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ABSTRACT. In this survey I list some of my main results on the three
topics (covering systems, restricted sumsets and zero-sum problems).

1. ON COVERING SYSTEMS

Let M be an additive abelian group. A triple (\,a,n) with A € M, n €
7zt ={1,2,3,---}and a € R(n) ={0,1,... ,n — 1}, can be viewed as the
residue class

an)=a+nZ={a+nx:x €’} (1.1)

associated with weight . For systems A = {(\,,as,ns)}*_; and B =
{{ps, as,m¢) Yo, of such triples, if

Z Asg = Z e forall x € Z,

1<s<k 1<t<l
r€as(ng) x€bs(Mmy)

then we say that A is (covering) equivalent to B and write A ~ B for this.
A map f:U,ecp+ Z/nZ — M is said to be equivalent if

n—1

> fla+jd+ndZ) = f(a+dZ) foranya€ZanddneZ". (12)
=0

We use E(M) to denote the set of such equivalent maps.

The following fundamental theorem on covering equivalence was first
announced in [Z. W. Sun, Adv. in Math. (China) 18(1989)] (with a
complete proof submitted for reviews) and then proved in [Z. W. Sun, J.
Algebra 240(2001)] with great details.
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Theorem 1.1 (Sun, 1989). For any function f : J, cz+ Z/nZ — C, the
following statements are equivalent:

(a) Whenever A = {{\s,as,ns)}r_; and B = {{ps, by, m¢) Yoy are equiv-
alent with \g, puy € C, we have the equalzty

k

l
> Nflas +nsZ) =Y pef (b + miZ). (1.3)

s=1

(b) f is an equivalent function, i.e., f € E(C).
(¢) f has the following form:

fla+nZ) Z P ( ) ¥ 5w (a€Z andn € ZT) (1.4)

where 1 is a function from QN [0,1) to C.

Remark 1.1. Let M be an additive abelian group. A map F to M with
Dom(F) C C x C is said to be uniform if for any (z,y) € Dom(F') and
n € Z* we have {{(x +r)/n,ny): r € R(n)} C Dom(F') and

nle (x;tr,ny) = F(z,y). (1.5)

If F' is uniform, then for any (z,y) € Dom(F') the function f(a + nZ) =
F((z +a)/n,ny) (a € R(n)) is equivalent. Conversely, if f € E(M) then
the function F(x,y) = f(zy + yZ) (where (x,y) € Dom(F) if y € Z* and
xy € Z) is uniform. In view of this, the equivalence of (a) and (b) was
proved in [Z. W. Sun, Nanjing Univ. J. Math. Biquarterly 6(1989)] via
uniform functions introduced there. In 1989 Sun also pointed out several
examples of uniform functions such as |x] and y™ 1 B,,(z) with M = C,
and 2sin7z and T*(z,y) = ['(x)y*"'/2/v/2r with M = C* = C\ {0}.
(Thus J. Beebee [Proc. Amer. Math. Soc. 112(1991), 120(1994)] partly
repeated Sun’s earlier work.) For more uniform functions see [Z. W. Sun,
Acta Arith. 97(2001)] and [Z. W. Sun, On covering equivalence, 2002].
When F(z,y) = g(z)h(y), the equation (1.5) yields the so-called general-
ized Kubert identity which has been investigated by many mathematicians.

Theorem 1.2 (Local-Global Theorem). (i) [Sun, Acta Arith. 72(1995);
Trans. Amer. Math. Soc. 348(1996)] Let A = {as(ns)}*_, and let
mi,... ,mg € Z be relatively prime to ny,... ,ng respectively. Then A
covers all the integers at least m times if it cover |S| consecutive integers
at least m times, where

=i

sel %

}:Ig [1,k] = {1,... ,k:}} (1.6)
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and {a} denotes the fractional part of real number c.

