

k − j

)5

≡ 0 (mod p3).
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If p ≡ 5 (mod 6), then

p−1∑
k=0

(2k + 1)
k∑
j=0

(
−1/6

j

)6(−5/6

k − j

)6

≡ 0 (mod p2)

and
p−1∑
k=0

(2k + 1)3
k∑
j=0

(
−1/6

j

)6(−5/6

k − j

)6

≡ 0 (mod p2).

(iii) For any prime p > 11, we have

p−1∑
k=0

(2k + 1)3
k∑
j=0

(
−1/5

j

)4(−4/5

k − j

)4

≡ 0 (mod p2)

if p ≡ ±1 (mod 5), and

p−1∑
k=0

(2k + 1)3
k∑
j=0

(
−2/5

j

)4(−3/5

k − j

)4

≡ 0 (mod p2)

if p ≡ ±2 (mod 5). Also,

p−1∑
k=0

(−1)k(2k + 1)
k∑
j=0

(
−1/5

j

)5(−4/5

k − j

)5

≡ 0 (mod p2)

for any prime p ≡ 4 (mod 5), and

p−1∑
k=0

(−1)k(2k + 1)
k∑
j=0

(
−2/5

j

)5(−3/5

k − j

)5

≡ 0 (mod p2)

for each prime p ≡ 3 (mod 5).

Remark 36. It is interesting to compare part (iii) of this conjecture with the classical

Rogers-Ramanujan identities.

Conjecture 37. (i) Let p be an odd prime. Then

p−1∑
k=0

(64k2 + 64k + 23)
k∑
j=0

(
−1/4

j

)3(−3/4

k − j

)3

≡23p2 + 174

(
−1

p

)
p4Ep−3 (mod p5).
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Also, for each n ∈ Z+ the number

pn−1∑
k=0

(64k2 + 64k + 23)
k∑
j=0

(
−1/4

j

)3(−3/4

k − j

)3

− p2
n−1∑
k=0

(64k2 + 64k + 23)
k∑
j=0

(
−1/4

j

)3(−3/4

k − j

)3

divided by (pn)4 is a p-adic integer.

(ii) Let p > 3 be a prime. Then

p−1∑
k=0

(3k2 + 3k + 1)
k∑
j=0

(
−1/3

j

)3(−2/3

k − j

)3

≡ p2 +
(p

3

) 2

3
p4Bp−2

(
1

3

)
(mod p5)

and

p−1∑
k=0

(48k2 + 48k + 19)
n∑
k=0

(
−1/6

j

)3(−5/6

k − j

)3

≡19p2 +
(p

3

) 335

3
p4Bp−2

(
1

3

)
(mod p5).

Also, for any n ∈ Z+, the number

pn−1∑
k=0

(3k2 + 3k + 1)

k∑
j=0

(
−1/3

j

)3(−2/3

k − j

)3

− p2
n−1∑
k=0

(3k2 + 3k + 1)

k∑
j=0

(
−1/3

j

)3(−2/3

k − j

)3

divided by (pn)4, and the number

pn−1∑
k=0

(48k2 + 48k + 19)

k∑
j=0

(
−1/6

j

)3(−5/6

k − j

)3

− p2
n−1∑
k=0

(48k2 + 48k + 19)

k∑
j=0

(
−1/6

j

)3(−5/6

k − j

)3

divided by (pn)4, are both p-adic integers.

Remark 37. The first congruence in Conjecture 37 with n = 1 was discovered by the

author on March 14, 2013.
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Conjecture 38. (i) For any prime p > 5, we have(
−1

p

) p−1∑
n=0

(
2n
n

)
576n

n∑
k=0

5k
(
2k
k

)2(2(n−k)
n−k

)2(
n
k

)

≡



4x2 − 2p (mod p2) if (2p) = (p3) = (p5) = 1 & p = x2 + 30y2,

8x2 − 2p (mod p2) if (2p) = 1, (p3) = (p5) = −1 & p = 2x2 + 15y2,

2p− 12x2 (mod p2) if (p3) = 1, (2p) = (p5) = −1 & p = 3x2 + 10y2,

20x2 − 2p (mod p2) if (p5) = 1, (2p) = (p3) = −1 & p = 5x2 + 6y2,

0 (mod p2) if (−30p ) = −1,

where x and y are integers.

(ii) For any n ∈ Z+, we have

n

(
2n− 1

n− 1

) ∣∣∣∣ n−1∑
k=0

(28k + 5)576n−1−k
(

2k

k

) k∑
j=0

5j

(
2j
j

)(2(k−j)
k−j

)(
k
j

) .

Remark 38. This is related to the author’s conjectural identity (cf. [90, (8)])

∞∑
n=0

28n+ 5

576n

(
2n

n

) n∑
k=0

5k
(
2k
k

)2(2(n−k)
n−k

)2(
n
k

) =
9

π
(2 +

√
2)

and corresponding conjectural congruence (cf. [90])

p−1∑
n=0

28n+ 5

576n

(
2n

n

) n∑
k=0

5k
(
2k
k

)2(2(n−k)
n−k

)2(
n
k

) ≡ p
(

3

(
−1

p

)
+ 2

(
−2

p

))
(mod p2)

for any prime p > 3. Those numbers

Pn :=

n∑
k=0

(
2k
k

)2(2(n−k)
n−k

)2(
n
k

) = 2n
bn/2c∑
k=0

(
n

2k

)(
2k

k

)2

4n−2k (n ∈ N) (2.32)

are usually called Catalan-Larcombe-French numbers; for some series for 1/π involving

Catalan-Larcombe-French numbers one may consult [7].

Conjecture 39. (i) (Sun [84, Conjecture 1.7]) For any prime p > 5, we have

p−1∑
n=0

357n+ 103

2160n

(
2n

n

) n∑
k=0

(
n

k

)(
n+ 2k

2k

)(
2k

k

)
(−324)n−k

≡ p
(
−1

p

)(
54 + 49

( p
15

))
(mod p2),
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and

p−1∑
n=0

(
2n
n

)
2160n

n∑
k=0

(
n

k

)(
n+ 2k

2k

)(
2k

k

)
(−324)n−k

≡



4x2 − 2p (mod p2) if (−1p ) = (p3) = (p5) = (p7) = 1, p = x2 + 105y2,

2x2 − 2p (mod p2) if (−1p ) = (p7) = 1, (p3) = (p5) = −1, 2p = x2 + 105y2,

2p− 12x2 (mod p2) if (−1p ) = (p3) = (p5) = (p7) = −1, p = 3x2 + 35y2,

2p− 6x2 (mod p2) if (−1p ) = (p7) = −1, (p3) = (p5) = 1, 2p = 3x2 + 35y2,

20x2 − 2p (mod p2) if (−1p ) = (p5) = 1, (p3) = (p7) = −1, p = 5x2 + 21y2,

10x2 − 2p (mod p2) if (−1p ) = (p3) = 1, (p5) = (p7) = −1, 2p = 5x2 + 21y2,

28x2 − 2p (mod p2) if (−1p ) = (p5) = −1, (p3) = (p7) = 1, p = 7x2 + 15y2,

14x2 − 2p (mod p2) if (−1p ) = (p3) = −1, (p5) = (p7) = 1, 2p = 7x2 + 15y2,

0 (mod p2) if (−105p ) = −1,

where x and y are integers.

(ii) For any n ∈ Z+, we have

n

(
2n− 1

n− 1

) ∣∣∣∣ n−1∑
k=0

(357k + 103)2160n−1−k
(

2k

k

) k∑
j=0

(
k

j

)(
k + 2j

2j

)(
2j

j

)
(−324)k−j .

Remark 39. The quadratic field Q(
√
−105) has class number eight. The author would

like to offer 105 US dollars for the first correct proof of Conjecture 39, and 90 US dollars

for the first rigorous proof of the author’s conjectural identity (cf. [84])

∞∑
n=0

357n+ 103

2160n

(
2n

n

) n∑
k=0

(
n

k

)(
n+ 2k

2k

)(
2k

k

)
(−324)n−k =

90

π
.

For the author’s another similar conjectural series (cf. [91, (4.35)])

∞∑
n=0

n

3645n

(
2n

n

) n∑
k=0

(
n

k

)(
n+ 2k

2k

)(
2k

k

)
486n−k =

10

3π
,

we also conjecture that

2n

(
2n

n

) ∣∣∣∣ n−1∑
k=0

k

(
2k

k

)
3645n−1−k

k∑
j=0

(
k

j

)(
k + 2j

2j

)(
2j

j

)
486k−j .
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Conjecture 40. (2007) Let p be a prime and let l, n ∈ N and r ∈ Z. If n or r is not

divisible by p, then we have

νp

( ∑
k≡r (mod p)

(
n

k

)
(−1)k

(
(k − r)/p

l

))

>

⌊
n− lp− 1

p− 1

⌋
+ νp

((
b(n− l − 1)/(p− 1)c

l

))
.

Remark 40. D. Wan [107] proved that the inequality holds if the last term on the right-

hand side is omitted (see also Sun and Wan [100]).

3 Congruences Involving the Polynomials

pn(x) =
∑n

k=0

(
2k
k

)2(2(n−k)
n−k

)
xn−k or Sn(x) =

∑n
k=0

(
n
k

)4
xk

In 2011 the author (cf. [76, 91]) posed many conjectural series for 1/π involving a
new kind of polynomials

pn(x) :=
n∑
k=0

(
2k

k

)2(2n− 2k

n− k

)
xn−k (n ∈ N). (3.1)

Here we present some related conjectures mainly made by the author in 2011.

Conjecture 41. (i) For any prime p 6= 2, 5, we have

p−1∑
k=0

(
2k
k

)
100k

pk

(
9

4

)

≡

(−1p )(4x2 − 2p) (mod p2) if (p7) = 1 & p = x2 + 7y2 (x, y ∈ Z),

0 (mod p2) if (p7) = −1, i.e., p ≡ 3, 5, 6 (mod 7),

and

1

(pn)2
(
2n
n

)( pn−1∑
k=0

12k + 1

100k

(
2k

k

)
pk

(
9

4

)
−
(
−1

p

)
p
n−1∑
r=0

12r + 1

100r

(
2r

r

)
pr

(
9

4

))
∈ Zp

for all n ∈ Z+. Moreover, we have
∞∑
k=0

12k + 1

100k

(
2k

k

)
pk

(
9

4

)
=

75

4π
. (3.2)

(ii) For any integer n > 1, we have

4n−1

n
(
2n
n

) n−1∑
k=0

(12k + 1)100n−1−k
(

2k

k

)
pk

(
9

4

)
∈ Z+.



OPEN CONJECTURES ON CONGRUENCES 37

Remark 41. This conjecture was formulated by the author in 2019. We found the identity

(3.2) by using the Philosophy about Series for 1/π stated by the author [84].

Conjecture 42. (i) For any prime p > 3, we have

p−1∑
k=0

(
2k
k

)
(−192)k

pk (4)

≡

4x2 − 2p (mod p2) if p ≡ 1 (mod 3) & p = x2 + 3y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 2 (mod 3),

and

1

(pn)2
(
2n
n

)( pn−1∑
k=0

4k + 1

(−192)k

(
2k

k

)
pk (4)−

(p
3

)
p
n−1∑
r=0

4r + 1

(−192)r

(
2r

r

)
pr(4)

)
∈ Zp

for all n ∈ Z+.

(ii) For any n ∈ Z+, we have

n

(
2n− 1

n− 1

) ∣∣∣∣ n−1∑
k=0

(4k + 1)(−192)n−1−k
(

2k

k

)
pk(4).

Remark 42. This is related to the author’s following conjectural series (cf. [76, 91]

discovered in 2011:
∞∑
k=0

4k + 1

(−192)k

(
2k

k

)
pk(4) =

√
3

π
.

By [91, Lemma 2.2], for any n ∈ N we have(
2n

n

)
pn(4) =

n∑
k=0

(
2k

k

)2(4k

2k

)(
k

n− k

)
(−64)n−k.

Conjecture 43. (i) For any prime p > 5, we have

p−1∑
k=0

17k − 224

(−225)k

(
2k

k

)
pk(−14) ≡ 32p

(
2

(
−1

p

)
− 9

)
(mod p2),

and

p−1∑
k=0

(
2k
k

)
(−225)k

pk(−14)

≡

4x2 − 2p (mod p2) if (p7) = 1 & p = x2 + 7y2 (x, y ∈ Z),

0 (mod p2) if (p7) = −1. i.e., p ≡ 3, 5, 6 (mod 7).
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(ii) Let p be an odd prime with p 6= 17. Then

p−1∑
k=0

15k − 256

172k

(
2k

k

)
pk(18) ≡ −64p

(
3 +

(
−1

p

))
(mod p2).

Also,

p−1∑
k=0

(
2k
k

)
172k

pk(18) =

4x2 − 2p (mod p2) if (p7) = 1 & p = x2 + 7y2 (x, y ∈ Z),

0 (mod p2) if (p7) = −1, i.e., p ≡ 3, 5, 6 (mod 7).

(iii) For any n ∈ Z+, we have

4n

(
2n

n

) ∣∣∣∣ n−1∑
k=0

(17k − 224)(−225)n−1−k
(

2k

k

)
pk(−14),

4n

(
2n

n

) ∣∣∣∣ n−1∑
k=0

(15k − 256)289n−1−k
(

2k

k

)
pk(18).

Remark 43. Two related conjectural series posed by the author are

∞∑
k=0

17k − 224

(−225)k

(
2k

k

)
pk(−14) =

1800

π
,

∞∑
k=0

15k − 256

172k

(
2k

k

)
pk(18) =

2312

π
.

Conjecture 44. (i) For any prime p > 3, we have

p−1∑
k=0

20k − 11

(−576)k

(
2k

k

)
pk(−32) ≡ p

(
5

(
−1

p

)
− 16

(
2

p

))
(mod p2),

and

p−1∑
k=0

(
2k
k

)
(−576)k

pk(−32)

≡


(−1p )(4x2 − 2p) (mod p2) if (−2p ) = (5p) = 1 & p = x2 + 10y2 (x, y ∈ Z),

(−1p )(2p− 8x2) (mod p2) if (−2p ) = (5p) = −1 & p = 2x2 + 5y2 (x, y ∈ Z),

0 (mod p2) if (−10p ) = −1.

(ii) For any prime p 6= 2, 5, we have

p−1∑
k=0

3k − 2

640k

(
2k

k

)
pk(36) ≡ −2p

(
5

p

)
(mod p2),
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and

p−1∑
k=0

(
2k
k

)
640k

pk(36)

≡


4x2 − 2p (mod p2) if (−2p ) = (5p) = 1 & p = x2 + 10y2 (x, y ∈ Z),

2p− 8x2 (mod p2) if (−2p ) = (5p) = −1 & p = 2x2 + 5y2 (x, y ∈ Z),

0 (mod p2) if (−10p ) = −1.

