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Abstract. In this survey I list some of my main results on the three

topics (covering systems, restricted sumsets and zero-sum problems).

1. On Covering Systems

Let M be an additive abelian group. A triple 〈λ, a, n〉 with λ ∈M, n ∈
Z+ = {1, 2, 3, · · · } and a ∈ R(n) = {0, 1, . . . , n− 1}, can be viewed as the
residue class

a(n) = a+ nZ = {a+ nx : x ∈ Z} (1.1)

associated with weight λ. For systems A = {〈λs, as, ns〉}k
s=1 and B =

{〈µt, at,mt〉}l
t=1 of such triples, if∑

16s6k
x∈as(ns)

λs =
∑

16t6l
x∈bt(mt)

µt for all x ∈ Z,

then we say that A is (covering) equivalent to B and write A ∼ B for this.
A map f :

⋃
n∈Z+ Z/nZ →M is said to be equivalent if

n−1∑
j=0

f(a+ jd+ ndZ) = f(a+ dZ) for any a ∈ Z and d, n ∈ Z+. (1.2)

We use E(M) to denote the set of such equivalent maps.
The following fundamental theorem on covering equivalence was first

announced in [Z. W. Sun, Adv. in Math. (China) 18(1989)] (with a
complete proof submitted for reviews) and then proved in [Z. W. Sun, J.
Algebra 240(2001)] with great details.
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Theorem 1.1 (Sun, 1989). For any function f :
⋃

n∈Z+ Z/nZ → C, the
following statements are equivalent:

(a) Whenever A = {〈λs, as, ns〉}k
s=1 and B = {〈µt, bt,mt〉}l

t=1 are equiv-
alent with λs, µt ∈ C, we have the equality

k∑
s=1

λsf(as + nsZ) =
l∑

t=1

µtf(bt +mtZ). (1.3)

(b) f is an equivalent function, i.e., f ∈ E(C).
(c) f has the following form:

f(a+ nZ) =
1
n

n−1∑
m=0

ψ
(m
n

)
e2πi m

n a (a ∈ Z and n ∈ Z+) (1.4)

where ψ is a function from Q ∩ [0, 1) to C.

Remark 1.1. Let M be an additive abelian group. A map F to M with
Dom(F ) ⊆ C × C is said to be uniform if for any 〈x, y〉 ∈ Dom(F ) and
n ∈ Z+ we have {〈(x+ r)/n, ny〉: r ∈ R(n)} ⊆ Dom(F ) and

n−1∑
r=0

F

(
x+ r

n
, ny

)
= F (x, y). (1.5)

If F is uniform, then for any 〈x, y〉 ∈ Dom(F ) the function f(a + nZ) =
F ((x + a)/n, ny) (a ∈ R(n)) is equivalent. Conversely, if f ∈ E(M) then
the function F (x, y) = f(xy + yZ) (where 〈x, y〉 ∈ Dom(F ) if y ∈ Z+ and
xy ∈ Z) is uniform. In view of this, the equivalence of (a) and (b) was
proved in [Z. W. Sun, Nanjing Univ. J. Math. Biquarterly 6(1989)] via
uniform functions introduced there. In 1989 Sun also pointed out several
examples of uniform functions such as bxc and ym−1Bm(x) with M = C,
and 2 sinπx and Γ∗(x, y) = Γ(x)yx−1/2/

√
2π with M = C∗ = C \ {0}.

(Thus J. Beebee [Proc. Amer. Math. Soc. 112(1991), 120(1994)] partly
repeated Sun’s earlier work.) For more uniform functions see [Z. W. Sun,
Acta Arith. 97(2001)] and [Z. W. Sun, On covering equivalence, 2002].
When F (x, y) = g(x)h(y), the equation (1.5) yields the so-called general-
ized Kubert identity which has been investigated by many mathematicians.