(ii) [Z. W. Sun, arXiv:math.NT/0404137; Math. Res. Lett. 11(2004)]
Let W, ... 9 be maps from Z to an abelian group with respective periods
Ni,... ,ng € ZY. Then ¥ = 1 + -+ + 1y, is constant if ¥ (x) equals a
constant for |T| consecutive integers x where

k
r
T:U{n—s:r:O,...,ns—l}. (1.7)
s=1

In particular, A = {as(ns)}X_, covers all the integers exactly m times if
it covers consecutive |T| integers exactly m times.

Remark 1.2. In the 1960’s P. Erdés conjectured that A = {as(ns)}r_,
forms a cover of Z if it covers integers from 1 to 2*. This was confirmed
by R. B. Crittenden and C. L. Vanden Eynden [Proc. Amer. Math. Soc.
24(1970)] in a very complicated way. Theorem 1.2 (i) is better than this
because |S| < 2% depends on the moduli ny, . .. ,ny rather than the number
of the moduli.

Theorem 1.3. Let A = {as(ns)}f_; and w(z) =
and I, ={1 <s< k:z € as(ng)}.

(i) [Z. W. Sun, Chin. Quart. J. Math. 6(1991)] Let no € Z™* be the
smallest period of the function w(x). If d € Zt does not divide ny and
Zlgsgk )\S/ns 7& 0, then

As, where A € C

sel,

d|ns
K dd:1<s<k&d|ns}| > mi d > p(d) (1.8)
asmod d:1<s< ne |l > Oglgk dny > D .
dins
where p(d) is the least prime divisor of d. In particular, if ny < -+ <
Ny < Ng—i4+1 = -+ = ng and ni { ng, then
[> min —% > plng). (1.9)

=
0<s<k—1 (ng, ng)

(ii) [Z. W. Sun, J. Number Theory 111(2005), 190-196] Let ng € Z* be
the smallest positive period of w(x) mod m € Z. Suppose that d € Z does
not divide ng but I(d) = {1 < s < k:d|ns} #0. If \y,... , \x € Z,
and m does not divide [n1, ... ,nk] > crq) As/ns, then (1.8) also holds.
Consequently, if k > 1 and ny, ... ,ng are distinct, then {|I,| : © € Z} is
not contained in any residue class with modulus greater one.

Remark 1.3. (i) Let A = {as(ns)}*_; be an exact m-cover (i.e. A covers
every integer exactly m times) with ny < - <ngp—; < ng_i41 = -+ = ny.
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Then | > min;<s<k—1 i/ (ns,ni) by Theorem 1.3. This lower bound for
[ is essentially the best one. In the case m = 1, [ > 1 was proved by
H. Davenport, L. Mirsky, D. Newman and R. Radd, and the inequality
l > p(ny) was first conjectured by S. Znam (1969) and then confirmed
by M. Newman [Math. Ann. 191(1971)]. A n-dimensional version of
Theorem 1.3(i) was given by Z. W. Sun [Math. Res. Lett. 11(2004)].

(ii) Let A = {as(ns)}¥_; be a cover of Z with 1 < n; < --- < ng. By
Theorem 1.3(ii), A cannot cover every integer an odd number of times. It
is interesting to compare this with a famous conjecture of P. Erdés and J.
L. Selfridge which asserts that nq,... ,n; cannot be all odd.

Theorem 1.4 [Z. W. Sun, arXiv:math.NT/0403271]. Let {as(ns)}*_,

cover every integer more than m = LZ§:1 1/ng| times, where |a| denotes
the greatest integer not exceeding real number .
(i) For any a =0,1,2,--- we have

e -2l () o

sel

(ii) Assume that J C [1,k] and

R R s B

s=0 sed

Then there is an I C [1,k] with I # J such that Y ., 1/ns =" ;1/ns.

Remark 1.4. If {as(ns)}*_, is an exact m-cover of Z, then Z’;:O 1/ng =m

and so Lzlgzl 1/ns| = m — 1. In this case Theorem 1.4(i) gives Result I
in Section 1 of [Z. W. Sun, Acta Arith 81(1997)]. Theorem 1.4 has the
following consequence (which was proved in [Z. W. Sun, Israel J. Math.
77(1992); Acta Arith. 72(1995)] for exact m-covers): Suppose that A =

{as(ns)}e_ covers every integer at least m = LZ§:1 1/ng| times. Then

for anyn=0,1,... ,m we have
m
= . 1.12
(") (1.12)

Hfg 1, k] ;ni:n}

Also, for any J C [1, k] with {3 c;1/ns}t +{3_.z;1/ns} > 1 there exists
an I C [1,k] with I # J such that Y _;1/ns = ;1/n,.