(iii) For any n ∈ Z+ we have

n

(
2n− 1

n− 1

) ∣∣∣∣ n−1∑
k=0

(20k − 11)(−576)n−1−k
(

2k

k

)
pk(−32),

n

(
2n

n

) ∣∣∣∣ n−1∑
k=0

(3k − 2)640n−1−k
(

2k

k

)
pk(36).

Remark 44. The two related conjectural series of the author [91] are

∞∑
k=0

20k − 11

(−576)k

(
2k

k

)
pk(−32) =

90

π
,
∞∑
k=0

3k − 2

640k

(
2k

k

)
pk(36) =

5
√

10

π
.

Conjecture 45. (i) For any prime p 6= 2, 7, we have

p−1∑
k=0

20k − 67

(−3136)k

(
2k

k

)
pk(−192) ≡ p

(
5

(
−1

p

)
− 72

(
3

p

))
(mod p2)

and

p−1∑
k=0

(
2k
k

)
(−3136)k

pk(−192)

≡

(−1p )(4x2 − 2p) (mod p2) if (−2p ) = 1 & p = x2 + 2y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 5, 7 (mod 8).

(ii) For any prime p 6= 2, 5, we have

p−1∑
k=0

7k − 24

3200k

(
2k

k

)
pk(196) ≡ −24

(
6

p

)
(mod p2),

and
p−1∑
k=0

(
2k
k

)
3200k

pk(196) ≡

4x2 − 2p (mod p2) if p = x2 + 2y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 5, 7 (mod 8).
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(iii) For any n ∈ Z+, we have

n

(
2n− 1

n− 1

) ∣∣∣∣ n−1∑
k=0

(20k − 67)(−3136)n−1−k
(

2k

k

)
pk(−192),

2n

(
2n

n

) ∣∣∣∣ n−1∑
k=0

(7k − 24)3200n−1−k
(

2k

k

)
pk(196).

Remark 45. The two related conjectural series of the author [91] are

∞∑
k=0

20k − 67

(−3136)k

(
2k

k

)
pk(−192) =

490

π
,

∞∑
k=0

7k − 24

3200k

(
2k

k

)
pk(196) =

125
√

2

π
.

Conjecture 46. (i) For any prime p > 3 with p 6= 11, we have

p−1∑
k=0

5k − 32

(−6336)k

(
2k

k

)
pk(−392) ≡ p

4

(
5

(
−1

p

)
− 133

(
11

p

))
(mod p2),

and

p−1∑
k=0

(
2k
k

)
(−6336)k

pk(−392)

≡


(−1p )(4x2 − 2p) (mod p2) if (2p) = ( p11) = 1 & p = x2 + 22y2 (x, y ∈ Z),

(−1p )(2p− 8x2) (mod p2) if (2p) = ( p11) = −1 & p = 2x2 + 11y2 (x, y ∈ Z),

0 (mod p2) if (−22p ) = −1.

(ii) For any odd prime p 6= 5, we have

p−1∑
k=0

66k − 427

802k

(
2k

k

)
pk(396) ≡ −427p (mod p2),

and

p−1∑
k=0

(
2k
k

)
802k

pk(396)

≡


4x2 − 2p (mod p2) if (2p) = ( p11) = 1 & p = x2 + 22y2 (x, y ∈ Z),

8x2 − 2p (mod p2) if (2p) = ( p11) = −1 & p = 2x2 + 11y2 (x, y ∈ Z),

0 (mod p2) if (−22p ) = −1.



OPEN CONJECTURES ON CONGRUENCES 41

(iii) For any n ∈ Z+, we have

2n

(
2n

n

) ∣∣∣∣ n−1∑
k=0

(5k − 32)(−6336)n−1−k
(

2k

k

)
pk(−392),

n

(
2n− 1

n− 1

) ∣∣∣∣ n−1∑
k=0

(66k − 427)6400n−1−k
(

2k

k

)
pk(396).

Remark 46. The two related conjectural series of the author [91] are

∞∑
k=0

5k − 32

(−6336)k

(
2k

k

)
pk(−392) =

495

2π
,

∞∑
k=0

66k − 427

6400k

(
2k

k

)
pk(396) =

1000
√

11

π
.

Conjecture 47. (i) For any prime p > 3, we have

p−1∑
k=0

34k − 7

(−21132)k

(
2k

k

)
pk(−896) ≡ p

2

(
9

(
−2

p

)
− 23

(
2

p

))
(mod p2),

and
p−1∑
k=0

(
2k
k

)
(−21132)k

pk(−896)

≡

(2p)(4x2 − 2p) (mod p2) if (p7) = 1 & p = x2 + 7y2 (x, y ∈ Z),

0 (mod p2) if (p7) = −1, i.e., p ≡ 3, 5, 6 (mod 7).

(ii) Let p be an odd prime with p 6= 17. Then

p−1∑
k=0

24k − 5

1362k

(
2k

k

)
pk(900) ≡ p

(
3

(
−1

p

)
− 8

)
(mod p2).

Also,

p−1∑
k=0

(
2k
k

)
1362k

pk(900)

=

4x2 − 2p (mod p2) if (p7) = 1 & p = x2 + 7y2 (x, y ∈ Z),

0 (mod p2) if (p7) = −1, i.e., p ≡ 3, 5, 6 (mod 7).

(iii) For any n ∈ Z+, we have

n

(
2n− 1

n− 1

) ∣∣∣∣ n−1∑
k=0

(34k − 7)(−18432)n−1−k
(

2k

k

)
pk(−896),

n

(
2n− 1

n− 1

) ∣∣∣∣ n−1∑
k=0

(24k − 5)(1362)n−1−k
(

2k

k

)
pk(900).
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Remark 47. Two related conjectural series posed by the author [91] are
∞∑
k=0

34k − 7

(−18432)k

(
2k

k

)
pk(−896) =

54
√

2

π
,

∞∑
k=0

24k − 5

1362k

(
2k

k

)
pk(900) =

867

16π
.

We mention that the author’s conjectural identities in Remarks 41–47 remain open,
but the following ones (discovered by the author in 2011 and published in [91]) have
been proved (cf. [12, 47]):

∞∑
k=0

k − 1

72k

(
2k

k

)
pk(4) =

9

π
,
∞∑
k=0

k − 2

100k

(
2k

k

)
pk(6) =

50

3π
,

∞∑
k=0

k

(−192)k

(
2k

k

)
pk(−8) =

3

2π
,
∞∑
k=0

6k − 1

256k

(
2k

k

)
pk(12) =

8
√

3

π
,

∞∑
k=0

10k + 1

(−1530)k

(
2k

k

)
pk(−32) =

3
√

6

π
,
∞∑
k=0

12k + 1

1600k

(
2k

k

)
pk(36) =

75

8π
,

∞∑
k=0

24k + 5

3136k

(
2k

k

)
pk(−60) =

49
√

3

8π
,
∞∑
k=0

14k + 3

(−3072)k

(
2k

k

)
pk(64) =

6

π
.

Conjecture 48. Let p > 3 be a prime. Then

p−1∑
k=0

pk(1)

16k
≡
(p

3

)(
1− p

4
qp(3)

)
(mod p2).

Also,
p−1∑
k=0

(
2k
k

)
96k

pk(−2) ≡

0 (mod p) if p ≡ 7 (mod 12),

0 (mod p2) if p ≡ 5 (mod 6).

If (p7) = −1, then
p−1∑
k=0

(
2k
k

)
14k

pk

(
1

2

)
≡ 0 (mod p2).

Remark 48. In view of [75, Lemma 2.1], it is easy to see that

p−1∑
k=0

pk(1)

4k
≡
(p

3

)
p (mod p2)

for any odd prime p. We have also shown that n |
∑n−1

k=0 pk(1)4n−1−k for all n ∈ Z+. The

series
∑∞

k=0

(
2k
k

)
pk(−2)/96k convergence, but we are unable to guess its exact value. We

also have conjectures on
∑p−1

k=0
(2k

k )
mk pk(x) mod p2 (with p an odd prime and m an integer

not divisible by p) if (x,m) is among the following ordered pairs:

(−2,−36), (8, 64), (8, 128), (−12, 64), (−12,−128), (16, 192), (36, 64),

(−36,−512), (40, 576), (−96,−512), (−192, 1024), (200, 3136), (−252, 64).
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The author [84] introduced the polynomials

Sn(x) :=
n∑
k=0

(
n

k

)4

xk (n = 0, 1, 2, . . .).

Note that Sn(1) =
∑n

k=0

(
n
k

)4
with n ∈ N are called the Franel numbers of order 4. In

2005 Y. Yang found the interesting identity

∞∑
k=0

4k + 1

36k
Sk(1) =

18√
15π

.

More such series for 1/π were given by S. Cooper [11].

Conjecture 49. Let p be an odd prime.

(i) (Sun [84]) We have

p−1∑
k=0

Sk(1) ≡


4x2 − 2p (mod p2) if p ≡ 1, 4 (mod 15) & p = x2 + 15y2 (x, y ∈ Z),

12x2 − 2p (mod p2) if p ≡ 2, 8 (mod 15) & p = 3x2 + 5y2 (x, y ∈ Z),

0 (mod p2) if ( p15) = −1, i.e., p ≡ 7, 11, 13, 14 (mod 15).

Also,

p−1∑
k=0

Sk(−2) ≡

4x2 − 2p (mod p2) if p ≡ 1 (mod 4) & p = x2 + 4y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 3 (mod 4).

(ii) Let n ∈ Z+. If p > 3, then

1

n2(n+ 1)

( pn−1∑
k=0

(3k + 2)Sk(1)− p
(p

5

) n−1∑
r=0

(3r + 2)Sr(1)

)
≡ 0 (mod p2). (3.3)

If p ≡ 1 (mod 4), then

1

n2

( pn−1∑
k=0

(3k + 2)Sk(−2)− p
n−1∑
r=0

(3r + 2)Sr(−2)

)
≡ 0 (mod p2). (3.4)

Remark 49. The conjectural congruence (3.3) with n = 1 first appeared in [84, Con-

jecture 3.5]. The author [84, Conjecture 3.1] conjectured that for any odd prime p we

have
p−1∑
k=0

(3k + 2)Sk(−2) ≡ p

2

(
1 + 3

(
−1

p

))
(mod p2).
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Conjecture 50. (Sun [84]) Let p be an odd prime.

(i) We have

p−1∑
k=0

Sk(12)

≡


4x2 − 2p (mod p2) if p ≡ 1 (mod 12) & p = x2 + y2 (3 - x),

(xy3 )4xy (mod p2) if p ≡ 5 (mod 12) & p = x2 + y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 3 (mod 4).

And
p−1∑
k=0

(4k + 3)Sk(12) ≡ p
(

1 + 2

(
3

p

))
(mod p2).

Moreover,

1

n

n−1∑
k=0

(4k + 3)Sk(12) ∈ Z for all n = 1, 2, 3, . . . .

(ii) We have

p−1∑
k=0

Sk(−20)

≡


4x2 − 2p (mod p2) if (−1p ) = (p5) = 1 & p = x2 + y2 (x, y ∈ Z & 5 - x),

4xy (mod p2) if (−1p ) = −(p5) = 1, p = x2 + y2 (x, y ∈ Z & 5 | x− y),

0 (mod p2) if p ≡ 3 (mod 4).

And
p−1∑
k=0

(6k + 5)Sk(−20) ≡ p
(
−1

p

)(
2 + 3

(
−5

p

))
(mod p2).

Moreover,

1

n

n−1∑
k=0

(6k + 5)Sk(−20) ∈ Z for all n = 1, 2, 3, . . . .

Remark 50. Note that for an odd prime p = x2 + y2 with x, y ∈ Z and x ≡ y (mod 5)

we have the surprising conjectural congruence
∑p−1

k=0 Sk(−20) ≡ 4xy (mod p2).

Conjecture 51. (Sun [84]) Let p be an odd prime.
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(i) We have

p−1∑
k=0

Sk(36)

≡



4x2 − 2p (mod p2) if (2p) = (p3) = (p5) = 1 & p = x2 + 30y2,

12x2 − 2p (mod p2) if (p3) = 1, (2p) = (p5) = −1 & p = 3x2 + 10y2,

8x2 − 2p (mod p2) if (2p) = 1, (p3) = (p5) = −1 & p = 2x2 + 15y2,

2p− 20x2 (mod p2) if (p5) = 1, (2p) = (p3) = −1 & p = 5x2 + 6y2,

0 (mod p2) if (−30p ) = −1,

where x and y are integers. And

p−1∑
k=0

(8k + 7)Sk(36) ≡ p
( p

15

)(
3 + 4

(
−6

p

))
(mod p2).

We also have

1

n

n−1∑
k=0

(8k + 7)Sk(36) ∈ Z for all n = 1, 2, 3, . . . .

(ii) We have

p−1∑
k=0

Sk(196)

≡



4x2 − 2p (mod p2) if (2p) = (p5) = (p7) = 1 & p = x2 + 70y2,

8x2 − 2p (mod p2) if (p7) = 1, (2p) = (p5) = −1 & p = 2x2 + 35y2,

2p− 20x2 (mod p2) if (p5) = 1, (2p) = (p7) = −1 & p = 5x2 + 14y2,

28x2 − 2p (mod p2) if (2p) = 1, (p5) = (p7) = −1 & p = 7x2 + 10y2,

0 (mod p2) if (−70p ) = −1,

where x and y are integers. And

p−1∑
k=0

(120k + 109)Sk(196) ≡ p
(p

7

)(
49 + 60

(
−14

p

))
(mod p2).

We also have

1

n

n−1∑
k=0

(120k + 109)Sk(196) ∈ Z for all n = 1, 2, 3, . . . .
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(iii) We have

p−1∑
k=0

Sk(−324)

≡



4x2 − 2p (mod p2) if (−1p ) = (p5) = ( p17) = 1 & p = x2 + 85y2,

2x2 − 2p (mod p2) if ( p17) = 1, (−1p ) = (p5) = −1 & 2p = x2 + 85y2,

2p− 20x2 (mod p2) if (−1p ) = 1, (p5) = ( p17) = −1 & p = 5x2 + 17y2,

2p− 10x2 (mod p2) if (p5) = 1, (−1p ) = ( p17) = −1 & 2p = 5x2 + 17y2,

0 (mod p2) if (−85p ) = −1,

where x and y are integers. Provided p > 3 we have

p−1∑
k=0

(34k + 31)Sk(−324) ≡ p
(p

5

)(
17 + 14

(
−1

p

))
(mod p2).

