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Abstract. In the first section we review the beautiful combinatorial the-

ory of Ramsey as well as the history of Szemerédi’s theorem. In Sec-

tion 2 we give a sketch of Ruzsa’s modern proof of Freiman’s theorem
on sumsets which plays an important role in Gowers’ quantitative proof

of Szemerédi’s theorem. In the last section we deduce Roth’s theorem

(Szemerédi’s theorem in the case k=3) from the Triangle Removal Lemma
(in graph-theoretic language) which is an application of Szemerédi’s Reg-

ularity Lemma (a powerful tool in graph theory), and show the Balog-

Szemerédi-Gowers theorem by a graph-theoretic method.

1. Introduction to Ramsey’s theory and Szemerédi’s theorem

Pigeon-hole Principle or Dirichlet’s Principle. If we put at least

n+1 objects into n drawers where n ∈ Z+ = {1, 2, . . . }, then some drawer

contains at least two objects.

Note that a distribution of all elements of a set A into n drawers corre-

sponds to an ordered partition A = A1∪· · ·∪An with A1, . . . , An pairwise

disjoint. We may also call such a partition an n-coloring of A with elements

in Ai colored the ith color.
1
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Applying the pigeon-hole principle, Erdős and Szekeres proved that any

sequence of real numbers with mn+1 terms contains a monotonic increas-

ing subsequence of m+ 1 terms or a monotonic decreasing subsequence of

n+ 1 terms.

An ordered partition A1∪ · · ·∪An of a set A corresponds to an ordered

partition A1 ∪ · · · ∪ An of A = {{x} : x ∈ A} where Ai = {{x} : x ∈ Ai}.

We call a subset of A with cardinality r an r-subset of A.

The following deep generalization of the Pigeon-hole principle was ob-

tained by F. P. Ramsey in 1930 in his paper “On a problem of formal logic”

in which he aimed to prove a logical result which is actually impossible by

an undecidable result of Gödel.

Ramsey’s Theorem (Ramsey, 1930). Let r > 0 and q1, . . . , qn > r be

integers. If S is a set with |S| large enough and we arbitrarily distribute

all r-subsets of S into n ordered drawers, then for some 1 6 i 6 n the set

S has a qi-subset whose all r-subsets lie in the ith drawer.

A Sketch of the Proof. In the case n = 1 it suffices to let |S| > q1.

Now we handle the case n = 2. If r = 1 then it suffices to let |S| >

q1 + q2 − 1. If r > 1 and the result holds for smaller values of r, then by

induction on q1 + q2 we can prove the desired result for r.

If the desired result holds for a fixed n > 2. Then we can prove the

desired result for n + 1 by using the induction hypothesis together with

the case n = 2 that we have handled. �

Given integers q1, . . . , qn > r > 1, the Ramsey number Rr(q1, . . . , qn) is
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the smallest positive integer such that however we distribute all r-subsets

of a set S with |S| > Rr(q1, . . . , qn) into n ordered drawers there exists

1 6 i 6 n such that S has a qi-subset whose all r-subsets lie in the ith

drawer.

Ramsey’s theorem in the special case r = 1 and q1 = · · · = qn = 2

reduces to the Pigeon-hole principle. It is easy to see that

R1(q1, . . . , qn) = q1 + · · ·+ qn − n+ 1.

It was P. Erdős who first recognized the importance of Ramsey’s the-

orem. Roughly speaking, Ramsey’s theorem indicates that complete dis-

order is impossible. In 1935 Erdős and Szekeres proved that if q1, q2 > 2

then

R2(q1, q2) 6

(
q1 + q2 − 2
q1 − 1

)
.

In 1947 Erdős showed that R2(q, q) > 2m/2 and his probability method

greatly influenced the later development of combinatorics.