Theorem 1.5. Let A = {as(ns)}r_, be an m-cover of Z (i.e. it covers
every integer at least m times), and let my, ... ,my be any positive integers.

(i) [Z. W. Sun, Trans. Amer. Math. Soc. 348(1996)] There are at least
m positive integers in the form ) ., ms/ns with I C[1,k].
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(ii) [Z. W. Sun, Proc. Amer. Math. Soc. 127(1999] For any J C [1, k]
we have

ng[l,k]:l#J& Z%—Z%ez}‘>m. (1.13)
seJ

sel 8 s

(iii) [Z. W. Sun, Electron. Res. Announc. Amer. Math. Soc. 9(2003)]
If m is a prime power, then for any J C [1,k| there is an I C [1,k] with
I # J such that Y . mg/ns — Y c;ms/Ns € ML

(iv) [Z. W. Sun, Trans. Amer. Math. Soc. 348(1996)] If n; < --- <
Ngp—; < Ng—i+1 = - -+ = Nk, then either le;i 1/ng = morl > ng/ng_.

Remark 1.5. Parts (i)—(iii) are different extensions of the following result of
M. Z. Zhang (1989): If A = {as(ns)}*_, is a cover of Z then Y _ _,1/n, €
Z* for some I C [1,k]. We conjecture that the condition in part (iii) of
Theorem 1.5 is unnecessary. Part (iv) in the case [ = 1 is stronger than
the Davenport-Mirsky-Newman-Rado result.

Theorem 1.6. Let A = {as(ns)}*_; be an m-cover of Z with ap(ng)
wrredundant.

(i) [Z. W. Sun, Proc. AMS 127(1999); arXiv:math.NT/0305369] Let
mi,...,mg_1 be positive integers relatively prime to nq,... ,ng_1 respec-
tively. Then there is an o € [0,1) such that for any r = 0,1,... ;ng — 1
we have

HLZ%J:IQ[M—H and{Z&}: 04;;7“}' om (114)

n
sel 8 sel 8

(ii) [Z. W. Sun, arXiv:math.NT/0411305] If ny is a period of the cov-
ering function w(z) = {1 < s < k: x = a5 (mod ny)}|, then for any
r=0,1,... ,nr — 1 we have

([Sifrens-nm{S i} rYsm

sel

Remark 1.6. We don’t think that the condition in part (ii) can be cancelled.

Theorem 1.7 [Z. W. Sun, J. Number Theory 111(2005)]. If systems A =
{as(ns)}e_, and B = {bs(my)}L_, both have distinct moduli, and

Hl<s<k:ze€asnsg)}=|{1<t<l: z€b(my)} (mod m)

for all x € Z where m is an integer not dividing [ny,... ,ng,my,... ,my,
then systems A and B are identical.
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Remark 1.7. In the case m = 0, this uniqueness theorem was proved
by Stein [Math. Ann. 1958] under the condition that both A and B are
disjoint, later Znam [Acta Arith. 26(1975)] cancelled the disjoint condition
given by Stein.

Let H be a subnormal subgroup of a group GG with finite index, and
Hy=HCH,C---CH,=G

be a composition series from H to G (i.e. H; is maximal normal in H; 14
for each 0 < i < n). If the length n is zero (i.e. H = G), then we set
d(G, H) = 0, otherwise we put

n—1

d(G, H) = ([Hisr : Hi] - 1). (1.16)
=0

By the Jordan—-Hélder theorem, d(G, H) does not depend on the choice
of the composition series from H to G. It is known that d(G,H) >
Soi_yai(pe — 1) if [G : H] has the standard factorization [[;_, p;".