Moreover,

1

n

n−1∑
k=0

(34k + 31)Sk(−324) ∈ Z for all n = 1, 2, 3, . . . .

(iv) We have

p−1∑
k=0

Sk(1296)

≡



4x2 − 2p (mod p2) if (−2p ) = (p5) = ( p13) = 1 & p = x2 + 130y2,

8x2 − 2p (mod p2) if (−2p ) = 1, (p5) = ( p13) = −1 & p = 2x2 + 65y2,

2p− 20x2 (mod p2) if (p5) = 1, (−2p ) = ( p13) = −1 & p = 5x2 + 26y2,

2p− 40x2 (mod p2) if ( p13) = 1, (−2p ) = (p5) = −1 & p = 10x2 + 13y2,

0 (mod p2) if (−130p ) = −1,

where x and y are integers. Provided p > 3 we have

p−1∑
k=0

(130k + 121)Sk(1296) ≡ p
(
−2

p

)(
56 + 65

(
−26

p

))
(mod p2).

Moreover,

1

n

n−1∑
k=0

(130k + 121)Sk(1296) ∈ Z for all n = 1, 2, 3, . . . .
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(v) We have

p−1∑
k=0

Sk(5776)

≡



4x2 − 2p (mod p2) if (2p) = (p5) = ( p19) = 1 & p = x2 + 190y2,

8x2 − 2p (mod p2) if (2p) = 1, (p5) = ( p19) = −1 & p = 2x2 + 95y2,

2p− 20x2 (mod p2) if ( p19) = 1, (2p) = (p5) = −1 & p = 5x2 + 38y2,

2p− 40x2 (mod p2) if (p5) = 1, (2p) = ( p19) = −1 & p = 10x2 + 19y2,

0 (mod p2) if (−190p ) = −1,

where x and y are integers. And

p−1∑
k=0

(816k + 769)Sk(5776) ≡ p
( p

95

)(
361 + 408

( p
19

))
(mod p2).

Moreover,

1

n

n−1∑
k=0

(816k + 769)Sk(5776) ∈ Z for all n = 1, 2, 3, . . . .

Remark 51. The reader may consult [84, Section 3] for more conjectures of this type.

4 Congruences Involving Some Special Numbers

We first present few conjectures on harmonic numbers.

Conjecture 52. (2016-12-20) Let p > 3 be a prime. Then

p

p−1∑
k=1

3H2
k−1 + 4Hk−1/k

k2
(
2k
k

) ≡ −3
Hp−1
p2
− p2

5
Bp−5 (mod p3)

and
p−1∑
k=1

(
3H2

k − 4
Hk

k

) (2k
k

)
k
≡ 6

Hp−1
p2

+
8

5
p2Bp−5 (mod p3),

Remark 52. The conjecture is related to the author’s following conjectural identity

∞∑
k=1

3H2
k−1 + 4Hk−1/k

k2
(
2k
k

) =
π4

360

discovered on Dec. 20, 2016.
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Conjecture 53. (i) (Sun [92]) For any prime p > 3, we have

p−1∑
k=1

(
2k
k

)
k
H

(2)
k ≡2Hp−1

3p2
+

76

135
p2Bp−5 (mod p3),

p−1∑
k=1

(
2k
k

)
H

(2)
k

k2k
≡− 3

16
· Hp−1
p2

+
479

1280
p2Bp−5 (mod p3),

p−1∑
k=1

(
2k
k

)
H

(2)
k

k3k
≡− 8

9
· Hp−1
p2

+
268

1215
p2Bp−5 (mod p3),

p−1∑
k=1

(
2k
k

)
k4k

H
(2)
k ≡− 3

2
· Hp−1
p2

+
7

80
p2Bp−5 (mod p3).

(ii) For any prime p > 3, we have

p−1∑
k=1

(
2k
k

)
k

(
3Hk−1 +

1

k

)
≡− 2

Hp−1
p

+
18

5
p3Bp−5 (mod p4),

p−1∑
k=1

3Hk − 1/k

k2
(
2k
k

) ≡− 2
Hp−1
p2
− 2

5
p2Bp−5 (mod p3),

p

p−1∑
k=1

(−1)k−1

k3
(
2k
k

) (5H
(3)
k +

1

k3

)
≡2Bp−5 (mod p).

Remark 53. Mathematica 9 yields that

∞∑
k=1

2kH
(2)
k−1

k2
(
2k
k

) =
π4

384
,
∞∑
k=1

3kH
(2)
k−1

k2
(
2k
k

) =
2π4

243
,

∞∑
k=1

(
2k
k

)
k4k

H
(2)
k =

3

2
ζ(3),

∞∑
k=1

4kH
(2)
k−1

k2
(
2k
k

) =
π4

24
.

Part (ii) of the conjecture is related to the author’s observation

∞∑
k=1

3Hk − 1/k

k2
(
2k
k

) = ζ(3)

(cf. Sun [93, Remark 3.1]) and his conjectural identity (cf. [93, (4.5)])

∞∑
k=1

(−1)k−1
H

(3)
k + 1/(5k3)

k3
(
2k
k

) =
2

5
ζ(3)2.

In 2016, Mao and Sun [44] determined
∑p−1

k=1

(
2k
k

)
Hk/k and

∑p−1
k=1

(
2k
k

)
H2k/k modulo any

prime p > 3.
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Conjecture 54. (2010-03-02) Let p be an odd prime.

(i) If p ≡ 1 (mod 4) then

(p−1)/2∑
k=0

(
2k
k

)3
(−8)k

(H2k −Hk) ≡
1

2

(p−1)/2∑
k=0

(
2k
k

)3
64k

(H2k −Hk)

≡1

3

(
2

p

) (p−1)/2∑
k=0

(
2k
k

)3
(−512)k

(H2k −Hk) (mod p2);

when p ≡ 3 (mod 4) we have

(p−1)/2∑
k=0

(
2k
k

)3
(−8)k

(H2k −Hk) ≡−
7

2

(p−1)/2∑
k=0

(
2k
k

)3
64k

(H2k −Hk) (mod p2),

(p−1)/2∑
k=0

(
2k
k

)3
64k

(H2k −Hk) ≡−
(

2

p

) (p−1)/2∑
k=0

(
2k
k

)3
(−512)k

(H2k −Hk) (mod p2).

(ii) If p ≡ 1 (mod 3) then

(p−1)/2∑
k=0

(
2k
k

)3
16k

(H2k −Hk) ≡
1

2

(
−1

p

) (p−1)/2∑
k=0

(
2k
k

)3
256k

(H2k −Hk) (mod p2).

If p ≡ 2 (mod 3) then

(p−1)/2∑
k=0

(
2k
k

)3
256k

(H2k −Hk) ≡ 0 (mod p2).

(iii) If p > 3 and p ≡ 3, 5, 6 (mod 7), then

(p−1)/2∑
k=0

(
2k

k

)3

(H2k −Hk) ≡ 0 (mod p2).

Remark 54. In 2009, M. Jameson and K. Ono tried to prove the author’s conjecture

on
∑p−1

k=0

(
2k
k

)3
modulo p2 with p an odd prime. As a by-product, they realized that∑(p−1)/2

k=0

(
2k
k

)3
(H2k−Hk) ≡ 0 (mod p) for any prime p > 3 but they did not have a proof

of this observation. When p > 3 is a prime with p ≡ 3 (mod 4), the author [79] showed

that
(p−1)/2∑
k=0

(
2k
k

)3
64k

H2k ≡
(p−1)/2∑
k=0

(
2k
k

)3
64k

Hk ≡ 0 (mod p).

Recall that the Apéry numbers are those integers

An =
n∑
k=0

(
n

k

)2(n+ k

k

)2

(n ∈ N)
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which play a central role in Apéry’s proof of the irrationality of ζ(3) =
∑∞

n=1 1/n3.
Another kind of Apéry numbers are give by

βn =
n∑
k=0

(
n

k

)2(n+ k

k

)
(n ∈ N).

On August 14, 2013 the author conjectured that det[Ai+j ]06i,j6n and det[βi+j ]06i,j6n
are always positive, which remains open up to now.

We define the Apéry polynomials by

An(x) =
n∑
k=0

(
n

k

)2(n+ k

k

)2

xk (n = 0, 1, 2, . . .).

Note that An(1) = An.

Conjecture 55. (Sun [78])

(i) For any odd prime p, we have

p−1∑
k=0

Ak ≡

4x2 − 2p (mod p2) if p = x2 + 2y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 5, 7 (mod 8).

(ii) Let p > 3 be a prime. If p ≡ 1, 3 (mod 8), then

p−1∑
k=0

Ak ≡
p−1∑
k=0

(
4k

k,k,k,k

)
256k

(mod p3).

If p ≡ 1 (mod 3), then

p−1∑
k=0

(−1)kAk ≡
p−1∑
k=0

(
2k
k

)3
16k

(mod p3).

Remark 55. Let p be an odd prime. The author [78] showed the congruence in part (i)

modulo p. Sun [78] also proved that

p−1∑
k=0

Ak(x) ≡
(
x

p

) p−1∑
k=0

(
4k

k,k,k,k

)
(256x)k

(mod p)

and
p−1∑
k=0

(−1)kAk(x) ≡
p−1∑
k=0

(
2k
k

)3
16k

xk (mod p2)

for any p-adic integer x 6≡ 0 (mod p).

Conjecture 56. Let p be an odd prime and let n ∈ Z+. Then

1

n3

( pn−1∑
k=0

(2k + 1)(−1)kAk −
(p

3

)
p
n−1∑
r=0

(2r + 1)(−1)rAr

)
≡ 0 (mod p3). (4.1)
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If p > 3, then

1

n4

( pn−1∑
k=0

(2k + 1)Ak − p
n−1∑
r=0

(2r + 1)Ar

)
≡ 0 (mod p4), (4.2)

1

n6

( pn−1∑
k=0

(2k + 1)3Ak − p
n−1∑
r=0

(2r + 1)3Ar

)
≡ 0 (mod p6). (4.3)

Remark 56. The author [78] proved that 1
n

∑n−1
k=0(2k + 1)Ak(x) ∈ Z[x] for all n ∈ Z+

and that
∑p−1

k=0(2k + 1)Ak ≡ p + 7
6p

4Bp−3 (mod p5) for any prime p > 3. Guo and

Zeng [25] confirmed the author’s conjecture that 1
n

∑n−1
k=0(2k + 1)(−1)kAk(x) ∈ Z[x] for

all n ∈ Z+. Motivated by the author’s work in [78], Guo and Zeng [26] proved that

n3 |
∑n−1

k=0(2k+1)3Ak for all n ∈ Z+ and
∑p−1

k=0(2k+1)3Ak ≡ p3 (mod p6) for any prime

p > 3. The author [94, (2.19)] proved that for any prime p > 3 we have

p−1∑
k=0

(2k + 1)3(−1)kAk ≡ −
p

3

(p
3

)
(mod p3).

The usual Franel numbers are given by

fn :=
n∑
k=0

(
n

k

)3

(n = 0, 1, 2, . . .).

There are some series for 1/π involving Franel numbers or Franel polynomials, see, e.g.,
[7] and [62]. B.-X. Zhu and Sun [112] proved that 6−n det[fi+j ]06i,j6n is a positive
odd integer for every n ∈ N, which was first conjectured by the author in 2013. For
r = 4, 5, . . ., the Franel numbers of order r are given by

f (r)n :=
n∑
k=0

(
n

k

)r
(n = 0, 1, 2, . . .).

On August 14, 2013, the author conjectured that the Hankel-type determinant det[f
(r)
i+j ]06i,j6n

is positive for any integers n > 0 and r > 4.

Conjecture 57. (i) Let p be a prime and let n ∈ Z+. Then

1

n2

( pn−1∑
k=0

(−1)kfk −
(p

3

) n−1∑
r=0

(−1)rfr

)
≡0 (mod p2), (4.4)

1

n3

( pn−1∑
k=0

(3k + 2)(−1)kfk − p2
n−1∑
r=0

(3r + 2)(−1)rfr

)
≡0 (mod p3). (4.5)

If p > 2 then

1

n2

( pn−1∑
k=0

fk
8k
−
(p

3

) n−1∑
r=0

fr
8r

)
≡ 0 (mod p2). (4.6)
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(ii) (2014-07-07) For any prime p > 3, we have

p−1∑
k=0

(−1)kfk ≡
(p

3

)
+

2

3
p2Bp−2

(
1

3

)
(mod p3),

p−1∑
k=0

fk
8k
≡
(p

3

)
− p2

12
Bp−2

(
1

3

)
(mod p3),

p−1∑
k=0

(−1)kfkH
(2)
k ≡−

p−1∑
k=0

fk
8k
H

(2)
k ≡ 1

2
Bp−2

(
1

3

)
(mod p).

(iii) (2019) For each odd prime p, we have

p−1∑
k=1

fk−1
k8k−1

≡ −p2Bp−3 (mod p3) (4.7)

and
p−1∑
k=1

fk
k8k
≡ 3qp(2)− 3

2
p qp(2)2 + p2qp(2)3 (mod p3). (4.8)

Remark 57. In the case n = 1, (4.4) was first established by the author [85, (1.5)]. Sun

[85] also proved that

p−1∑
k=1

(−1)k

k
fk ≡ 0 (mod p2) and

p−1∑
k=1

(−1)k

k2
fk ≡ 0 (mod p)

for each prime p > 3. The author’s conjecture (cf. [86, Conjecture 1.3]) that

p−1∑
k=0

(3k + 2)(−1)kfk ≡ 2p2(2p − 1)2 (mod p5)

for any prime p > 3, was confirmed by Guo [21]. (4.6) with n = 1 was conjectured by

the author in [85, Remark 1.1]. Both (4.7) and (4.8) hold modulo p by [85, Remark 1.1].

For n ∈ N we define

gn :=

n∑
k=0

(
n

k

)2(2k

k

)
and hn :=

n∑
k=0

(
n

k

)2

Ck. (4.9)

It is known that gn =
∑n

k=0

(
n
k

)
fk for all n ∈ N (cf. [2]).

Conjecture 58. Let p be an odd prime p and let n ∈ Z+. If max{p, n} > 3, then

1

(pn)2

pn−1∑
k=n

gk ≡
5

8

(p
3

)
Bp−2

(
1

3

)
gn−1 (mod p)
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and

1

(pn)2

pn−1∑
k=n

hk ≡
3

4

(p
3

)
Bp−2

(
1

3

)
gn−1 (mod p).