Theorem 1.2 (Local-Global Theorem). (i) [Sun, Acta Arith. 72(1995);
Trans. Amer. Math. Soc. 348(1996)] Let A = {as(ns)}k

s=1 and let
m1, . . . ,mk ∈ Z be relatively prime to n1, . . . , nk respectively. Then A
covers all the integers at least m times if it cover |S| consecutive integers
at least m times, where

S =
{{ ∑

s∈I

ms

ns

}
: I ⊆ [1, k] = {1, . . . , k}

}
(1.6)
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and {α} denotes the fractional part of real number α.
(ii) [Z. W. Sun, arXiv:math.NT/0404137; Math. Res. Lett. 11(2004)]

Let ψ1, . . . , ψk be maps from Z to an abelian group with respective periods
n1, . . . , nk ∈ Z+. Then ψ = ψ1 + · · · + ψk is constant if ψ(x) equals a
constant for |T | consecutive integers x where

T =
k⋃

s=1

{
r

ns
: r = 0, . . . , ns − 1

}
. (1.7)

In particular, A = {as(ns)}k
s=1 covers all the integers exactly m times if

it covers consecutive |T | integers exactly m times.

Remark 1.2. In the 1960’s P. Erdős conjectured that A = {as(ns)}k
s=1

forms a cover of Z if it covers integers from 1 to 2k. This was confirmed
by R. B. Crittenden and C. L. Vanden Eynden [Proc. Amer. Math. Soc.
24(1970)] in a very complicated way. Theorem 1.2 (i) is better than this
because |S| 6 2k depends on the moduli n1, . . . , nk rather than the number
of the moduli.

Theorem 1.3. Let A = {as(ns)}k
s=1 and w(x) =

∑
s∈Ix

λs, where λs ∈ C
and Ix = {1 6 s 6 k: x ∈ as(ns)}.

(i) [Z. W. Sun, Chin. Quart. J. Math. 6(1991)] Let n0 ∈ Z+ be the
smallest period of the function w(x). If d ∈ Z+ does not divide n0 and∑

16s6k
d|ns

λs/ns 6= 0, then

|{asmod d : 1 6 s 6 k & d | ns}| > min
06s6k

d-ns

d

(d, ns)
> p(d) (1.8)

where p(d) is the least prime divisor of d. In particular, if n1 6 · · · 6
nk−l < nk−l+1 = · · · = nk and nk - n0, then

l > min
06s6k−l

nk

(ns, nk)
> p(nk). (1.9)

(ii) [Z. W. Sun, J. Number Theory 111(2005), 190-196] Let n0 ∈ Z+ be
the smallest positive period of w(x) mod m ∈ Z. Suppose that d ∈ Z+ does
not divide n0 but I(d) = {1 6 s 6 k : d | ns} 6= ∅. If λ1, . . . , λk ∈ Z,
and m does not divide [n1, . . . , nk]

∑
s∈I(d) λs/ns, then (1.8) also holds.

Consequently, if k > 1 and n1, . . . , nk are distinct, then {|Ix| : x ∈ Z} is
not contained in any residue class with modulus greater one.

Remark 1.3. (i) Let A = {as(ns)}k
s=1 be an exact m-cover (i.e. A covers

every integer exactly m times) with n1 6 · · · 6 nk−l < nk−l+1 = · · · = nk.
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Then l > min16s6k−l nk/(ns, nk) by Theorem 1.3. This lower bound for
l is essentially the best one. In the case m = 1, l > 1 was proved by
H. Davenport, L. Mirsky, D. Newman and R. Radó, and the inequality
l > p(nk) was first conjectured by Š. Znám (1969) and then confirmed
by M. Newman [Math. Ann. 191(1971)]. A n-dimensional version of
Theorem 1.3(i) was given by Z. W. Sun [Math. Res. Lett. 11(2004)].

(ii) Let A = {as(ns)}k
s=1 be a cover of Z with 1 < n1 < · · · < nk. By

Theorem 1.3(ii), A cannot cover every integer an odd number of times. It
is interesting to compare this with a famous conjecture of P. Erdős and J.
L. Selfridge which asserts that n1, . . . , nk cannot be all odd.

Theorem 1.4 [Z. W. Sun, arXiv:math.NT/0403271]. Let {as(ns)}k
s=0

cover every integer more than m = b
∑k

s=1 1/nsc times, where bαc denotes
the greatest integer not exceeding real number α.