Theorem 1.8 [Z. W. Sun, Fund. Math. 134(1990); European J. Combin.

22(2001)]. Let G be a group, and let {a;G;}%_, be an exact m-cover of G
(by left cosets) with all the G; subnormal in G. Then |G : ﬂle Gi] < o

and i
k >m+d(G,ﬂGi> (1.17)
i=1
where the lower bound can be attained. Moreover, for any subgroup K of
G not contained in all the G; we have

k
\{1<i<k:K,@Gi}\>1+d(K,KﬂﬂGi). (1.18)

=1

Remark 1.8. In the case m = 1, the first part was first conjectured by
S. Znam (1968) for the cyclic group Z. I. Korec [Fund. Math. 85(1974)]
proved the first part of Theorem 1.8 in the case where m = 1 and all the
G, are normal in G.

Theorem 1.9 [G. Lettl & Z. W. Sun, 2004, arXiv:math.GR/0411144].
Let G be an abelian group and {aiGi}IZf“:l be an m-cover of G with apGy
irredundant. Then we have k > m + f([G : Gi|), where

F@S - pi) = aulpr — 1)
t=1
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if p1,...,pr are distinct primes and aq, ... ,q, € N.

Remark 1.9. Theorem 1.9 for disjoint covers was first conjectured by J.
Mycielski (cf. [Fund. Math. 58(1966)]), it was confirmed by Znam [Collog.
Math. 15(1966)] in the case G = Z and by Korec [Fund. Math. 85(1974)]
for general abelian groups. In the case m = 1 and Gy = {e}, Theorem 1.9
was ever conjectured by W. D. Gao and A. Geroldinger in 2003.

Theorem 1.10 [Z. W. Sun and M. H. Le, Acta Arith. 99(2001)]. The
only solutions of the diophantine equation
2% 1 =242 p (1.19)
with n,a,b,a € N, a > b and p being a prime, are as follows:
92 1=922492432=23492243=231245
92 1293422435297 42453

Remark 1.10. In the 1960s A. Schinzel and R. Crocker proved that for
each n = 3,4,--- the number 22" — 1 cannot be written as the sum of a
prime and two distinct powers of 2. Crocker [Pacific J. Math. 36(1971)]
also showed that there are infinitely many positive odd integers not in the
form p + 2% + 2 where a,b € N and p is a prime.

Theorem 1.11 [Z. W. Sun, Proc. Amer. Math. Soc. 128(2000)]. Let M
denote the 26-digit prime 47867742232066880047611079, and let

P=1{2,3,57,11,13,17,19,31,37,41,61,73,97,109, 151, 241, 257, 331}.
Then any integer x in the residue class M([],cpp) cannot be written in

the form +p® + ¢ where p,q are primes, a,b € N and any choice of signs
may be made.

Remark 1.11. F. Cohen and J. L. Selfridge [Math. Comput. 29(1975)]
observed that the 26-digit prime M plus or minus a power of 2 can never
be a prime. M might be the smallest positive integer which cannot be
the sum or difference of two prime powers. The exact value of Hpe ppis
66483084961588510124010691590 (which was replaced by a wrong value in
the paper of Sun.)

Theorem 1.12 [Z. W. Sun, Combinatorica 23(2003)]. Let {as(ns)}*_;
be a finite system of residue classes. Then max,cz w(x) = Z§:1 ms /Mg
for some my,... ,my € Z*, where w(z) = {1 < s < k: z € as(ns)}.
If ng € Z* is a period of the periodic function w(z), then for any r =
0,1,...,n%/(no,nk) — 1 there is an I C{1,... k= 1} with ) ., 1/n, =
r/ng.

Remark 1.12. In the case ng = 1, the latter part was first proved in [Z. W.
Sun, Acta Arith. 81(1997)].
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Theorem 1.13 [Z. W. Sun, J. Algebra 273(2004)]. Let G be any group
and G1,...,Gg be subnormal subgroups of G not all equal to G. If A =
{a;G;}r | (where a; € G) covers all the elements of G with the same
multiplicity, then M = maxi< <k {1 <@ < ki n; = n;}| is not less than
the smallest prime divisor of ny - - - ny where n; is the finite index [G : G;],
moreover

e’Y
in logn; < —— M log? M M log M log log M
1151& ogn og 2 og + O(M log M log log M)

where v = 0.577 - - - is the Euler constant and the O-constant is absolute.