When p > 3, we have
p−1∑
k=1

gk−1
k
≡ −

(p
3

)
qp(9) (mod p2) (4.10)

and

1

(pn)2

( pn−1∑
k=0

gk
9k
−
(p

3

) n−1∑
r=0

gr
9r

)
≡ −5

8
Bp−2

(
1

3

)
gn
9n

(mod p).

Remark 58. Mao and Sun [44, Theorem 1.2] proved the first congruence and the second

one in this conjecture in the case n = 1, which extend the author’s previous results

(cf. [94, Theorem 1.1(i)] and [77, Corollary 1.5]). The congruence (4.10) and that the

left-hand side of the last congruence with n = 1 is p-adic integral, were conjectured by

the author [94, Remark 1.1].

Conjecture 59. (Sun [86, Conjecture 1.2]) Let p > 3 be a prime. When p ≡ 1 (mod 3)

and p = x2 + 3y2 with x, y ∈ Z and x ≡ 1 (mod 3), we have

p−1∑
k=0

gk
3k
≡

p−1∑
k=0

gk
(−3)k

≡ 2x− p

2x
(mod p2)

and

x ≡
p−1∑
k=0

(k + 1)
gk
3k
≡

p−1∑
k=0

(k + 1)
gk

(−3)k
(mod p2).

If p ≡ 2 (mod 3), then

2

p−1∑
k=0

gk
3k
≡ −

p−1∑
k=0

gk
(−3)k

≡ 3p((p+1)/2
(p+1)/6

) (mod p2).

Remark 59. The author [86] determined
∑p−1

k=0 gk/(±3)k modulo a prime p > 3.

The author [94] introduced the polynomials

gn(x) :=
n∑
k=0

(
n

k

)2(2k

k

)
xk (n = 0, 1, 2, . . .),

and proved that

p−1∑
k=1

gk(−1)

k
≡ 0 (mod p2) and

p−1∑
k=1

gk(−1)

k2
≡ 0 (mod p)
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for any prime p > 5. Guo, Mao and Pan [23] confirmed the author’s conjecture that

1

n

n−1∑
k=0

(4k + 3)gk(x) ∈ Z[x] for all n ∈ Z+.

Conjecture 60. (i) Let p be an odd prime and let n ∈ Z+. Then

1

n2

( pn−1∑
k=0

gk(−1)−
(
−1

p

) n−1∑
r=0

gr(−1)

)
≡ 0 (mod p2),

1

n2

( pn−1∑
k=0

gk(−3)−
(p

3

) n−1∑
r=0

gr(−3)

)
≡ 0 (mod p2).

(ii) For any n ∈ Z+, the number

1

n
(
2n−1
n−1

) n−1∑
k=0

(16k + 5)324n−1−k
(

2k

k

)
gk(−20)

is an odd integer.

Remark 60. The two congruences in part (i) with n = 1 were proved in [94, Theorem

1.1(i)]. Part (ii) is related to the author’s conjectural series (cf. [84, Conjecture 7.9])
∞∑
k=0

16k + 5

324k

(
2k

k

)
gk(−20) =

189

25π
.

For n ∈ N we define

F (n) :=
n∑
k=0

(
n

k

)3

(−8)k and G(n) :=
n∑
k=0

(
n

k

)2

(6k + 1)Ck.

Conjecture 61. Let p be an odd prime.

(i) For any n ∈ Z+, we have

1

n2

( pn−1∑
k=0

(−1)kF (k)−
(p

3

) n−1∑
r=0

(−1)rF (r)

)
≡ 0 (mod p2), (4.11)

and

1

n3

pn−1∑
k=n

G(k) ≡ 0 (mod p3) and
1

p3n

pn−1∑
k=pn−1

G(k) ≡ −4

3
Bp−3 (mod p) (4.12)

provided p > 3.

(ii) (2014-07-17) We have

p−1∑
k=1

(−1)k

k
F (k) ≡ −6qp(2) (mod p).
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When p > 3, we also have

p−1∑
k=0

(−1)kF (k) ≡
(p

3

)
− p2

12
Bp−2

(
1

3

)
(mod p3)

p−1∑
k=0

(−1)kF (k)H
(2)
k ≡ Bp−2

(
1

3

)
(mod p),

p−1∑
k=0

GkH
(2)
k ≡ 5

3
pBp−3 (mod p2).

Remark 61. (4.11) and (4.12) with n = 1, were first stated in [85, Remark 1.1] and [94,

Conjecture 4.3] respectively.

Define

P̄n :=

n∑
k=0

(
n

k

)(
2k

k

)(
2(n− k)

n− k

)
(n = 0, 1, 2, . . .).

The author [91, Remark 4.3] observed that 2nP̄n coincides with the Catalan-Larcombe-
French number given by (2.32). See [91] for some congruences and series for 1/π related
to P̄n.

Conjecture 62. Let p be an odd prime and let n ∈ Z+. If p > 3 or 3 - n, then

1

(pn)2

pn−1∑
k=n

P̄k
4k
≡
(
−1

p

)
2Ep−3

P̄n−1
4n−1

(mod p)

and

1

(pn)2

( pn−1∑
k=0

P̄k
8k
−
(
−1

p

) n−1∑
r=0

P̄r
8r

)
≡ −2Ep−3

P̄n
8n

(mod p).

Remark 62. This conjecture with n = 1 was stated in [87, Remark 3.13] and proved by

Mao [43].

Those integers

Dn =

n∑
k=0

(
n

k

)(
n+ k

k

)
=

n∑
k=0

(
n+ k

2k

)(
2k

k

)
(n ∈ N)

are called central Delannoy numbers; they arise naturally in many enumeration problems
in combinatorics. For n ∈ N we define

Dn(x) =

n∑
k=0

(
n

k

)2

xk(x+ 1)n−k =

n∑
k=0

(
n

k

)(
n+ k

k

)
xk.

Note that Dn(1) is the central Delannoy number Dn. Actually Dn((x− 1)/2) coincides
with the Legendre polynomial Pn(x) of degree n.
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Conjecture 63. Let p be a prime, and let n ∈ Z+. Then

1

n2

( pn−1∑
k=0

(2k + 1)Dk(x)− p
n−1∑
r=0

(2r + 1)Dr(x)

)
≡ 0 (mod p2). (4.13)

for any p-adic integer x 6≡ 0 (mod p). For each p-adic integer x, we have

1

n3

( pn−1∑
k=0

(2k + 1)Dk(x)2 − p2
n−1∑
r=0

(2r + 1)Dr(x)2
)
≡ 0 (mod p3). (4.14)

Also, for any p-adic integer x 6≡ 0,−1 (mod p), we have

1

n2

( pn−1∑
k=0

(2k + 1)Dk(x)3 − p
(
−4x− 3

p

) n−1∑
r=0

(2r + 1)Dr(x)3
)
≡ 0 (mod p2) (4.15)

and

1

n2

( pn−1∑
k=0

(2k + 1)Dk(x)4 − p
n−1∑
r=0

(2r + 1)Dr(x)4
)
≡ 0 (mod p2). (4.16)

Remark 63. The congruences (4.13) and (4.14) with n = 1 were obtained by the author

[89, Theorem 1.5(ii) and Theorem 1.8(ii)]. The congruences (4.15) and (4.16) with n = 1

were first conjectured by the author [89] and later confirmed by Guo [22].

Conjecture 64. (i) (Sun [78]) For any n ∈ Z+, the numbers

s(n) =
1

n2

n−1∑
k=0

(2k + 1)(−1)kAk

(
1

4

)
and

t(n) =
1

n2

n−1∑
k=0

(2k + 1)(−1)kDk

(
−1

4

)3

are rational numbers with denominators 22ν2(n!) and 23(n−1+ν2(n!))−ν2(n) respectively.

(ii) (Sun [78]) Let p be a prime. For any n ∈ Z+ and p-adic integer x, we have

νp

(
1

n

n−1∑
k=0

(2k + 1)(−1)kAk (x)

)
> min{νp(n), νp(4x− 1)}

and

νp

(
1

n

n−1∑
k=0

(2k + 1)(−1)kDk (x)3
)

> min{νp(n), νp(4x+ 1)}.

(iii) (Sun [94]) Let n be any positive integer. Then

ν3

( n−1∑
k=0

(2k + 1)(−1)kAk

)
= 3ν3(n) 6 ν3

( n−1∑
k=0

(2k + 1)3(−1)kAk

)
.
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If n is a positive multiple of 3, then

ν3

( n−1∑
k=0

(2k + 1)3(−1)kAk

)
= 3ν3(n) + 2.

Remark 64. Though this conjecture appeared in the author’s papers for several years,

it seems that nobody has studied it seriously.

Conjecture 65. (Sun [74]) Let p > 3 be a prime. Then

p−1∑
k=0

Dk(−3)3 =

p−1∑
k=0

(−1)kDk(2)3

≡
p−1∑
k=0

(−1)kDk

(
−1

4

)3

≡
(
−2

p

) p−1∑
k=0

(−1)kDk

(
1

8

)3

≡

(−1p )(4x2 − 2p) (mod p2) if p ≡ 1 (mod 3) & p = x2 + 3y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 2 (mod 3).

Also, (
−1

p

) p−1∑
k=0

(−1)kDk

(
1

2

)3

≡


4x2 − 2p (mod p2) if p ≡ 1, 7 (mod 24) and p = x2 + 6y2 (x, y ∈ Z),

8x2 − 2p (mod p2) if p ≡ 5, 11 (mod 24) and p = 2x2 + 3y2 (x, y ∈ Z),

0 (mod p2) if (−6p ) = −1.

And

p−1∑
k=0

Dk(3)3 =

p−1∑
k=0

(−1)kDk(−4)3 ≡
(
−5

p

) p−1∑
k=0

(−1)kDk

(
− 1

16

)3

≡


4x2 − 2p (mod p2) if p ≡ 1, 4 (mod 15) and p = x2 + 15y2 (x, y ∈ Z),

12x2 − 2p (mod p2) if p ≡ 2, 8 (mod 15) and p = 3x2 + 5y2 (x, y ∈ Z),

0 (mod p2) if ( p15) = −1.

Remark 65. It is known that (−1)nDn(x) = Dn(−x− 1) (cf. [74, Remark 1.2]).

The central trinomial coefficients are given by

Tn := [xn](1 + x+ x2)n =

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
(n ∈ N).
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Conjecture 66. For any prime p > 3 and n ∈ Z+, we have

1

pn
(
2n
n

)( pn−1∑
k=0

(
2k
k

)
12k

Tk −
(p

3

) n−1∑
r=0

(
2r
r

)
12r

Tr

)
≡
(p

3

) qp(3)

8
· Tn−1

12n−1
(mod p). (4.17)

Remark 66. The conjecture with n = 1 was first stated by the author in [90, Conjecture

2.1] and recently confirmed by C. Wang and the author.

Conjecture 67. Let n ∈ Z+. Then

1

2n
(
2n
n

) n−1∑
k=0

(−1)n−1−k(105k + 44)

(
2k

k

)2

Tk ∈ Z+.

Also, for any prime p ≡ 1 (mod 3), we have∑pn−1
k=0 (105k + 44)(−1)k

(
2k
k

)2
Tk − p

∑n−1
r=0 (105r + 44)(−1)r

(
2r
r

)2
Tr

(pn)2
(
2n
n

)2
≡ (−1)n6qp(3)Tn−1 (mod p).

(4.18)

Remark 67. Let p > 3 be a prime. The author [84, Conjecture 1.3] conjectured that

p−1∑
k=0

(105k + 44)(−1)k
(

2k

k

)2

Tk ≡ p
(

20 + 24
(p

3

)
(2− 3p−1)

)
(mod p3).

[84, Conjecture 1.3] also contains the determination of
∑p−1

k=0(−1)k
(
2k
k

)2
Tk mod p2 via

binary quadratic forms.

Those numbers

Mn =

bn/2c∑
k=0

(
n

2k

)
Ck (n = 0, 1, 2, . . .)

are called Motzkin numbers. They play important roles in enumerative combinatorics.

Conjecture 68. (i) (Sun [89]) For any prime p > 3, we have

p−1∑
k=0

M2
k ≡ (2− 6p)

(p
3

)
(mod p2),

p−1∑
k=0

kM2
k ≡ (9p− 1)

(p
3

)
(mod p2),

p−1∑
k=0

TkMk ≡
4

3

(p
3

)
+
p

6

(
1− 9

(p
3

))
(mod p2).



OPEN CONJECTURES ON CONGRUENCES 59

(ii) (2017-11-14) For any n ∈ Z+ we have

n−1∑
k=0

(8k + 9)W 2
k ≡ n (mod 2n), where Wk :=

bk/2c∑
j=0

(
k

2j

) (
2j
j

)
2j − 1

.

Also, for any odd prime p we have

1

p

p−1∑
k=0

(8k + 9)W 2
k ≡ 24 + 10

(
−1

p

)
− 9

(p
3

)
− 18

(
3

p

)
(mod p2).

Remark 68. The author [89] proved that
∑p−1

k=0 T
2
k ≡ (−1p ) (mod p) for any odd prime

p. For any prime p > 3 the author [97] showed that

p−1∑
k=0

(2k + 1)M2
k ≡ 12p

(p
3

)
(mod p2)

and hence the first and the second congruences in Conjecture 68 are equivalent.

For b, c ∈ Z and n ∈ N, as in [89] we define the generalized central trinomial coefficient

Tn(b, c) := [xn](x2 + bx+ c)n =

bn/2c∑
k=0

(
n

2k

)(
2k

k

)
bn−2kck.

Conjecture 69. (i) Let p be an odd prime and let n ∈ Z+ be odd. If p > 3, then

1

n2
(

n−1
(n−1)/2

)( (pn−1)/2∑
k=0

(
2k
k

)
16k

T2k(4, 1)−
(n−1)/2∑
r=0

(
2r
r

)
16r

T2r(4, 1)

)
≡ 0 (mod p2).

We also have

1

n2
(

n−1
(n−1)/2

)( (pn−1)/2∑
k=0

(
2k
k

)
16k

T2k(8, 9)−
(

3

p

) (n−1)/2∑
r=0

(
2r
r

)
16r

T2r(8, 9)

)
≡ 0 (mod p2).

(ii) (Sun [90]) Let p > 3 be a prime. Then

(p−1)/2∑
k=0

Ck
16k

T2k(4, 1) ≡4

3

((
3

p

)
− p

(
−1

p

))
(mod p2),

(p−1)/2∑
k=0

(
2k
k

)
4k

T2k(3, 4) ≡
(
−1

p

)
7− 3p

4
(mod p2).