(i) For any a = 0, 1, 2, · · · we have∣∣∣∣{I ⊆ [1, k]:
∑
s∈I

1
ns

=
a

n0

}∣∣∣∣ >

(
m

ba/n0c

)
. (1.10)

(ii) Assume that J ⊆ [1, k] and{ k∑
s=0

1
ns

}
<

{ ∑
s∈J

1
ns

}
<

1
n0
. (1.11)

Then there is an I ⊆ [1, k] with I 6= J such that
∑

s∈I 1/ns =
∑

s∈J 1/ns.

Remark 1.4. If {as(ns)}k
s=0 is an exact m-cover of Z, then

∑k
s=0 1/ns = m

and so b
∑k

s=1 1/nsc = m − 1. In this case Theorem 1.4(i) gives Result I
in Section 1 of [Z. W. Sun, Acta Arith 81(1997)]. Theorem 1.4 has the
following consequence (which was proved in [Z. W. Sun, Israel J. Math.
77(1992); Acta Arith. 72(1995)] for exact m-covers): Suppose that A =
{as(ns)}k

s=1 covers every integer at least m = b
∑k

s=1 1/nsc times. Then
for any n = 0, 1, . . . ,m we have∣∣∣∣{I ⊆ [1, k]:

∑
s∈I

1
ns

= n

}∣∣∣∣ >

(
m

n

)
. (1.12)

Also, for any J ⊆ [1, k] with {
∑

s∈J 1/ns}+ {
∑

s 6∈J 1/ns} > 1 there exists
an I ⊆ [1, k] with I 6= J such that

∑
s∈I 1/ns =

∑
s∈J 1/ns.

Theorem 1.5. Let A = {as(ns)}k
s=1 be an m-cover of Z (i.e. it covers

every integer at least m times), and let m1, . . . ,mk be any positive integers.
(i) [Z. W. Sun, Trans. Amer. Math. Soc. 348(1996)] There are at least

m positive integers in the form
∑

s∈I ms/ns with I ⊆ [1, k].
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(ii) [Z. W. Sun, Proc. Amer. Math. Soc. 127(1999] For any J ⊆ [1, k]
we have∣∣∣∣{I ⊆ [1, k] : I 6= J &

∑
s∈I

ms

ns
−

∑
s∈J

ms

ns
∈ Z

}∣∣∣∣ > m. (1.13)

(iii) [Z. W. Sun, Electron. Res. Announc. Amer. Math. Soc. 9(2003)]
If m is a prime power, then for any J ⊆ [1, k] there is an I ⊆ [1, k] with
I 6= J such that

∑
s∈I ms/ns −

∑
s∈J ms/ns ∈ mZ.

(iv) [Z. W. Sun, Trans. Amer. Math. Soc. 348(1996)] If n1 6 · · · 6
nk−l < nk−l+1 = · · · = nk, then either

∑k−l
s=1 1/ns > m or l > nk/nk−l.

Remark 1.5. Parts (i)–(iii) are different extensions of the following result of
M. Z. Zhang (1989): If A = {as(ns)}k

s=1 is a cover of Z then
∑

s∈I 1/ns ∈
Z+ for some I ⊆ [1, k]. We conjecture that the condition in part (iii) of
Theorem 1.5 is unnecessary. Part (iv) in the case l = 1 is stronger than
the Davenport-Mirsky-Newman-Radó result.

Theorem 1.6. Let A = {as(ns)}k
s=1 be an m-cover of Z with ak(nk)

irredundant.
(i) [Z. W. Sun, Proc. AMS 127(1999); arXiv:math.NT/0305369] Let

m1, . . . ,mk−1 be positive integers relatively prime to n1, . . . , nk−1 respec-
tively. Then there is an α ∈ [0, 1) such that for any r = 0, 1, . . . , nk − 1
we have∣∣∣∣{⌊ ∑

s∈I

ms

ns

⌋
: I ⊆ [1, k − 1] and

{ ∑
s∈I

ms

ns

}
=
α+ r

nk

}∣∣∣∣ > m. (1.14)