Remark 1.13. In 1974 Herzog and Schénheim [Canad. Math. Bull.] con-
jectured that if {a;G;}¥_, (1 < k < 00) is a partition of a group G into left
cosets then the (finite) indices ny = [G : G1],... ,nx = [G : G| cannot
be pairwise distinct. In the case G = Z this reduces to a conjecture of P.
Erdés confirmed by Davenport, Mirsky, Newman and Rado.

2. ON RESTRICTED SUMSETS

The additive order of the identity of a field F' is either infinite or a
prime, we call it the characteristic of F.

Let F be a field of characteristic p, and let Aq,..., A, be finite subsets
of F with 0 < k1 = |A41] < -+ <k, = |A,|. Concerning various restricted
sumsets of Aq,..., A,, there are following known results:

(i) (The Cauchy-Davenport theorem)

{a1--+anar € Ay,... ,a, € A} > min{p, k1 + -+ kn —n+ 1}

(i) (Dias da Silva and Hamidoune [Bull. London Math. Soc. 26(1994)])
IfA,=.---=A, = A, then

a1+ +an:a; € A, a,...,a, are distinct}| > min{p, n|A| — n? + 1}.

(iii) (Alon, Nathanson and Ruzsa [J. Number Theory 56(1996)]) If k1 <
-+« < ky, then

. 1
|{a1+-~+an: a; € Ai, a; 7£ Qj if ¢ %j}‘ = min {p,Zkz—@—Fl}
i=1

(iv) (Hou and Sun [Acta Arith. 102(2002)]) Let S;; (1 <4,j <n, @
be finite subsets of F' with cardinality m. If &y = --- = k, = k and
p > max{ln,mn} where | =k —1 —m(n — 1), then

|{a1+--~+an:ai€Ai, ai—ajgsij 1fZ§£j}|>ln—|—1
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(v) (Liu and Sun [J. Number Theory 97(2002)]) Let Py (x),..., P, (z) €
F[z] be monic and of degree m > 0. If k,, > m(n —1), kj41 — k; € {0,1}
foralli=1,...,n—1,and p > K = (k, — 1)n— (m+1)(}), then we have

|{a1+---+an: a; € A, Pl(az) #Pj(aj) 1fl7éj}| > K+ 1.

(vi) (Z-W. Sun [J. Combin. Theory Ser. A, 103(2003), 291-304]) Let

Pi(z),...,Py(z) € Flz] have degree m > 0 with the permanent of the
matrix (b;._l)lgi?jgn nonzero, where b; is the leading coefficient of P;(x).
Ifky=--=k,=k>m(n—1)and K = (k—1)n— (m+1)(}) < p, then

|{a1+--~+an:a¢€Ai, az-;éaj, Pl(al)#Pj(a]) lfl#jHZK—l—l

H. S. Snevily [Amer. Math. Monthly 106(1999)] posed the following

conjecture.

Snevily’s Conjecture. Let G be an additive abelian group with |G| odd.
Let A and B be subsets of G with cardinality n > 0. Then there is a
numbering {a;}I_, of the elements of A and a numbering {b;}_, of the
elements of B such that a1 + by,... ,a, + b, are pairwise distinct.

Using the polynomial method of Alon, Nathanson and Ruzsa [J. Num-
ber Theory 56(1996)], Alon [Israel J. Math. 117(2000)] proved that the
above conjecture holds when |G| is an odd prime. In 2001 Dasgupta,
Karolyi, Serra and Szegedy [Israel J. Math. 126(2001)] confirmed Snevily’s
conjecture for any cyclic group with odd order.

Theorem 2.1 [Z. W. Sun, J. Combin. Theory Ser. A, 103(2003)]. Let
G be an additive abelian group whose finite subgroups are all cyclic. Let
Ai,... A, (n > 1) be finite subsets of G with cardinality k > n, and let
bi,...,b, be elements of G. Let m be any positive integer not exceeding

(k—1)/(n—1).