(iii) Let p > 3 be a prime. If p ≡ 1 (mod 3) and p = x2 + 3y2 with x, y ∈ Z and

x ≡ 1 (mod 3), then

(p−1)/2∑
k=0

(
2k
k

)
16k

T2k(2, 3) ≡
p−1∑
k=0

(
2k
k

)
16k

T2k(4,−3) ≡
(
−1

p

)(
2x− p

2x

)
(mod p2).
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When p ≡ 2 (mod 3), we have

−2

(p−1)/2∑
k=0

(
2k
k

)
16k

T2k(2, 3) ≡
(p−1)/2∑
k=0

(
2k
k

)
16k

T2k(4,−3) ≡
(
−1

p

)
3p((p+1)/2

(p+1)/6

) (mod p2).

Remark 69. Part (i) with n = 1, and the first assertion in part (iii), also appeared in

Sun [90].

Conjecture 70. (Sun [89]) Let p be an odd prime. We have

p−1∑
k=0

Tk(2, 2)2

4k
−

p−1∑
k=0

(
2k
k

)2
8k
≡

0 (mod p3) if p ≡ 1 (mod 4),

0 (mod p2) if p ≡ 3 (mod 4).

If p > 3, then
p−1∑
k=0

Tk(4, 1)2

4k
≡

p−1∑
k=0

Tk(4, 1)2

36k
≡
(
−1

p

)
(mod p2).

Remark 70. The author [89] proved that for any prime p > 3 we have

p−1∑
k=0

Tk(6,−3)2

48k
≡
(
−1

p

)
+
p2

3
Ep−3 (mod p3),

p−1∑
k=0

Tk(2,−1)2

8k
≡
(
−2

p

)
(mod p2),

p−1∑
k=0

Tk(2,−3)2

16k
≡
(p

3

)
(mod p2).

Conjecture 71. (Sun [89, Conjecture 5.7]) Let p > 3 be a prime. Then(
3

p

) p−1∑
k=0

Tk(2, 3)3

8k
≡

p−1∑
k=0

Tk(2, 3)3

(−64)k

≡
p−1∑
k=0

Tk(2, 9)3

(−64)k
≡
(

3

p

) p−1∑
k=0

Tk(2, 9)3

512k

≡


4x2 − 2p (mod p2) if p ≡ 1, 7 (mod 24) and p = x2 + 6y2,

2p− 8x2 (mod p2) if p ≡ 5, 11 (mod 24) and p = 2x2 + 3y2,

0 (mod p2) if (−6p ) = −1,

where x, y ∈ Z. And

p−1∑
k=0

(3k + 2)
Tk(2, 3)3

8k
≡p
(

3

(
3

p

)
− 1

)
(mod p2),

p−1∑
k=0

(3k + 1)
Tk(2, 3)3

(−64)k
≡p
(
−2

p

)
(mod p3).
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Also,
n−1∑
k=0

(3k + 2)Tk(2, 3)38n−1−k ≡ 0 (mod 2n)

and
n−1∑
k=0

(3k + 1)Tk(2, 3)3(−64)n−1−k ≡ 0 (mod n)

for all n ∈ Z+.

Remark 71. See Sun [90] for more such conjectures.

Conjecture 72. Let p be an odd prime.

(i) We have

p−1∑
k=0

(
2k
k

)
Tk(7, 12)2

4k

≡


4x2 − 2p (mod p2) if p ≡ 1 (mod 12) & p = x2 + 9y2,

4xy (mod p2) if p ≡ 5 (mod 12) & p = x2 + y2 (3 | x− y),

0 (mod p2) if p ≡ 3 (mod 4),

where x, y ∈ Z. If p 6= 3, then

p−1∑
k=0

(
2k
k

)
Tk(7, 12)2

4k
≡

p−1∑
k=0

(
2k
k

)
T2k(3, 3)2

36k

(
mod p

(5+(−1
p
))/2
)
.

(ii) We have

p−1∑
k=0

(
2k
k

)
T2k(9, 20)2

4k

≡


4x2 − 2p (mod p2) if p ≡ 1, 9 (mod 20) & p = x2 + 25y2,

4xy (mod p2) if p ≡ 13, 17 (mod 20) & p = x2 + y2 (5 | x− y),

0 (mod p2) if p ≡ 3 (mod 4),

where x, y ∈ Z. If p 6= 11, then

p−1∑
k=0

(
2k
k

)
T2k(9, 20)2

4k
≡

p−1∑
k=0

(
2k
k

)
Tk(19,−20)2

222k
(mod p2).

Remark 72. Note that Tk(7, 12) = Dk(3) and Tk(9, 20) = Dk(4) for all k ∈ N. The

conjecture essentially appeared as Conjectures 4.24 and 4.25 of Sun [90].
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Conjecture 73. Let p > 3 be a prime.

(i) (Sun [84, Conjecture 7.13]) We have

p−1∑
k=0

(
2k
k

)
Tk(3,−3)2

(−108)k

≡



4x2 − 2p (mod p2) if (−1p ) = (p3) = (p7) = 1 & p = x2 + 21y2,

12x2 − 2p (mod p2) if (−1p ) = (p7) = −1, (p3) = 1 & p = 3x2 + 7y2,

2x2 − 2p (mod p2) if (−1p ) = (p3) = −1, (p7) = 1 & 2p = x2 + 21y2,

6x2 − 2p (mod p2) if (−1p ) = 1, (p3) = (p7) = −1 & 2p = 3x2 + 7y2,

0 (mod p2) if (−21p ) = −1,

where x, y ∈ Z. Also,

p−1∑
k=0

56k + 19

(−108)k

(
2k

k

)
Tk(3,−3)2 ≡ p

2

(
21
(p

7

)
+ 17

)
(mod p2).

(ii) (2011-06-18) We have

p−1∑
n=0

(
2n

n

) n∑
k=0

(
n
k

)(
n+2k
2k

)(
2k
k

)
64k

≡


x2 − 2p (mod p2) if (p3) = ( p17) = 1 & 4p = x2 + 51y2,

3x2 − 2p (mod p2) if (p3) = ( p17) = −1 & 4p = 3x2 + 17y2,

0 (mod p2) if ( p51) = −1,

where x, y ∈ Z. Also,

p−1∑
n=0

(17n+ 9)

(
2n

n

) n∑
k=0

(
n
k

)(
n+2k
2k

)(
2k
k

)
64k

≡ p

3

(
34
( p

17

)
− 7
)

(mod p2).

Remark 73. There are many similar congruences and related series for 1/π (cf. [84, 90]).

The author’s some conjectural series for 1/π involving central trinomial coefficients (cf.

[76, 90]) were confirmed by Chan, Wan and Zudilin [8], Wan and Zudilin [108], and

Zudilin [115]. Motivated by Sun [90, Conjecture 4.17], in 2011 the author believed that

c := π
∞∑
k=0

15k + 2

(−3456)k

(
2k

k

)(
3k

k

)
T3k(2,−1)

is an algebraic number; on the author’s request, Prof. H. H. Chan got in 2015 that

c =
1

2

√
72 + 54

3
√

4 + 12
3
√

2.
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Conjecture 74. Let p be an odd prime

(i) (Sun [90, Conjecture 4.20]) If p 6= 3, 7, 11, 17, 31, then

p−1∑
k=0

(
2k
k

)
Tk(73, 576)2

4342k

≡



4x2 − 2p (mod p2) if (2p) = (p3) = ( p17) = 1, p = x2 + 102y2,

8x2 − 2p (mod p2) if ( p17) = 1, (2p) = (p3) = −1, p = 2x2 + 51y2,

12x2 − 2p (mod p2) if (p3) = 1, (2p) = ( p17) = −1, p = 3x2 + 34y2,

24x2 − 2p (mod p2) if (2p) = 1, (p3) = ( p17) = −1, p = 6x2 + 17y2,

0 (mod p2) if (−102p ) = −1,

where x and y are integers.

(ii) When p 6= 7, 31, we have

p−1∑
k=0

2800512k + 435257

4342k

(
2k

k

)
Tk(73, 576)2

≡p
(

466752

(
−6

p

)
− 31495

)
(mod p2).

For any n ∈ Z+, the number

1

n
(
2n−1
n−1

) n−1∑
k=0

(2800512k + 435257)4342(n−1−k)
(

2k

k

)
Tk(73, 576)2

is an odd integer.

Remark 74. This corresponds to the author’s conjectural series (cf. [90, VII7])

p−1∑
k=0

2800512k + 435257

4342k

(
2k

k

)
Tk(73, 576)2 =

10406669

2
√

6π
.

Sun’s another similar conjectural identity (cf. [90, VII2])

∞∑
k=0

24k + 5

282k

(
2k

k

)
Tk(4, 9)2 =

49

9π
(
√

3 +
√

6)

was motivated by [90, Conjecture 4.18], for this one we also conjecture that

n

(
2n− 1

n− 1

) ∣∣∣∣ n−1∑
k=0

(24k + 5)282(n−1−k)
(

2k

k

)
Tk(4, 9)2.
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Conjecture 75. (2011-10-01) (i) Let p > 5 be a prime. Then(
−1

p

) p−1∑
k=0

Tk(22, 212)3

(−80)3k
≡
(

5

p

) p−1∑
k=0

Tk(22, 212)3

163k

≡


4x2 − 2p (mod p2) if p ≡ 1, 4 (mod 15) & p = x2 + 15y2 (x, y ∈ Z),

2p− 12x2 (mod p2) if p ≡ 2, 8 (mod 15) & p = 3x2 + 5y2 (x, y ∈ Z),

0 (mod p2) if ( p15) = −1, i.e., p ≡ 7, 11, 13, 14 (mod 15).

(4.19)

Also,
p−1∑
k=0

126k + 31

(−80)3k
Tk(22, 212)3 ≡ 31p

(
−5

p

)
(mod p2).

(ii) For any n ∈ Z+, we have

(−1)n−1

n

n−1∑
k=0

(126k + 31)(−80)3(n−1−k)Tk(22, 212)3 ∈ Z+,

1

n

n−1∑
k=0

(66k + 17)(21133)n−1−kTk(10, 112)3 ∈ Z+,

(−1)n−1

n

n−1∑
k=0

(3990k + 1147)(−288)3(n−1−k)Tk(62, 952)3 ∈ Z+.

Remark 75. This conjecture is related to the author’s conjectural formula

∞∑
k=0

126k + 31

(−80)3k
Tk(22, 212)3 =

880
√

5

21π

(cf. [90, (VI2)]). The author [90] promised to offer 300 US dollars as the prize for the

person (not joint authors) who can provide first rigorous proofs of this formula and the

two other identities (cf. [90, (VI1) and (VI3)])

∞∑
k=0

66k + 17

(21133)k
Tk(10, 112)3 =

540
√

2

11π
,

∞∑
k=0

3990k + 1147

(−288)3k
Tk(62, 952)3 =

432

95π
(195
√

14 + 94
√

2).

The Domb numbers in combinatorics are given by

Domb(n) :=
n∑
k=0

(
n

k

)2(2k

k

)(
2(n− k)

n− k

)
(n ∈ N).
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Conjecture 76. (Sun [84, Conjecture 5.1]) Let p > 3 be a prime. Then

p−1∑
k=0

Domb(k) ≡
p−1∑
k=0

Domb(k)

64k

≡


4x2 − 2p (mod p2) if p ≡ 1, 4 (mod 15) & p = x2 + 15y2 (x, y ∈ Z),

2p− 12x2 (mod p2) if p ≡ 2, 8 (mod 15) & p = 3x2 + 5y2 (x, y ∈ Z),

0 (mod p2) if ( p15) = −1, i.e., p ≡ 7, 11, 13, 14 (mod 15).

Remark 76. Such conjectures can be easily checked via a computer.

Conjecture 77. (i) For any n ∈ Z+, the numbers

1

4n

n−1∑
k=0

(5k + 4)Domb(k),
1

2n

n−1∑
k=0

(2k + 1)Domb(k)(−2)n−1−k,

1

n

n−1∑
k=0

(2k + 1)Domb(k)8n−1−k,
1

n

n−1∑
k=0

(2k + 1)Domb(k)(−8)n−1−k

(−1)n−1

n

n−1∑
k=0

(2k + 1)Domb(k)(−32)n−1−k,
1

n

n−1∑
k=0

(5k + 1)Domb(k)64n−1−k

are all positive integers.

(ii) For any prime p > 3, we have

p−1∑
k=0

(5k + 4)Domb(k) ≡ 4p
(p

3

)
+

14

3
p3Bp−2

(
1

3

)
(mod p4),

p−1∑
k=0

3k + 2

(−2)k
Domb(k) ≡ 2p

(
−1

p

)
+ 6p3Ep−3 (mod p4),

p−1∑
k=0

2k + 1

(−8)k
Domb(k) ≡ p

(p
3

)
+

5

12
p3Bp−2

(
1

3

)
(mod p4),

p−1∑
k=0

3k + 1

(−32)k
Domb(k) ≡ p

(
−1

p

)
+ p3Ep−3 (mod p4),

p−1∑
k=0

5k + 1

64k
Domb(k) ≡ p

(p
3

)
− p3

3
Bp−2

(
1

3

)
(mod p4),

p−1∑
k=0

2k + 1

8k
Domb(k) ≡ p+

35

24
p4Bp−3 (mod p5).
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(iii) Let p be a prime and let n ∈ Z+. Then

1

n3

( pn−1∑
k=0

(5k + 4)Domb(k)−
(p

3

)
p

n−1∑
r=0

(5r + 4)Domb(r)

)
≡ 0 (mod p3).

If p > 2, then

1

n3

( pn−1∑
k=0

(3k + 2)
Domb(k)

(−2)k
−
(
−1

p

)
p
n−1∑
r=0

(3r + 2)
Domb(r)

(−2)r

)
≡ 0 (mod p3),

1

n3

( pn−1∑
k=0

(2k + 1)
Domb(k)

(−8)k
−
(p

3

)
p
n−1∑
r=0

(2r + 1)
Domb(r)

(−8)r

)
≡ 0 (mod p3),

1

n3

( pn−1∑
k=0

(3k + 1)
Domb(k)

(−32)k
−
(
−1

p

)
p
n−1∑
r=0

(3r + 1)
Domb(r)

(−32)r

)
≡ 0 (mod p3),

1

n3

( pn−1∑
k=0

(5k + 1)
Domb(k)

64k
−
(p

3

)
p

n−1∑
r=0

(5r + 1)
Domb(r)

64r

)
≡ 0 (mod p3).