It is difficult to determinate exact values of Ramsey numbers. It is

known that

R2(3, 3) = 6, R2(3, 4) = 9, R2(3, 5) = 14, R2(3, 6) = 18,

R2(3, 7) = 23, R2(3, 8) = 28, R2(3, 9) = 36, R2(4, 4) = 18, R(4, 5) = 25

and c1n
2/ lnn 6 R2(3, n) 6 c2n

2/ lnn (Shearer (1983) and Kim (1995))

Also,

R2(3, 3, . . . , 3) 6 bn!ec+ 1 (Greenwood and Gleason).
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Erdős-Szekeres Theorem (Erdős-Szekeres, 1935). Let m > 3 be a posi-

tive integer. Given sufficiently many points in a plane no three of which are

co-linear, we can select m of them so that they generate a convex polygon

with m sides.

Proof. Suppose that we are given n > R4(5,m) points P1, . . . , Pn in a

plane no three of which are co-linear. Put a 4-subset {Pi, Pj , Pk, Pl} of

S = {P1, . . . , Pn} into a “concave” drawer or a “convex” drawer according

as Pi, Pj , Pk, Pl are vertices of a 4-sided concave polygon or a 4-sided

convex polygon. As n > R4(5,m), either there is a 5-subset of S whose all

4-subsets are in the concave drawer, or there is an m-subset of S whose all

4-subsets are in the convex drawer. It can be easily shown that the former

case cannot happen, and in the latter case the m points in S generate an

m-sided polygon. �

Let ES(m) denote the minimal number of points that are needed to

guarantee the result in the above theorem. Erdős and Szekeres showed

that

2m−2 + 1 6 ES(m) 6

(
2m− 4
m− 2

)
+ 1

and they conjectured that ES(m) = 2m−2 + 1. This famous conjecture

remains open.

Schur’s Theorem (Schur, 1916). If we distribute 1, . . . , bn!ec into n

drawers, then some drawer contains certain x, y, z with x+ y = z.

Proof. For k = 1, . . . , n, let Ak be the set of integers contained in the kth
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drawer and set

Ak = {{i, j} : 1 6 i < j 6 bn!ec+ 1 and j − i ∈ Ak}.

Then A1, . . . , An are pairwise disjoint and their union consists of all the

2-subsets of S = {1, . . . , bn!ec + 1}. As |S| > R2(3, . . . , 3), there is a

3-subset {a, b, c} (a < b < c) of S such that {a, b}, {b, c}, {a, c} belong to

the same Ak. Thus

x = b− a ∈ Ak, y = c− b ∈ Ak, and z = c− a ∈ Ak.

Note that 1 6 x, y, z 6 bn!ec and x+ y = z. We are done. �

In 1927 van der Waerden established the following result conjectured

by Schur, this contribution made him famous as a young mathematician.

van der Waerden Theorem. For any positive integers k and m, if n

is sufficiently large and we distribute 1, . . . , n into k drawers, then some

drawer contains an AP (arithmetic progression) with m terms.

In 1933 R. Rado, one of Schur’s students, proved the following theorem

which includes both Schur’s theorem and van der Waerden’s theorem as

special cases.

Rado’s Theorem. Let A = (aij)16i6m, 16j6n be a matrix with aij ∈ Z.

Then the equation A(x1, . . . , xn)T = 0 is partition regular (i.e., however

we distribute all positive integers into finitely many drawers the equation

always has a solution with x1, . . . , xn in the same drawer), if and only

if we can renumber the column vectors of A so that there are integers
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1 6 n1 < n2 < · · · < nl = n for which the sum of the first nk (1 6 k 6 l)

column vectors is a rational linear combination of the first nk−1 column

vectors, where we set n0 = 0.

For a1, . . . , am ∈ Z+ with m > 2, we define the two-color Rado num-

ber R(a1, . . . , am) to be the least positive integer N such that for ev-

ery 2-coloring of the set [1, n] = {1, . . . , n} with n > N there exists a

monochromatic solution to the equation a1x1 + · · · + amxm = x0 with

x0, . . . , xm ∈ [1, n].

In 2005 S. Guo and Z. W. Sun [J. Combin. Theory Ser. A, to appear]

determined the exact value of R(a1, . . . , am).