(i) If by,... , b, are pairwise distinct, then there are at least (k—1)n —
m(g) + 1 multisets {a1,... ,an} such that a; € A; fori=1,... ,n and all
the ma; + b; are pairwise distinct.

(ii) The sets

a1, ... ;an}:a; € A;, a; # a; and ma; +b; # ma; +b; if i # 5} (2.1)
and

Hai,... ;an}: a; € A, ma; # ma; and a; +b; # a; +b; if i # 35} (2.2)
have more than (k — 1)n — (m + 1)(5) > (m — 1)(}) elements, provided

that by, ... ,b, are pairwise distinct and of odd order, or they have finite
order and n! cannot be written in the form Zpeppxp where all the x,, are
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nonnegative integers and P is the set of primes dividing one of the orders
Ofbl,... ,bn.

Remark 2.1. When G is a cyclic group with |G| being odd or a prime
power, Theorem 2.1 (ii) in the case Kk = n and m = 1, yields Theorems 1
and 2 of Dasgupta, Kérolyi, Serra and Szegedy [Israel J. Math. 126(2001)]
respectively. In our opinion, the condition that all finite subgroups of G
are cyclic might be omitted from Theorem 2.1.

The polynomial method of Alon-Nathanson-Ruzsa was rooted in [Alon
and Tarsi, Combinatorica 9(1989)] where the following elegant theorem
was proved.

Theorem 2.2 [Alon and Tarsi, 1989]. Let F' be a finite field with |F|
not being a prime, and let M be a nonsingular k by k matriz over F'.
Then there exists a vector £ € F* such that both ¥ and MZ have no zero
component.

We extend this result as follows.

Theorem 2.3 [Z. W. Sun, Electron. Res. Announc. Amer. Math. Soc.
9(2003)]. Assume that A = {as(ns)}e_, doesn’t form an m + 1-cover of
Z but A" = {a1(n1),...,ax(ng),a(n)} does where a € Z and n € Z*. Let
my,...,myg be integers relatively prime to nq,... ,ng respectively. Let F
be a field of prime characteristic p, and let a;;,b; € F for all i € [1,m)]
and j € [1,k|. Set

k k
X = {ij: zj €[0,p—1] and ijaij #b; for alli e [1,m]}. (2.3)

j=1 j=1

If p does not divide ni, ... ,ny and the matriz (a;;)1<i<m,1<j<k has rank
m, then the set

{{;%}:Ig[l,k] and |I|6X} (2.4)

nS
contains an arithmetic progression of length n with common difference 1/n.

3. ON ZERO-SUM PROBLEMS

Theorem 3.1. Let n be any positive integer.

(i) [Erdés, Ginzburg and Ziv, Bull. Research Council Israel 10(1961)]
For any ¢1,... ,con—1 € Z, there is an I C [1,2n — 1] with |I| = n such
that ) .. cs =0 (mod n).

(ii) [Z. W. Sun, Electron. Res. Announc. Amer. Math. Soc. 9(2003)]
Let A = {as(ns)}e_; and {wa(z): x € Z} C {2n — 1,2n} where wa(z) =
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{1<s<k:iz€as(ns)}. If nis a prime power, then for anycy,... ,cp € Z
there is an I C [1,k] such that Y .;1/ns=mn and ) .;cs =0 (mod n).

Remark 3.1. Part (ii) is an extension of part (i) in the case where n is a
prime power, for, a system of 2n — 1 copies of 0(1) covers every integer
exactly 2n — 1 times.

For a finite abelian group G (written additively), the Davenport con-
stant D(G) is defined as the smallest positive integer k such that any
sequence {cs}*_; (repetition allowed) of elements of G has a subsequence
Ciyyov Gy (i1 < -+ < 4;) with zero-sum (i.e. ¢, +--+ ¢, = 0). In
1966 Davenport showed that if K is an algebraic number field with ideal
class group G, then D(G) is the maximal number of prime ideals (counting
multiplicity) in the decomposition of an irreducible integer in K.