(ii) [Z. W. Sun, arXiv:math.NT/0411305] If nk is a period of the cov-
ering function w(x) = |{1 6 s 6 k : x ≡ as (mod ns)}|, then for any
r = 0, 1, . . . , nk − 1 we have∣∣∣∣{⌊ ∑

s∈I

1
ns

⌋
: I ⊆ [1, k − 1] and

{ ∑
s∈I

1
ns

}
=

r

nk

}∣∣∣∣ > m. (1.15)

Remark 1.6. We don’t think that the condition in part (ii) can be cancelled.

Theorem 1.7 [Z. W. Sun, J. Number Theory 111(2005)]. If systems A =
{as(ns)}k

s=1 and B = {bt(mt)}l
t=1 both have distinct moduli, and

|{1 6 s 6 k : x ∈ as(ns)}| ≡ |{1 6 t 6 l : x ∈ bt(mt)}| (mod m)

for all x ∈ Z where m is an integer not dividing [n1, . . . , nk,m1, . . . ,ml],
then systems A and B are identical.
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Remark 1.7. In the case m = 0, this uniqueness theorem was proved
by Stein [Math. Ann. 1958] under the condition that both A and B are
disjoint, later Znám [Acta Arith. 26(1975)] cancelled the disjoint condition
given by Stein.

Let H be a subnormal subgroup of a group G with finite index, and

H0 = H ⊂ H1 ⊂ · · · ⊂ Hn = G

be a composition series from H to G (i.e. Hi is maximal normal in Hi+1

for each 0 6 i < n). If the length n is zero (i.e. H = G), then we set
d(G,H) = 0, otherwise we put

d(G,H) =
n−1∑
i=0

([Hi+1 : Hi]− 1). (1.16)

By the Jordan–Hölder theorem, d(G,H) does not depend on the choice
of the composition series from H to G. It is known that d(G,H) >∑r

t=1 αt(pt − 1) if [G : H] has the standard factorization
∏r

t=1 p
αt
t .

Theorem 1.8 [Z. W. Sun, Fund. Math. 134(1990); European J. Combin.
22(2001)]. Let G be a group, and let {aiGi}k

i=1 be an exact m-cover of G
(by left cosets) with all the Gi subnormal in G. Then [G :

⋂k
i=1Gi] < ∞

and

k > m+ d

(
G,

k⋂
i=1

Gi

)
(1.17)

where the lower bound can be attained. Moreover, for any subgroup K of
G not contained in all the Gi we have

|{1 6 i 6 k : K 6⊆ Gi}| > 1 + d

(
K,K ∩

k⋂
i=1

Gi

)
. (1.18)

Remark 1.8. In the case m = 1, the first part was first conjectured by
Š. Znám (1968) for the cyclic group Z. I. Korec [Fund. Math. 85(1974)]
proved the first part of Theorem 1.8 in the case where m = 1 and all the
Gi are normal in G.

Theorem 1.9 [G. Lettl & Z. W. Sun, 2004, arXiv:math.GR/0411144].
Let G be an abelian group and {aiGi}k

i=1 be an m-cover of G with akGk

irredundant. Then we have k > m+ f([G : Gk]), where

f(pα1
1 · · · pαr

r ) =
r∑

t=1

αt(pt − 1)
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if p1, . . . , pr are distinct primes and α1, . . . , αr ∈ N.

Remark 1.9. Theorem 1.9 for disjoint covers was first conjectured by J.
Mycielski (cf. [Fund. Math. 58(1966)]), it was confirmed by Znám [Colloq.
Math. 15(1966)] in the case G = Z and by Korec [Fund. Math. 85(1974)]
for general abelian groups. In the case m = 1 and Gk = {e}, Theorem 1.9
was ever conjectured by W. D. Gao and A. Geroldinger in 2003.