When p > 3, we have

1

n4

( pn−1∑
k=0

(2k + 1)
Domb(k)

8k
− p

n−1∑
r=0

(2r + 1)
Domb(r)

8r

)
≡ 0 (mod p4).

Remark 77. Note that
∞∑
k=0

5k + 1

64k
Domb(k) =

8√
3π

and
∞∑
k=0

3k + 1

(−32)k
Domb(k) =

2

π

by H.H. Chan, S.H. Chan and Z.-Liu [6], and M.D. Rogers [61]. The supercongruence∑p−1
k=0(5k + 1)Domb(k)/64k ≡ (p3)p (mod p3) for primes p > 3 was first pointed out by

Zudilin [114, (34)]. Other congruences in part (ii) modulo p3, as well as 4n |
∑n−1

k=0(5k+

4)Domb(k) for all n ∈ Z+, were posed by the author [84, Conjectures 5.1-5.3].

Conjecture 78. Let p be an odd prime. For any n ∈ Z+, we have

(−256)n−1

(pn)3
(
2n
n

)2Dp,n ≡
qp(2)

2
Domb(n− 1) (mod p),

where

Dp,n :=

pn−1∑
k=0

40k2 + 26k + 5

(−256)k

(
2k

k

)2

Domb(k)− p2
n−1∑
r=0

40r2 + 26r + 5

(−256)r

(
2r

r

)2

Domb(r).

Moreover,

p−1∑
k=0

40k2 + 26k + 5

(−256)k

(
2k

k

)2

Domb(k) ≡ 5p2 + 2p3qp(2)− 3p4qp(2)2 (mod p5), (4.20)
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and
(−1)n−1

n2
(
2n
n

)2 n−1∑
k=0

(40k2 + 26k + 5)

(
2k

k

)2

Domb(k)(−256)n−1−k ∈ Z+

for every n = 2, 3, . . ..

Remark 78. This corresponds to the author’s conjectural series
∞∑
k=0

40k2 + 26k + 5

(−256)k

(
2k

k

)2

Domb(k) =
24

π2

stated in [75, Conjecture 1.4]. The congruence (4.20) modulo p3 was conjectured by Sun

[75, Conjecture 5.15].

Conjecture 79. (i) For any odd prime p, we have

p−1∑
k=1

Domb(k)

k
≡
(p

3

) 2

5
pBp−2

(
1

3

)
(mod p2).

(ii) (Sun [75]) For any prime p > 3, we have

p−1∑
n=0

3n2 + n

16n
Domb(n) ≡ −4p4qp(2) + 6p5qp(2)2 (mod p6).

(iii) (2013-08-20) For any prime p, we have

det[Domb(i+ j)]06i,j6p−1

≡

(−1p )(4x2 − 2p) (mod p2) if p = x2 + 3y2 (x, y ∈ Z),

0 (mod p2) if p ≡ 2 (mod 3).

(4.21)

Remark 79. Part (i) was found by the author in 2019. The congruence in part (ii)

modulo p5 was proved by Y.-P. Mu and the author [53]. For the Catalan-Larcombe-

French numbers given by (2.32), the author has proved that

det[Pi+j ]06i,j6p−1 ≡
(
−1

p

)
(mod p2)

for any odd prime p.

Conjecture 80. (i) (2013-08-22) For n = 0, 1, 2, . . . let

H(n) = det [hi+j ]06i,j6n .

Then H(n) is always positive and odd, and not congruent to 7 modulo 8. For any prime

p ≡ 1 (mod 3) with p = x2 + 3y2 (x, y ∈ Z and x ≡ 1 (mod 3)), we have

H(p− 1) ≡
(
−1

p

)(
2x− p

2x

)
(mod p2).
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For any odd prime p ≡ 2 (mod 3), we have

H(p− 1) ≡ −
(
−1

p

)
3p((p+1)/2

(p+1)/6

) (mod p2).

(ii) (2013-08-24) For n ∈ N let an =
∑n

k=0

(
n
k

)2( 2k
k+1

)
. Then

det[ai+j ]06i,j6p−1 ≡ 0 (mod p2) for any prime p > 3.

Remark 80. Recall that hn =
∑n

k=0

(
n
k

)2
Ck for all n ∈ N. On August 17, 2013, the

author also conjectured that for any m,n ∈ Z+ we have

(−1)n det[H
(m)
i+j ]06i,j6n > 0 and det[B2

i+j ]06i,j6n < 0 < det[E2
i+j ]06i,j6n.

Conjecture 81. (2013-08-23) For n = 0, 1, 2, . . . let

wn :=

bn/3c∑
k=0

(−1)k3n−3k
(
n

3k

)(
2k

k

)(
3k

k

)
and W (n) = det [wi+j ]06i,j6n .

(i) When n ≡ 0, 2 (mod 3), the number (−1)b(n+1)/3cW (n)/6n is always a positive

odd integer.

(ii) For any prime p ≡ 1 (mod 3), if we write 4p = x2 + 27y2 with x, y ∈ Z and

x ≡ 1 (mod 3), then

W (p− 1) ≡
(
−1

p

)(p
x
− x
)

(mod p2).

Remark 81. The sequence (wn)n>0 was first introduced by D. Zagier [109]. On August

23, 2013, the author observed that W (3n+ 1) = 0 for all n = 0, 1, 2, . . ., which was later

confirmed by C. Krattenthaler in a private message.

Conjecture 82. (2016-11-13). For n = 0, 1, 2, . . . define

an :=

bn/2c∑
k=0

(−1)k
(
n

2k

)(
n− k
k

)
,

bn :=

bn/2c∑
k=0

(
n

k

)2(n− k
k

)
,

cn :=

bn/2c∑
k=0

(
n

2k

)2(n− k
k

)
.

Let n be any positive integer. Then

apn − an
(pn)2

∈ Zp for each prime p > 3.
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Also, for any prime p > 5 we have

bpn − bn
(pn)3

∈ Zp and
cpn − cn

(pn)3
∈ Zp.

Remark 82. One may consult Osburn, B. Sahu and A. Straub [55] for some known

supercongruences of similar types. For any prime p > 5 and n ∈ Z+, we are able to show

that

apn − an
p2n

∈ Zp,
bpn − bn
p2n

∈ Zp and
cpn − cn
p2n

∈ Zp.

For n = 0, 1, 2, . . ., Sun [95] defined

sn(x) =

n∑
k=0

(
n

k

)(
x

k

)(
x+ k

k

)
=

n∑
k=0

(
n

k

)
(−1)k

(
x

k

)(
−1− x
k

)
.

Note that sn(−1/2) coincides with

J̃2(n) :=
n∑
k=0

(
n

k

)
(−1)k

(
−1/2

k

)2

=
n∑
k=0

(
n

k

)
(−1)k

(
2k
k

)2
16k

defined by K. Kimoto and M. Wakayama [37, (3.4)]. Long, Osburn and Swisher [42]
proved that

p−1∑
k=0

sk

(
−1

2

)2

≡
(
−1

p

)
(mod p3)

for any odd prime p, which was conjectured by Kimoto and Wakayama [37]. Sun [95]
conjectured further that

p−1∑
k=0

sk

(
−1

2

)2

≡
(
−1

p

)
(1− 7p3Bp−3) (mod p4)

for any odd prime p, which was later confirmed by J.-C. Liu [40].

Conjecture 83. (i) (Sun [95, Conjecture 6.10]) For any prime p > 3 and p-adic integer

x 6= −1/2, we have the congruence

p−1∑
k=0

sk(x)2 ≡ (−1)〈x〉p
p+ 2(x− 〈x〉p)

2x+ 1
(mod p3).
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(ii) (Sun [95, Conjecture 6.11]) For any prime p > 3, we have

p−1∑
k=0

sk

(
−1

3

)2

≡p− 14

3

(p
3

)
p3Bp−2

(
1

3

)
(mod p4),

p−1∑
k=0

sk

(
−1

4

)2

≡
(

2

p

)
p− 26

(
−2

p

)
p3Ep−3 (mod p4)

p−1∑
k=0

sk

(
−1

6

)2

≡
(

3

p

)
p− 155

12

(
−1

p

)
p3Bp−2

(
1

3

)
(mod p4).

(iii) Let p be an odd prime and let n ∈ Z+. Then

1

n3

( pn−1∑
k=0

sk

(
−1

2

)2

−
(
−1

p

) n−1∑
r=0

sr

(
−1

2

)2)
≡ 0 (mod p3)

and

1

n3

( pn−1∑
k=0

sk

(
−1

4

)2

−
(

2

p

)
p

n−1∑
r=0

sr

(
−1

4

)2)
≡ 0 (mod p3).

If p > 3, then

1

n3

( pn−1∑
k=0

sk

(
−1

3

)2

− p
n−1∑
r=0

sr

(
−1

3

)2)
≡ 0 (mod p3)

and

1

n3

( pn−1∑
k=0

sk

(
−1

6

)2

−
(

3

p

)
p

n−1∑
r=0

sr

(
−1

6

)2)
≡ 0 (mod p3).

Remark 83. Sun [95] proved the congruence in part (i) modulo p2.

Sun [95] introduced two new kinds of polynomials

dn(x) :=
n∑
k=0

(
n

k

)(
x

k

)
2k and tn(x) :=

n∑
k=0

(
n

k

)(
x

k

)(
x+ k

k

)
2k (n ∈ N).
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Conjecture 84. (i) Let p be an odd prime and let n ∈ Z+. Then

1

n2

( pn−1∑
k=0

dk

(
−1

2

)2

−
(
−1

p

) n−1∑
r=0

(−1)rdr

(
−1

2

)2)
≡ 0 (mod p2),

1

n2

( pn−1∑
k=0

dk

(
−1

2

)2

−
(
−1

p

) n−1∑
r=0

dr

(
−1

2

)2)
≡ 0 (mod p2),

1

n2

( pn−1∑
k=0

tk

(
−1

2

)2

−
(
−1

p

) n−1∑
r=0

tr

(
−1

2

)2)
≡ 0 (mod p2),

1

n2

( pn−1∑
k=0

(−1)kdk

(
−1

4

)2

−
(
−2

p

) n−1∑
r=0

(−1)rdr

(
−1

4

)2)
≡ 0 (mod p2),

1

n2

( pn−1∑
k=0

dk

(
−1

4

)2

−
(

2

p

)
p

n−1∑
r=0

dr

(
−1

4

)2)
≡ 0 (mod p2),

1

n2

( pn−1∑
k=0

tk

(
−1

4

)2

−
(

2

p

)
p

n−1∑
r=0

tr

(
−1

4

)2)
≡ 0 (mod p2).

If p > 3, then

1

n2

( pn−1∑
k=0

(−1)kdk

(
−1

3

)2

−
(p

3

) n−1∑
r=0

(−1)rdr

(
−1

3

)2)
≡ 0 (mod p2),

1

n2

( pn−1∑
k=0

dk

(
−1

3

)2

− p
n−1∑
r=0

dr

(
−1

3

)2)
≡ 0 (mod p2),

1

n2

( pn−1∑
k=0

tk

(
−1

3

)2

− p
n−1∑
r=0

tr

(
−1

3

)2)
≡ 0 (mod p2),

and

1

n2

( pn−1∑
k=0

(−1)kdk

(
−1

6

)2

−
(
−1

p

) n−1∑
r=0

(−1)rdr

(
−1

6

)2)
≡ 0 (mod p2),

1

n2

( pn−1∑
k=0

dk

(
−1

6

)2

−
(

3

p

)
p
n−1∑
r=0

dr

(
−1

6

)2)
≡ 0 (mod p2),

1

n2

( pn−1∑
k=0

tk

(
−1

6

)2

−
(

3

p

)
p

n−1∑
r=0

tr

(
−1

6

)2)
≡ 0 (mod p2).

(ii) (Sun [95]) For any odd prime p and p-adic integer x, we have

p−1∑
k=0

tk(x)2 ≡

(−1p ) (mod p2) if 2x ≡ −1 (mod p),

(−1)〈x〉p
p+2x−2〈x〉p

2x+1 (mod p2) otherwise.
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Also, for any n ∈ Z+ and x ∈ Z, the number

1

n

n−1∑
k=0

(8k + 5)tk(x)2

is always an integer congruent to 1 modulo 4.

Remark 84. Sun [95] determined
∑p−1

k=0(±1)kdk(x)2 and
∑p−1

k=0(2k+ 1)dk(x)2 modulo p2

for any odd prime p.

5 Congruences Involving Lucas Sequences

Recall that the Fibonacci numbers F0, F1, F2, . . . and the Lucas numbers L0, L1, L2, . . .
are given by

F0 = 0, F1 = 1, Fn+1 = Fn + Fn−1 (n = 1, 2, 3, . . .),

and

L0 = 2, L1 = 1, Ln+1 = Ln + Ln−1 (n = 1, 2, 3, . . .)

respectively. Actually, Fn = un(1,−1) and Ln = vn(1,−1) for all n ∈ N.

Conjecture 85. (i) (Sun [90]) Let p > 5 be a prime. If p ≡ 1, 4 (mod 15) and

p = x2 + 15y2 (x, y ∈ Z) with x ≡ 1 (mod 3), then

p−1∑
k=0

k
(
2k
k

)(
3k
k

)
27k

Fk ≡
2

15

(p
x
− 2x

)
(mod p2),

p−1∑
k=0

(
2k
k

)(
3k
k

)
27k

Lk ≡4x− p

x
(mod p2)

and
p−1∑
k=0

(3k + 2)

(
2k
k

)(
3k
k

)
27k

Lk ≡ 4x (mod p2).

If p ≡ 2, 8 (mod 15) and p = 3x2 + 5y2 (x, y ∈ Z) with y ≡ 1 (mod 3), then

p−1∑
k=0

(
2k
k

)(
3k
k

)
27k

Fk ≡
p

5y
− 4y (mod p2)

and
p−1∑
k=0

k
(
2k
k

)(
3k
k

)
27k

Fk ≡
p−1∑
k=0

k
(
2k
k

)(
3k
k

)
27k

Lk ≡
4

3
y (mod p2).



OPEN CONJECTURES ON CONGRUENCES 73

(ii) (2011-09-29) Let p > 3 be a prime. If p ≡ 1, 7 (mod 24) and p = x2+6y2 (x, y ∈ Z)

with x ≡ 1 (mod 3), then

p−1∑
k=0

(
2k
k

)(
3k
k

)
108k

kuk(4, 2) ≡1

6

(
2x− p

x

)
(mod p2),

p−1∑
k=0

(
2k
k

)(
3k
k

)
108k

vk(4, 2) ≡4x− p

x
(mod p2),

p−1∑
k=0

(3k − 1)

(
2k
k

)(
3k
k

)
108k

vk(4, 2) ≡− 2x (mod p2).