A Result of S. Guo and Z. W. Sun (conjectured by B. Hopkins

and D. Schaal). For any a1, . . . , am ∈ Z+ with m > 2, we have

R(a1, . . . , am) = av2 + v − a,

where

a = min{a1, . . . , am} and v = a1 + · · ·+ am.

Shelah’s Pigeon-hole Principle. Let k,m, n ∈ Z+ and m > f(n, k),

where f(1, k) = k+1 and f(j+1, k) = kf(j,k)2j

+1 for j = 1, 2, . . . . Then,

for any k-colorings c1, . . . , cn : [1,m]2n → [1, k], there are 1 6 a1 < b1 6

m, . . . , 1 6 an < bn 6 m such that

cj(a1, b1, . . . , aj−1, bj−1, aj , aj , aj+1, bj+1, . . . , an, bn)

=cj(a1, b1, . . . , aj−1, bj−1, bj , bj , aj+1, bj+1, . . . , an, bn)
(∗)

for all j = 1, . . . , n.
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Proof. We use induction on n.

In the case n = 1, as |{(a, a) : a ∈ [1,m]}| = m > f(1, k) > k,

by the usual pigeon-hole principle there are 1 6 a < b 6 m such that

c1(a, a) = c1(b, b).

Now let n > 1 and assume the desired result for n. Let m > f(n +

1, k) > kf(k,n)2n

and c1, . . . , cn+1 be mappings from [1,m]2n+2 to [1, k].

For a, b ∈ [1,m] we define ca,b : [1, f(n, k)]2n → [1, k] by

ca,b(a1, b1, . . . , an, bn) = cn+1(a1, b1, . . . , an, bn, a, b) ∈ [1, k].

Since

m > kf(n,k)2n

= |{f : [1, f(n, k)]2n → [1, k]}|,

by the pigeon-hole principle there are 1 6 an+1 < bn+1 6 m such that

can+1,an+1 = cbn+1,bn+1 , i.e., for any a1, b1, . . . , an, bn ∈ [1, f(n, k)] we have

cn+1(a1, b1, . . . , an, bn, an+1, an+1) = cn+1(a1, b1, . . . , an, bn, bn+1, bn+1).

For j = 1, . . . , n define c′j : [1, f(n, k)]2n → [1, k] by

c′j(x1, . . . , x2n) = cj(x1, . . . , x2n, an+1, bn+1).

By the induction hypothesis, there are 1 6 a1 < b1 6 N(n, k), . . . , 1 6

an < bn 6 f(n, k) such that whenever 1 6 j 6 n we have

c′j(a1, b1, . . . , aj−1, bj−1, aj , aj , aj+1, bj+1, . . . , an, bn)

=c′j(a1, b1, . . . , aj−1, bj−1, bj , bj , aj+1, bj+1, . . . , an, bn),
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i.e.,

cj(a1, b1, . . . , aj−1, bj−1, aj , aj , aj+1, bj+1, . . . , an+1, bn+1)

=cj(a1, b1, . . . , aj−1, bj−1, bj , bj , aj+1, bj+1, . . . , an+1, bn+1).

Note that f(n, k) 6 f(n+ 1, k) 6 m (f(n, k) = 2 if k = 1). So the desired

result for n+ 1 follows from the above. �

For n, k ∈ Z+ we define the Shelah number S(n, k) to be the smallest

m ∈ Z+ such that for any c1, . . . , cn ∈ [1,m]2n → [1, k] there are 1 6 a1 <

b1 6 m, . . . , 1 6 an < bn 6 m such that (∗) holds for all j = 1, . . . , n. By

Lemma 2.1 and its proof, S(n, k) 6 f(n, k); furthermore,

S(1, k) = k + 1 and S(n+ 1, k) 6 kS(n,k)2n

+ 1.

Let S be a finite nonempty set. A combinatorial line in Sn has the form

L = {(x1, . . . , xn) ∈ Sn : all those xi with i ∈ I are equal,

and those xj with j 6∈ I are fixed},

where I is a nonempty subset of [1, n].