Theorem 1.10 [Z. W. Sun and M. H. Le, Acta Arith. 99(2001)]. The
only solutions of the diophantine equation

22n

− 1 = 2a + 2b + pα (1.19)

with n, a, b, α ∈ N, a > b and p being a prime, are as follows:

222
− 1 = 22 + 2 + 32 = 23 + 22 + 3 = 23 + 2 + 5,

223
− 1 = 23 + 22 + 35 = 27 + 2 + 53.

Remark 1.10. In the 1960s A. Schinzel and R. Crocker proved that for
each n = 3, 4, · · · the number 22n − 1 cannot be written as the sum of a
prime and two distinct powers of 2. Crocker [Pacific J. Math. 36(1971)]
also showed that there are infinitely many positive odd integers not in the
form p+ 2a + 2b where a, b ∈ N and p is a prime.

Theorem 1.11 [Z. W. Sun, Proc. Amer. Math. Soc. 128(2000)]. Let M
denote the 26-digit prime 47867742232066880047611079, and let

P = {2, 3, 5, 7, 11, 13, 17, 19, 31, 37, 41, 61, 73, 97, 109, 151, 241, 257, 331}.
Then any integer x in the residue class M(

∏
p∈P p) cannot be written in

the form ±pa ± qb where p, q are primes, a, b ∈ N and any choice of signs
may be made.

Remark 1.11. F. Cohen and J. L. Selfridge [Math. Comput. 29(1975)]
observed that the 26-digit prime M plus or minus a power of 2 can never
be a prime. M might be the smallest positive integer which cannot be
the sum or difference of two prime powers. The exact value of

∏
p∈P p is

66483084961588510124010691590 (which was replaced by a wrong value in
the paper of Sun.)

Theorem 1.12 [Z. W. Sun, Combinatorica 23(2003)]. Let {as(ns)}k
s=1

be a finite system of residue classes. Then maxx∈Z w(x) =
∑k

s=1ms/ns

for some m1, . . . ,mk ∈ Z+, where w(x) = |{1 6 s 6 k: x ∈ as(ns)}|.
If n0 ∈ Z+ is a period of the periodic function w(x), then for any r =
0, 1, . . . , nk/(n0, nk)− 1 there is an I ⊆ {1, . . . , k − 1} with

∑
s∈I 1/ns =

r/nk.

Remark 1.12. In the case n0 = 1, the latter part was first proved in [Z. W.
Sun, Acta Arith. 81(1997)].
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Theorem 1.13 [Z. W. Sun, J. Algebra 273(2004)]. Let G be any group
and G1, . . . , Gk be subnormal subgroups of G not all equal to G. If A =
{aiGi}k

i=1 (where ai ∈ G) covers all the elements of G with the same
multiplicity, then M = max16j6k |{1 6 i 6 k: ni = nj}| is not less than
the smallest prime divisor of n1 · · ·nk where ni is the finite index [G : Gi],
moreover

min
16i6k

log ni 6
eγ

log 2
M log2M +O(M logM log logM)

where γ = 0.577 · · · is the Euler constant and the O-constant is absolute.

Remark 1.13. In 1974 Herzog and Schönheim [Canad. Math. Bull.] con-
jectured that if {aiGi}k

i=1 (1 < k <∞) is a partition of a group G into left
cosets then the (finite) indices n1 = [G : G1], . . . , nk = [G : Gk] cannot
be pairwise distinct. In the case G = Z this reduces to a conjecture of P.
Erdős confirmed by Davenport, Mirsky, Newman and Rado.

2. On Restricted Sumsets

The additive order of the identity of a field F is either infinite or a
prime, we call it the characteristic of F .

Let F be a field of characteristic p, and let A1, . . . , An be finite subsets
of F with 0 < k1 = |A1| 6 · · · 6 kn = |An|. Concerning various restricted
sumsets of A1, . . . , An, there are following known results:

(i) (The Cauchy-Davenport theorem)

|{a1 · · ·+ an: a1 ∈ A1, . . . , an ∈ An}| > min{p, k1 + · · ·+ kn − n+ 1}.

(ii) (Dias da Silva and Hamidoune [Bull. London Math. Soc. 26(1994)])
If A1 = · · · = An = A, then

|{a1 + · · ·+ an: ai ∈ A, a1, . . . , an are distinct}| > min{p, n|A| − n2 + 1}.