If p ≡ 5, 11 (mod 24) and p = 2x2 + 3y2 (x, y ∈ Z) with x ≡ 1 (mod 3), then

p−1∑
k=0

(
2k
k

)(
3k
k

)
108k

uk(4, 2) ≡2x− p

4x
(mod p2),

p−1∑
k=0

(
2k
k

)(
3k
k

)
108k

kuk(4, 2) ≡x
3

(mod p2),

p−1∑
k=0

(
2k
k

)(
3k
k

)
108k

kvk(4, 2) ≡4

3
x (mod p2).

Remark 85. By Sun [83, Theorem 1.6], we have

p−1∑
k=0

(
2k
k

)(
3k
k

)
27k

Fk ≡
p−1∑
k=0

(
2k
k

)(
3k
k

)
108k

uk(4, 2) ≡ 0 (mod p2)

for any prime p ≡ 1 (mod 3), and

p−1∑
k=0

(
2k
k

)(
3k
k

)
27k

Lk ≡
p−1∑
k=0

(
2k
k

)(
3k
k

)
108k

vk(4, 2) ≡ 0 (mod p2)

for each odd prime p ≡ 2 (mod 3). For more such conjectures, one may consult Sun [80]

and [90, Conjectures 4.1-4.2].
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Conjecture 86. (2012-11-03) Let p 6= 2, 5 be a prime. If (−1p ) = (5p) = 1 (i.e., p ≡
1, 9 (mod 20)) and p = x2 + 5y2 with x, y ∈ Z, then

p−1∑
k=0

(
2k
k

)3
64k

F6k ≡0 (mod p3),

p−1∑
k=0

(
2k
k

)3
64k

L6k ≡(−1)y(8x2 − 4p) (mod p2),

p−1∑
k=0

k
(
2k
k

)3
64k

F6k ≡
(−1)y

10
(3p− 4x2) (mod p2).

If (−5p ) = −1 (i.e., p ≡ 11, 13, 17, 19 (mod 20)), then

p−1∑
k=0

(
2k
k

)3
64k

F6k ≡
p−1∑
k=0

(
2k
k

)3
64k

L6k ≡ 0 (mod p2), and

p−1∑
k=0

k
(
2k
k

)3
64k

F6k ≡ 0 (mod p).

Conjecture 87. (2012-11-03) Let p 6= 2, 5 be a prime. If (−2p ) = (5p) = 1 (i.e., p ≡
1, 9, 11, 19 (mod 40)) and p = x2 + 10y2 with x, y ∈ Z, then

p−1∑
k=0

(
2k
k

)3
(−64)k

L12k ≡
(
−1

p

)
(8x2 − 4p) (mod p2);

if p ≡ 1, 9 (mod 40) then

p−1∑
k=0

(
2k
k

)3
(−64)k

F12k ≡ 0 (mod p3).

If (−2p ) = (5p) = −1 (i.e., p ≡ 7, 13, 23, 37 (mod 40)) and p = 2x2 + 5y2 with x, y ∈ Z,

then
p−1∑
k=0

(
2k
k

)3
(−64)k

F12k ≡ 16

(
−1

p

)
(4x2 − p) (mod p2)

and
p−1∑
k=0

(
2k
k

)3
(−64)k

L12k ≡ 36

(
−1

p

)
(p− 4x2) (mod p2).

If (−10p ) = −1, then

p−1∑
k=0

(
2k
k

)3
(−64)k

F12k ≡
p−1∑
k=0

(
2k
k

)3
(−64)k

L12k ≡ 0 (mod p2).
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Conjecture 88. (2012-11-03) Let p 6= 2, 5 be a prime. Then

p−1∑
k=0

(
2k
k

)3
64k

F24k ≡


0 (mod p3) if p ≡ 1, 9 (mod 20),

0 (mod p2) if p ≡ 3, 7, 11, 19 (mod 20),

288(p− 2x2) (mod p2) if p = x2 + 4y2 ≡ 13, 17 (mod 20),

and

p−1∑
k=0

k
(
2k
k

)3
64k

F24k ≡


(−1)y(3p− 4x2)/6 (mod p2) if p = x2 + 25y2 ≡ 1, 9 (mod 20),

110x2/3 (mod p) if p = x2 + 4y2 & (p5) = −1,

0 (mod p) if p ≡ 3 (mod 4),

where x and y are integers. Also,

p−1∑
k=0

(
2k
k

)3
64k

L24k ≡

(81− 80(p5))(8x2 − 4p) (mod p2) if p = x2 + 4y2,

0 (mod p2) if p ≡ 3 (mod 4),

and

p−1∑
k=0

k
(
2k
k

)3
64k

L24k

≡


(−1)y(3p− 4x2)/2 (mod p2) if p = x2 + 25y2 ≡ 1, 9 (mod 20),

−82x2 (mod p) if p = x2 + 4y2 & (p5) = −1,

0 (mod p) if p > 3 & p ≡ 3 (mod 4),

where x and y are integers.

The Pell sequence (Pn)n>0 and its companion (Qn)n>0 are given by

P0 = 0, P1 = 1, and Pn+1 = 2Pn + Pn−1 (n = 1, 2, 3, . . .),

and

Q0 = 2, Q1 = 2, and Qn+1 = 2Qn +Qn−1 (n = 1, 2, 3, . . .).

In other words, Pn = un(2,−1) and Qn = vn(2,−1) for all n ∈ N.
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Conjecture 89. (2012-11-02) Let p be an odd prime. When p ≡ 1, 3 (mod 8) and

p = x2 + 2y2 with x, y ∈ Z, we have

p−1∑
k=0

(
2k
k

)3
(−8)k

Q3k ≡
(

2−
(
−1

p

))
(8x2 − 4p) (mod p2),

p−1∑
k=0

(
2k
k

)3
(−8)k

P3k ≡

0 (mod p3) if p ≡ 1 (mod 8),

4p− 8x2 (mod p2) if p ≡ 3 (mod 8),

14

p−1∑
k=0

k
(
2k
k

)3
(−8)k

P3k ≡

3p− 4x2 (mod p2) if p ≡ 1 (mod 8),

20x2 + 21p (mod p2) if p ≡ 3 (mod 8).

If p ≡ 1 (mod 8), then

p−1∑
k=0

(7k + 2)

(
2k
k

)3
(−8)k

Q3k ≡ 4p (mod p3);

if p ≡ 3 (mod 8), then

p−1∑
k=0

(21k + 4)

(
2k
k

)3
(−8)k

Q3k ≡ −132p (mod p3)

and
p−1∑
k=0

(28k + 5)

(
2k
k

)3
(−8)k

P3k ≡ 62p (mod p3).

If p ≡ 5, 7 (mod 8), then

p−1∑
k=0

(
2k
k

)3
(−8)k

P3k ≡
p−1∑
k=0

(
2k
k

)3
(−8)k

Q3k ≡ 0 (mod p2),

14

p−1∑
k=0

k
(
2k
k

)3
(−8)k

P3k ≡ −p
(

16 + 15

(
−1

p

))
(mod p2),

and
p−1∑
k=0

(21k + 4)

(
2k
k

)3
(−8)k

Q3k ≡ 12p

(
5 + 6

(
−1

p

))
(mod p2).

Conjecture 90. (2013-03-12) Let p be an odd prime. If (−6p ) = −1, then

p−1∑
k=0

(
2k
k

)3
(−64)k

P4k ≡
p−1∑
k=0

(
2k
k

)3
(−64)k

Q4k ≡ 0 (mod p2).

If p ≡ 1, 7 (mod 24) and p = x2 + 6y2 (x, y ∈ Z), then

p−1∑
k=0

(
2k
k

)3
(−64)k

P4k ≡ 0 (mod p3)
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and
p−1∑
k=0

(
2k
k

)3
(−64)k

Q4k ≡ (−1)y(8x2 − 4p) (mod p2).

When p ≡ 5, 11 (mod 24) and p = 2x2 + 3y2 (x, y ∈ Z), we have

p−1∑
k=0

(
2k
k

)3
(−64)k

P4k ≡ 4

(
−1

p

)
(p− 4x2) (mod p2)

and
p−1∑
k=0

(
2k
k

)3
(−64)k

Q4k ≡ 12

(
−1

p

)
(4x2 − p) (mod p2).

Conjecture 91. (2013-03-11) Let p be an odd prime. If (−22p ) = −1, then

p−1∑
k=0

(
2k
k

)3
(−64)k

P12k ≡
p−1∑
k=0

(
2k
k

)3
(−64)k

Q12k ≡ 0 (mod p2).

If (2p) = ( p11) = 1 and p = x2 + 22y2 (x, y ∈ Z), then

p−1∑
k=0

(
2k
k

)3
(−64)k

P12k ≡ 0 (mod p3)

and
p−1∑
k=0

(
2k
k

)3
(−64)k

Q12k ≡ (−1)y(8x2 − 4p) (mod p2).

When (2p) = ( p11) = −1 and p = 2x2 + 11y2 (x, y ∈ Z), we have

p−1∑
k=0

(
2k
k

)3
(−64)k

P12k ≡ 140

(
−1

p

)
(p− 4x2) (mod p2)

and
p−1∑
k=0

(
2k
k

)3
(−64)k

Q12k ≡ 396

(
−1

p

)
(4x2 − p) (mod p2).

Conjecture 92. (2011-11-03) Let p be an odd prime. If (−13p ) = −1, then

p−1∑
k=0

(
2k
k

)3
64k

u6k(3,−1) ≡
p−1∑
k=0

(
2k
k

)3
64k

v6k(3,−1) ≡ 0 (mod p2).

If (−1p ) = ( p13) = 1 and p = x2 + 13y2 (x, y ∈ Z), then

p−1∑
k=0

(
2k
k

)3
64k

u6k(3,−1) ≡ 0 (mod p3)
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and
p−1∑
k=0

(
2k
k

)3
64k

v6k(3,−1) ≡ (−1)y(8x2 − 4p) (mod p2).

Conjecture 93. (2012-11-03) Let p be an odd prime. If (−58p ) = −1, then

p−1∑
k=0

(
2k
k

)3
(−64)k

u12k(5,−1) ≡
p−1∑
k=0

(
2k
k

)3
(−64)k

v12k(5,−1) ≡ 0 (mod p2).

If (−2p ) = (29p ) = 1 and p = x2 + 58y2 (x, y ∈ Z), then

p−1∑
k=0

(
2k
k

)3
(−64)k

u12k(5,−1) ≡ 0 (mod p3)

and
p−1∑
k=0

(
2k
k

)3
(−64)k

v12k(5,−1) ≡
(
−1

p

)
(8x2 − 4p) (mod p2).

If (−2p ) = (29p ) = −1 and p = 2x2 + 29y2 (x, y ∈ Z), then

p−1∑
k=0

(
2k
k

)3
(−64)k

u12k(5,−1) ≡ 7280

(
−1

p

)
(4x2 − p) (mod p2)

and
p−1∑
k=0

(
2k
k

)3
(−64)k

v12k(5,−1) ≡ 39204

(
−1

p

)
(p− 4x2) (mod p2).

Conjecture 94. (2012-11-03) Let p be an odd prime. If (−37p ) = −1, then

p−1∑
k=0

(
2k
k

)3
64k

u6k(12,−1) ≡
p−1∑
k=0

(
2k
k

)3
64k

v6k(12,−1) ≡ 0 (mod p2).

If (−1p ) = (37p ) = 1 and p = x2 + 37y2 (x, y ∈ Z), then

p−1∑
k=0

(
2k
k

)3
64k

u6k(12,−1) ≡ 0 (mod p3)

and
p−1∑
k=0

(
2k
k

)3
64k

v6k(12,−1) ≡ (−1)y(8x2 − 4p) (mod p2).

Conjecture 95. (2013-03-12) Let p be an odd prime. If p ≡ 5, 7 (mod 8), then

p−1∑
k=0

(
2k
k

)3
(−64)k

u4k(10, 1) ≡
p−1∑
k=0

(
2k
k

)3
(−64)k

v4k(10, 1) ≡ 0 (mod p2).
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If p ≡ 1, 19 (mod 24) and p = x2 + 2y2 (x, y ∈ Z), then

p−1∑
k=0

(
2k
k

)3
(−64)k

u4k(10, 1) ≡ 0 (mod p3)

and
p−1∑
k=0

(
2k
k

)3
(−64)k

v4k(10, 1) ≡ (−1)y(8x2 − 4p) (mod p2).

If p ≡ 11, 17 (mod 24) and p = x2 + 2y2 (x, y ∈ Z), then

p−1∑
k=0

(
2k
k

)3
(−64)k

u4k(10, 1) ≡ 20

(
−1

p

)
(p− 2x2) (mod p2)

and
p−1∑
k=0

(
2k
k

)3
(−64)k

v4k(10, 1) ≡ 196

(
−1

p

)
(2x2 − p) (mod p2).

Conjecture 96. (2013-03-12) Let p be an odd prime. Then

p−1∑
k=0

(
2k
k

)3
(−212)k

u4k(5, 8) ≡ 0 (mod p2).

When (p7) = 1 (i.e., p ≡ 1, 2, 4 (mod 7)), we even have

p−1∑
k=0

(
2k
k

)3
(−212)k

u4k(5, 8) ≡ 0 (mod p3).

Also,

p−1∑
k=0

(
2k
k

)3
(−4096)k

v4k(5, 8)

≡

8x2 − 4p (mod p2) if (p7) = 1 & p = x2 + 7y2 (x, y ∈ Z),

0 (mod p2) if (p7) = −1.

If (p7) = −1 and p > 3, then

p−1∑
k=0

k
(
2k
k

)3
(−4096)k

u4k(5, 8) ≡
p−1∑
k=0

k
(
2k
k

)3
(−4096)k

v4k(5, 8) ≡ 0 (mod p).

If (p7) = 1 and p = x2 + 7y2 (x, y ∈ Z), then

p−1∑
k=0

k
(
2k
k

)3
(−4096)k

u4k(5, 8) ≡ 3p− 4x2

42
(mod p2)

and
p−1∑
k=0

k
(
2k
k

)3
(−4096)k

v4k(5, 8) ≡ 3

2
p− 2x2 (mod p2).
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Conjecture 97. (2013-03-13) Let p > 3 be a prime.

(i) Assume that (p7) = −1. Then

p−1∑
k=0

(
2k

k

)3

(−1)ku3k(16, 1) ≡
p−1∑
k=0

(
2k

k

)3

(−1)kv3k(16, 1) ≡ 0 (mod p2),

and also

p−1∑
k=0

k

(
2k

k

)3

(−1)ku3k(16, 1) ≡
p−1∑
k=0

k

(
2k

k

)3

(−1)kv3k(16, 1) ≡ 0 (mod p)

provided p 6= 19.