For a prime p and an abelian p-group G, it G = Zyn, @ -+ D Ly,
where hy,...,h; € Zt, then we define L(G) =1+ Zizl(pht —1). When
|G| = p° = 1, we simply let L(G) = 1.

Theorem 3.2 [Olson, J. Number Theory 1(1969)]. Let p be a prime and
let G be an additive abelian p-group. Then D(G) = L(G). Moreover, given
¢, 1,5 cn(q) € G we have

> (=0 (mod p). (3.1)
IC[1,L(G)]

serl Cs=cC

Remark 3.2. Let p be a prime. Clearly the additive group of the finite
field with p' elements is isomorphic to Zé, the direct sum of [ copies of
the ring Z,. In 1996 Gao [J. Number Theory 56(1996)] proved that if
¢, Cly...,Cop—1 € Zyp then

HIQ [1,2p — 1]: |[I| = p and chzc}

sel

= [c=0] (mod p),

where for a predicate P we let [P] be 1 or 0 according to whether P holds
or not. Note that Gao’s result can be written as

Z (D=0 (mod p),
I1C[1,L(Z2)]
P, X sercs=c

which clearly follows from Olson’s congruence (3.1) in the case G = Zi.
Olson obtained the above result by the knowledge of group rings. With-
out using group-rings, Z. W. Sun proved the following stronger result.
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Theorem 3.3 [Z. W. Sun, 2003, arXiv:math.NT/0305369]. Let p be a
prime, hi,... by € ZT and k = Zizl(pht —1). Let csp,cr € Z for all
s € [1,k] andt € [1,1]. Then

> (-1

I1C[1,k]
pht|zsgl cst—cy for te[l,l]

z (3-2)

= Z H Cst (mod p).

ILU---Ul;=[1,k] t=1sel;
|I;|=p"t —1 for te[1,l]

Remark 3.3. Theorem 3.3 implies Theorem 3.2, for, under the condition
of Theorem 3.3 we have

> (pf= > (1M (mod p)

IC[1,K] IC[1,k]
Pht|2861 Cst—Ct pht|zsel Cstt+cCot—cCt
for all te[1,l] for all t€[1,l]
where cq1, ... ,co; are any integers. By Theorem 3.3 in the case [ = 1, if
C,C1y. .. ,Cpn_1 € Z, then
Z (D)l =¢; - cph—1 (mod p). (3.3)

P sercs—c

Theorem 3.4. Let g be a prime power.

(i) [Alon and Dubiner, 1993] If c1,... ,c3q € Z7 and ¢1 + -+ -+ ¢34 = 0,
then there is an I C [1,k] with [I| = q and ) .;cs = 0.

(ii) [Z. W. Sun, 2003, arXiv:math.NT/0305369] If A = {as(ns)}r_,
covers every integer exactly 3q times, then for any ci,...,c, € Zg with
c1+ -+ +cx =0, there evists an I C [1,k] such that ) . ;1/ns = q and

ZselcS:O.

Remark 3.4. Part (i) of Theorem 3.4 follows from the second part in the
case ny = --- =ng = 1.

Theorem 3.5 [Z. W. Sun, Electron. Res. Announc. Amer. Math. Soc.
9(2003)]. Let G be an additive abelian p-group where p is a prime. Suppose
that A = {as(ns)}e_, covers every integer at least L(G) + p" — 1 times

where h € N. Let my,... ,mip € Z and cq,...,cx € G. Then for any
c € G and o € Q we have
> (=1l erasms/ns = (mod p). (3.4)
IC[1,k]

ZSEI Cs=C
ZSGI ms/ns€a+PhZ
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In particular, there is a nonempty I C [1,k| such that ) _;cs = 0 and
Y serMs/Ns € p"Z.

Remark 3.5. Since a system of k copies of 0(1) forms a k-cover of Z,
Olson’s Theorem 3.2 follows from Theorem 3.4 in the case h = 0 and
nyg=---=ng = 1.