(iii) (Alon, Nathanson and Ruzsa [J. Number Theory 56(1996)]) If k1 <
· · · < kn, then

|{a1+· · ·+an: ai ∈ Ai, ai 6= aj if i 6= j}| > min
{
p,

n∑
i=1

ki−
n(n+ 1)

2
+1

}
.

(iv) (Hou and Sun [Acta Arith. 102(2002)]) Let Sij (1 6 i, j 6 n, i 6= j)
be finite subsets of F with cardinality m. If k1 = · · · = kn = k and
p > max{ln,mn} where l = k − 1−m(n− 1), then

|{a1 + · · ·+ an: ai ∈ Ai, ai − aj 6∈ Sij if i 6= j}| > ln+ 1.
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(v) (Liu and Sun [J. Number Theory 97(2002)]) Let P1(x), . . . , Pn(x) ∈
F [x] be monic and of degree m > 0. If kn > m(n− 1), ki+1 − ki ∈ {0, 1}
for all i = 1, . . . , n−1, and p > K = (kn−1)n− (m+1)

(
n
2

)
, then we have

|{a1 + · · ·+ an: ai ∈ Ai, Pi(ai) 6= Pj(aj) if i 6= j}| > K + 1.

(vi) (Z.-W. Sun [J. Combin. Theory Ser. A, 103(2003), 291-304]) Let
P1(x), . . . , Pn(x) ∈ F [x] have degree m > 0 with the permanent of the
matrix (bi−1

j )16i,j6n nonzero, where bj is the leading coefficient of Pj(x).
If k1 = · · · = kn = k > m(n− 1) and K = (k− 1)n− (m+1)

(
n
2

)
< p, then

|{a1 + · · ·+ an: ai ∈ Ai, ai 6= aj , Pi(ai) 6= Pj(aj) if i 6= j}| > K + 1.

H. S. Snevily [Amer. Math. Monthly 106(1999)] posed the following
conjecture.

Snevily’s Conjecture. Let G be an additive abelian group with |G| odd.
Let A and B be subsets of G with cardinality n > 0. Then there is a
numbering {ai}n

i=1 of the elements of A and a numbering {bi}n
i=1 of the

elements of B such that a1 + b1, . . . , an + bn are pairwise distinct.

Using the polynomial method of Alon, Nathanson and Ruzsa [J. Num-
ber Theory 56(1996)], Alon [Israel J. Math. 117(2000)] proved that the
above conjecture holds when |G| is an odd prime. In 2001 Dasgupta,
Károlyi, Serra and Szegedy [Israel J. Math. 126(2001)] confirmed Snevily’s
conjecture for any cyclic group with odd order.

Theorem 2.1 [Z. W. Sun, J. Combin. Theory Ser. A, 103(2003)]. Let
G be an additive abelian group whose finite subgroups are all cyclic. Let
A1, . . . , An (n > 1) be finite subsets of G with cardinality k > n, and let
b1, . . . , bn be elements of G. Let m be any positive integer not exceeding
(k − 1)/(n− 1).

(i) If b1, . . . , bn are pairwise distinct, then there are at least (k− 1)n−
m

(
n
2

)
+ 1 multisets {a1, . . . , an} such that ai ∈ Ai for i = 1, . . . , n and all

the mai + bi are pairwise distinct.
(ii) The sets

{{a1, . . . , an}: ai ∈ Ai, ai 6= aj and mai + bi 6= maj + bj if i 6= j} (2.1)

and

{{a1, . . . , an}: ai ∈ Ai, mai 6= maj and ai + bi 6= aj + bj if i 6= j} (2.2)

have more than (k − 1)n − (m + 1)
(
n
2

)
> (m − 1)

(
n
2

)
elements, provided

that b1, . . . , bn are pairwise distinct and of odd order, or they have finite
order and n! cannot be written in the form

∑
p∈P pxp where all the xp are
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nonnegative integers and P is the set of primes dividing one of the orders
of b1, . . . , bn.