(ii) Suppose (p7) = 1 and write p = x2 + 7y2 with x, y ∈ Z. Then

p−1∑
k=0

(
2k

k

)3

(−1)ku3k(16, 1)

≡

0 (mod p3) if p ≡ 1 (mod 4),

(−1)y32(p− 2x2) (mod p2) if p ≡ 3 (mod 4),

and
p−1∑
k=0

(
2k

k

)3

(−1)kv3k(16, 1) ≡
(

64

(
−1

p

)
− 63

)
(8x2 − 4p) (mod p2).

Also,

p−1∑
k=0

k

(
2k

k

)3

(−1)ku3k(16, 1) ≡

 8
399(3p− 4x2) (mod p2) if p ≡ 1 (mod 4),

− 8
3591(3492x2 + 4535p) (mod p2) if p ≡ 3 (mod 4),

and

p−1∑
k=0

k

(
2k

k

)3

(−1)kv3k(16, 1) ≡

32
57(3p− 4x2) (mod p2) if p ≡ 1 (mod 4),

32
171(660x2 + 857p) (mod p2) of p ≡ 3 (mod 4).

Conjecture 98. Let p be an odd prime.

(i) (2013-03-14) If p > 7 and p ≡ 3 (mod 4), then

p−1∑
k=0

(
2k
k

)2(3k
k

)
(−72)k

uk(24,−3) ≡
p−1∑
k=0

(
2k
k

)2(3k
k

)
(−72)k

vk(24,−3) ≡ 0 (mod p2).

If p ≡ 1 (mod 12) and p = x2 + 9y2 with x, y ∈ Z, then

p−1∑
k=0

(
2k
k

)2(3k
k

)
(−72)k

uk(24,−3) ≡ 0 (mod p3)
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and
p−1∑
k=0

(
2k
k

)2(3k
k

)
(−72)k

vk(24,−3) ≡ 8x2 − 4p (mod p2).

If p ≡ 5 (mod 12) and p = x2 + y2 with x, y ∈ Z, then

p−1∑
k=0

(
2k
k

)2(3k
k

)
(−72)k

uk(24,−3) ≡ 8

7

(xy
3

)
xy (mod p2)

and
p−1∑
k=0

(
2k
k

)2(3k
k

)
(−72)k

vk(24,−3) ≡ −32
(xy

3

)
xy (mod p2).

(ii) (2013-03-18) We have

p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
819200k

uk(720,−5)

≡

0 (mod p2) if ( p35) = −1 & p 6= 23,

0 (mod p3) if (−1p ) = (p5) = (p7) = 1,

and

p−1∑
k=0

(
2k
k

)(
3k
k

)(
6k
3k

)
819200k

vk(720,−5)

≡


0 (mod p2) if ( p35) = −1,

±(2x2 − 4p) (mod p2) if (−1p ) = (p5) = (p7) = 1 & 4p = x2 + 35y2,

0 (mod p3) if (p5) = (p7) = 1 & p ≡ 3 (mod 4),

where x and y are integers.

Conjecture 99. (2011-10-02) Let p > 3 be a prime.

(i) If ( p15) = −1, then

p−1∑
k=0

Akuk(7, 1) ≡
p−1∑
k=0

Akvk(7, 1) ≡ 0 (mod p2),

p−1∑
k=0

kAkuk(7, 1) ≡ p

90

(
25
(p

3

)
+ 27

)
(mod p2),

p−1∑
k=0

kAkvk(7, 1) ≡ −p
2

(
5
(p

3

)
+ 3
)

(mod p2).
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When p ≡ 1, 4 (mod 15) and p = x2 + 15y2 (x, y ∈ Z), we have

p−1∑
k=0

Akuk(7, 1) ≡ 0 (mod p3),

p−1∑
k=0

kAkuk(7, 1) ≡ 3p− 4x2

45
(mod p2),

p−1∑
k=0

Akvk(7, 1) ≡ 8x2 − 2p (mod p2),

p−1∑
k=0

(2k + 1)Akvk(7, 1) ≡ 2p (mod p3).

If p ≡ 2, 8 (mod 15) and p = 3x2 + 5y2 (x, y ∈ Z), then

p−1∑
k=0

Akuk(7, 1) ≡ 2p− 12x2 (mod p2),

p−1∑
k=0

(45k + 19)Akuk(7, 1) ≡ 26p (mod p3),

p−1∑
k=0

Akvk(7, 1) ≡ 84x2 − 14p (mod p2),

p−1∑
k=0

(7k + 3)Akvk(7, 1) ≡ −28p (mod p3).

(ii) If p ≡ 3 (mod 4), then

p−1∑
k=0

(−1)kAkuk(14, 1) ≡
p−1∑
k=0

(−1)kAkvk(14, 1) ≡ 0 (mod p2),

p−1∑
k=0

(−1)kkAkuk(14, 1) ≡ − p

48

(
15
(p

3

)
+ 16

)
(mod p2),

p−1∑
k=0

(−1)kkAkvk(14, 1) ≡ p
(

5
(p

3

)
+ 4
)

(mod p2).

When p ≡ 1 (mod 12) and p = x2 + 9y2 (x, y ∈ Z), we have

p−1∑
k=0

(−1)kAkuk(14, 1) ≡ 0 (mod p3),

p−1∑
k=0

(−1)kkAkuk(14, 1) ≡ 3p− 4x2

48
(mod p2),
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p−1∑
k=0

(−1)kAkvk(14, 1) ≡ 8x2 − 4p (mod p2),

p−1∑
k=0

(−1)k(2k + 1)Akvk(14, 1) ≡ 2p (mod p3).

If p ≡ 5 (mod 12) and p = x2 + y2 (x, y ∈ Z), then

p−1∑
k=0

(−1)kAkuk(14, 1) ≡ −4xy
(xy

3

)
(mod p2),

p−1∑
k=0

(−1)k(48k + 17)Akuk(14, 1) ≡ 31p (mod p3),

p−1∑
k=0

(−1)kAkvk(14, 1) ≡ 56xy
(xy

3

)
(mod p2),

p−1∑
k=0

(−1)k(14k + 5)Akvk(14, 1) ≡ −126p (mod p3).

Conjecture 100. (2011-09-30) Let p > 3 be a prime. If (−6p ) = −1, then

p−1∑
k=0

D3
kuk(6, 1) ≡

p−1∑
k=0

D3
kvk(6, 1) ≡ 0 (mod p2).

If p ≡ 1, 7 (mod 24) and p = x2 + 6y2 (x, y ∈ Z), then

p−1∑
k=0

D3
kuk(6, 1) ≡ 0 (mod p2),

p−1∑
k=0

kD3
kuk(6, 1) ≡ −11

96
x2 (mod p2),

p−1∑
k=0

D3
kvk(6, 1) ≡ 8x2 − 4p (mod p2),

p−1∑
k=0

(2k + 1)D3
kvk(6, 1) ≡ −p

4
(mod p2).
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If p ≡ 5, 11 (mod 24) and p = 2x2 + 3y2 (x, y ∈ Z), then

p−1∑
k=0

D3
kuk(6, 1) ≡ 8x2 − 2p (mod p2),

p−1∑
k=0

(128k + 53)D3
kuk(6, 1) ≡ 30p (mod p3),

p−1∑
k=0

D3
kvk(6, 1) ≡ 12p− 48x2 (mod p2),

p−1∑
k=0

(144k + 61)D3
kvk(6, 1) ≡ −186p (mod p2).
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nomials and Apéry-like formulae, Int. J. Number Theory 8 (2012), 1789–1811.

[31] Q.-H. Hou, C. Krattenthaler and Z.-W. Sun, On q-analogues of some series for π and π2, Proc.

Amer. Math. Soc. 147 (2019), 1953–1961.

[32] D.-W. Hu, On combinatorial congruences and additive combinatorics, PhD thesis, Nanjing Univ.,

2017.

[33] D.-W. Hu and G.-S. Mao, On an extension of a Van Hamme supercongruence, Ramanujan J. 42

(2017), 713–723.

[34] R. H. Hudson and K. S. Williams, Binomial coefficients and Jacobi sums, Trans. Amer. Math. Soc.

281 (1984), 431–505.

[35] K. Ireland and M. Rosen, A Classical Introduction to Modern Number Theory, Grad. Texts in Math.,

Vol. 84, 2nd ed., Springer, New York, 1990.



86 ZHI-WEI SUN

[36] J. Kibelbek, L. Long, K. Moss, B. Sheller and H. Yuan, Superconguences and complex multiplication,

J. Number Theory 164 (2016), 166–178.

[37] K. Kimoto and M. Wakayama, Apry-like numbers arising from special values of spectral zeta function

for non-commutative harmonic oscillators, Kyushu J. Math. 60 (2006), 383-404.

[38] E. Lehmer, On congruences involving Bernoulli numbers and the quotients of Fermat and Wilson,

Ann. of Math. 39 (1938), 350–360.

[39] J.-C. Liu, Congruences for truncated hypergeometric series 2F1, Bull. Aust. Math. Soc. 96 (2017),

14–23.

[40] J.-C. Liu, A generalized supercongruence of Kimoto and Wakayama, J. Math. Anal. Appl. 467

(2018), 15–25.

[41] L. Long, Hypergeometric evaluation identities and supercongruences, Pacific J. Math. 249 (2011),

405–418.

[42] L. Long, R. Osburn and H. Swisher, On a conjecture of Kimoto and Wakayama, Proc. Amer. Math.

Soc. 144 (2016), 4319–4327.

[43] G.-S. Mao, Proof of two conjectural supercongruences involving Catalan-Larcombe-French numbers,

J. Number Theory 179 (2017), 88–96.

[44] G.-S. Mao and Z.-W. Sun, Two congruences involving harmonic numbers with applications, Int. J.

Number Theory 12 (2016), 527–539.

[45] G.-S. Mao and Z.-W. Sun, New congruences involving products of two binomial coefficients, Ra-

manujan J. 49 (2019), 237–256.

[46] G.-S. Mao and T. Zhang, Proof of Sun’s conjectures on super congruences and the divisibility of

certain binomial sums, Ramanujan. J. 50 (2019), 1–11.

[47] A. Meurman, A class of slowly converging series for 1/π, preprint, arXiv:1112.3259, Appendix.

[48] F. Morley, Note on the congruence 24n ≡ (−1)n(2n)!/(n!)2, where 2n+ 1 is a prime, Ann. Math. 9

(1895), 168–170.

[49] E. Mortenson, A supercongruence conjecture of Rodriguez-Villegas for a certain truncated hyperge-

ometric function, J. Number Theory 99 (2003), 139–147.

[50] E. Mortenson, Supercongruences between truncated 2F1 by geometric functions and their Gaussian

analogs, Trans. Amer. Math. Soc. 355 (2003), 987–1007.

[51] E. Mortenson, Supercongruences for truncated n+1Fn hypergeometric series with applications to cer-

tain weight three newforms, Proc. Amer. Math. Soc. 133 (2005), 321–330.

[52] E. Mortenson, A p-adic supercongruence conjecture of van Hamme , Proc. Amer. Math. Soc. 136

(2008), 4321–4328.

[53] Y.-P. Mu and Z.-W. Sun, Telescoping method and congruences for double sums, Int. J. Number

Theory 14 (2018), 143–165.

[54] K. Ono, Web of Modularity: Arithmetic of the Coefficients of Modular Forms and q-series, Amer.

Math. Soc., Providence, R.I., 2003.

[55] R. Osburn, B. Sahu and A. Straub, Supercongruences for sporadic sequences, Proc. Edinburgh Math.

Soc. 59 (2016), 503–518.

[56] R. Osburn and W. Zudilin, On the (K.2) supercongruence of Van Hamme, J. Math. Anal. Appl.

433 (2016), 706–711.



OPEN CONJECTURES ON CONGRUENCES 87

[57] H. Pan and Z.-W. Sun, Proof of three conjectures on congruences, Sci. China Math. 57 (2014),

2091–2102.

[58] H. Pan, R. Tauraso and C. Wang, A local-global theorem for p-adic supercongruences, preprint,

arXiv:1909.08183, 2019.

[59] S. Ramanujan, Modular equations and approximations to π, Quart. J. Math. (Oxford) (2) 45 (1914),

350–372.

[60] F. Rodriguez-Villegas, Hypergeometric families of Calabi-Yau manifolds, in: Calabi-Yau Varieties

and Mirror Symmetry (Toronto, ON, 2001), pp. 223–231, Fields Inst. Commun., Vol. 38, Amer.

Math. Soc., Providence, RI, 2003.

[61] M. D. Rogers, New 5F4 hypergeometric transformations, three-variable Mahler measures, and for-

mulas for 1/π, Ramanujan J. 18 (2009), 327–340.

[62] M. Rogers and A. Straub, A solution of Sun’s $520 challenge concerning 520/π, Int. J. Number

Theory 9 (2013), 1273–1288.

[63] N. Strauss, J. Shallit, D. Zagier, Some strange 3-adic identities, Amer. Math. Monthly 99 (1992),

66–69.

[64] Z.-H. Sun, Congruences concerning Legendre polynomials, Proc. Amer. Math. Soc. 139 (2011),

1915–1929.

[65] Z.-H. Sun, Congruences concerning Legendre polynomials II, J. Number Theory 133 (2013), 1950–

1976.

[66] Z.-H. Sun, Generalized Legendre polynomials and related supercongruences, 143 (2014), 293–319.

[67] Z.-H. Sun, Supercongruences involving Bernoulli polynomials, Int. J. Number Theory 12 (2016),

1259–1271.

[68] Z.-H. Sun, Supercongruences involving Euler polynomials, Proc. Amer. Math. Soc. 144 (2016),

3295–3308.

[69] Z.-W. Sun, Various congruences involving binomial coefficients and higher-order Catalan numbers,

preprint, arXiv:0909.3808, 2009.

[70] Z.-W. Sun, Binomial coefficients, Catalan numbers and Lucas quotients , Sci. China Math. 53

(2010), 2473–2488.

[71] Z.-W. Sun, p-adic valuations of some sums of multinomial coefficients , Acta Arith. 148 (2011),

63–76.

[72] Z.-W. Sun, On congruences related to central binomial coefficients, J. Number Theory 131 (2011),

2219–2238.

[73] Z.-W. Sun, Arithmetic theory of harmonic numbers, Proc. Amer. Math. Soc. 140 (2012), 415–428.
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