Remark 2.1. When G is a cyclic group with |G| being odd or a prime
power, Theorem 2.1 (ii) in the case k = n and m = 1, yields Theorems 1
and 2 of Dasgupta, Károlyi, Serra and Szegedy [Israel J. Math. 126(2001)]
respectively. In our opinion, the condition that all finite subgroups of G
are cyclic might be omitted from Theorem 2.1.

The polynomial method of Alon-Nathanson-Ruzsa was rooted in [Alon
and Tarsi, Combinatorica 9(1989)] where the following elegant theorem
was proved.

Theorem 2.2 [Alon and Tarsi, 1989]. Let F be a finite field with |F |
not being a prime, and let M be a nonsingular k by k matrix over F .
Then there exists a vector ~x ∈ F k such that both ~x and M~x have no zero
component.

We extend this result as follows.

Theorem 2.3 [Z. W. Sun, Electron. Res. Announc. Amer. Math. Soc.
9(2003)]. Assume that A = {as(ns)}k

s=1 doesn’t form an m + 1-cover of
Z but A′ = {a1(n1), . . . , ak(nk), a(n)} does where a ∈ Z and n ∈ Z+. Let
m1, . . . ,mk be integers relatively prime to n1, . . . , nk respectively. Let F
be a field of prime characteristic p, and let aij , bi ∈ F for all i ∈ [1,m]
and j ∈ [1, k]. Set

X =
{ k∑

j=1

xj : xj ∈ [0, p− 1] and
k∑

j=1

xjaij 6= bi for all i ∈ [1,m]
}
. (2.3)

If p does not divide n1, . . . , nk and the matrix (aij)16i6m,16j6k has rank
m, then the set {{ ∑

s∈I

ms

ns

}
: I ⊆ [1, k] and |I| ∈ X

}
(2.4)

contains an arithmetic progression of length n with common difference 1/n.

3. On Zero-sum Problems

Theorem 3.1. Let n be any positive integer.
(i) [Erdős, Ginzburg and Ziv, Bull. Research Council Israel 10(1961)]

For any c1, . . . , c2n−1 ∈ Z, there is an I ⊆ [1, 2n − 1] with |I| = n such
that

∑
s∈I cs ≡ 0 (mod n).

(ii) [Z. W. Sun, Electron. Res. Announc. Amer. Math. Soc. 9(2003)]
Let A = {as(ns)}k

s=1 and {wA(x): x ∈ Z} ⊆ {2n − 1, 2n} where wA(x) =
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{1 6 s 6 k: x ∈ as(ns)}. If n is a prime power, then for any c1, . . . , ck ∈ Z
there is an I ⊆ [1, k] such that

∑
s∈I 1/ns = n and

∑
s∈I cs ≡ 0 (mod n).

Remark 3.1. Part (ii) is an extension of part (i) in the case where n is a
prime power, for, a system of 2n − 1 copies of 0(1) covers every integer
exactly 2n− 1 times.

For a finite abelian group G (written additively), the Davenport con-
stant D(G) is defined as the smallest positive integer k such that any
sequence {cs}k

s=1 (repetition allowed) of elements of G has a subsequence
ci1 , . . . , cil

(i1 < · · · < il) with zero-sum (i.e. ci1 + · · · + cil
= 0). In

1966 Davenport showed that if K is an algebraic number field with ideal
class group G, then D(G) is the maximal number of prime ideals (counting
multiplicity) in the decomposition of an irreducible integer in K.

For a prime p and an abelian p-group G, if G ∼= Zph1 ⊕ · · · ⊕ Zphl

where h1, . . . , hl ∈ Z+, then we define L(G) = 1 +
∑l

t=1(p
ht − 1). When

|G| = p0 = 1, we simply let L(G) = 1.

Theorem 3.2 [Olson, J. Number Theory 1(1969)]. Let p be a prime and
let G be an additive abelian p-group. Then D(G) = L(G). Moreover, given
c, c1, . . . , cL(G) ∈ G we have∑

I⊆[1,L(G)]∑
s∈I cs=c

(−1)|I| ≡ 0 (mod p). (3.1)

Remark 3.2. Let p be a prime. Clearly the additive group of the finite
field with pl elements is isomorphic to Zl

p, the direct sum of l copies of
the ring Zp. In 1996 Gao [J. Number Theory 56(1996)] proved that if
c, c1, . . . , c2p−1 ∈ Zp then∣∣∣∣{I ⊆ [1, 2p− 1]: |I| = p and

∑
s∈I

cs = c

}∣∣∣∣ ≡ [c = 0] (mod p),

where for a predicate P we let [P ] be 1 or 0 according to whether P holds
or not. Note that Gao’s result can be written as∑

I⊆[1,L(Z2
p)]

p||I|,
∑

s∈I cs=c

(−1)|I| ≡ 0 (mod p),

which clearly follows from Olson’s congruence (3.1) in the case G = Z2
p.

Olson obtained the above result by the knowledge of group rings. With-
out using group-rings, Z. W. Sun proved the following stronger result.
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Theorem 3.3 [Z. W. Sun, 2003, arXiv:math.NT/0305369]. Let p be a
prime, h1, . . . , hl ∈ Z+ and k =

∑l
t=1(p

ht − 1). Let cst, ct ∈ Z for all
s ∈ [1, k] and t ∈ [1, l]. Then∑

I⊆[1,k]

pht |
∑

s∈I cst−ct for t∈[1,l]

(−1)|I|

≡
∑

I1∪···∪Il=[1,k]

|It|=pht−1 for t∈[1,l]

l∏
t=1

∏
s∈It

cst (mod p).
(3.2)

Remark 3.3. Theorem 3.3 implies Theorem 3.2, for, under the condition
of Theorem 3.3 we have∑

I⊆[1,k]

pht |
∑

s∈I cst−ct

for all t∈[1,l]

(−1)|I| ≡
∑

I⊆[1,k]

pht |
∑

s∈I cst+c0t−ct

for all t∈[1,l]

(−1)|I| (mod p)

where c01, . . . , c0l are any integers. By Theorem 3.3 in the case l = 1, if
c, c1, . . . , cph−1 ∈ Z, then∑

I⊆[1,ph−1]

ph|
∑

s∈I cs−c

(−1)|I| ≡ c1 · · · cph−1 (mod p). (3.3)

Theorem 3.4. Let q be a prime power.
(i) [Alon and Dubiner, 1993] If c1, . . . , c3q ∈ Z2

q and c1 + · · ·+ c3q = 0,
then there is an I ⊆ [1, k] with |I| = q and

∑
s∈I cs = 0.

(ii) [Z. W. Sun, 2003, arXiv:math.NT/0305369] If A = {as(ns)}k
s=1

covers every integer exactly 3q times, then for any c1, . . . , ck ∈ Z2
q with

c1 + · · · + ck = 0, there exists an I ⊆ [1, k] such that
∑

s∈I 1/ns = q and∑
s∈I cs = 0.

Remark 3.4. Part (i) of Theorem 3.4 follows from the second part in the
case n1 = · · · = nk = 1.

Theorem 3.5 [Z. W. Sun, Electron. Res. Announc. Amer. Math. Soc.
9(2003)]. Let G be an additive abelian p-group where p is a prime. Suppose
that A = {as(ns)}k

s=1 covers every integer at least L(G) + ph − 1 times
where h ∈ N. Let m1, . . . ,mk ∈ Z and c1, . . . , ck ∈ G. Then for any
c ∈ G and α ∈ Q we have∑

I⊆[1,k]∑
s∈I cs=c∑

s∈I ms/ns∈α+phZ

(−1)|I|e2πi
∑

s∈I asms/ns ≡ 0 (mod p). (3.4)
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In particular, there is a nonempty I ⊆ [1, k] such that
∑

s∈I cs = 0 and∑
s∈I ms/ns ∈ phZ.

Remark 3.5. Since a system of k copies of 0(1) forms a k-cover of Z,
Olson’s Theorem 3.2 follows from Theorem 3.4 in the case h = 0 and
n1 = · · · = nk = 1.