In 1963 Hales and Jewett established a Ramsey-type result which stripes

the van der Waerden theorem of its unessential elements and reveals the

heart of Ramsey Theory.

Hales-Jewett Theorem. For any m, k ∈ Z+ if n ∈ Z+ is large enough

then for every k-coloring of [1,m]n, [1,m]n contains a monochromatic

combinatorial line.
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Denote the smallest n in the Hales-Jewett theorem by HJ(m, k). In

1988 Shelah used his pigeon-hole principle to show that

HJ(m+ 1, k) 6 HJ(m, k)S
(
HJ(m, k), k(m+1)HJ(m,k)

)
,

which yields the first primitive upper bound for HJ(m, k).

Proof of the van der Waerden Theorem from the Hales-Jewett

Theorem. Let h = HJ(m, k). For x1, . . . , xh ∈ [1,m] define

F (x1, . . . , xh) = 1 +
h−1∑
i=1

(xi − 1)mi.

Then F is a one-to-one correspondence between [1,m]h and [1,mh]. Any

distribution of 1, . . . ,mh into k drawers corresponds to a distribution of k-

coloring of [1,m]h. By the Hales-Jewett, [1,m]h contains a monochromatic

combinatorial line

{(x1, . . . , xh) ∈ [1,m]h : those xi with i ∈ I are equal, xj = aj for j 6∈ I},

where ∅ 6= I ⊆ [1, h] and aj ∈ [1,m] for j ∈ Ī = [1, h] \ I. Thus, those

numbers

1 +
∑
j∈Ī

(aj − 1)mj−1 +
∑
i∈I

(x− 1)mi−1 (x = 1, . . . ,m)

lie in the same drawer. In other words, some drawer contains the arith-

metic progression a, a+ d, . . . , a+ (m− 1)d, where

a = 1 +
∑
j∈Ī

(aj − 1)mj−1 and d =
∑
i∈I

mi−1.

We are done. �
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Erdős-Graham Conjecture proved by Croot. If we distribute all in-

tegers greater than one into n drawers, then some drawer contains integers

x1, . . . , xm with
∑m

k=1 1/xk = 1.

Here we pose a general conjecture from which Croot’s result follows

immediately.

A Conjecture of Z. W. Sun (Jan. 28, 2007). If A is a subset of

{2, 3, . . . } with positive upper (asymptotic) density, then there are finitely

many distinct elements a1 < · · · < am of A with
∑m

k=1 1/ak = 1.

The following deep result conjectured by P. Erdős and P. Turán in 1936,

implies the van der Waerden theorem.

Szemerédi’s Theorem. Let 0 < δ 6 1 and k ∈ {3, 4, . . . }. Then there

is N(k, δ) such that if n > N(k, δ) and A ⊆ [1, n] with |A| > δn then A

contains an AP of length k.

In 1956 K. Roth proved this result for k = 3 by the circle method in

analytic number theory. In 1969 E. Szemerédi handled the case k = 4 by

a combinatorial method. The case of general k was settled by Szemerédi

in 1975 in a paper which was regarded as “a masterpiece of combinatorial

reasoning” by R. L. Graham. In 1977 H. Furstenberg used ergodic theory

to give a new proof of Szemerédi’s theorem. In 2001 W. T. Gowers em-

ployed Fourier analysis and combinatorics (including Frieman’s theorem

on sumsets) to reprove the theorem with explicit bounds.

Here are the best known bounds for N(k, δ):

clog(1/δ)k−1
6 N(k, δ) 6 22δ−22

k+9

,
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where the lower bound is due to Behrend (for k = 3) and Rankin (1962),

and the upper bound is due to Gowers (2001). In 1999 J. Bourgain showed

that N(3, δ) 6 cδ
−2 log(1/δ).

Szemerédi’s theorem plays an important role in the proof of the follow-

ing celebrated result.

Green-Tao Theorem. There are arbitrarily long APs of primes.

The following difficult conjecture includes both Szemerédi’s theorem

and the Green-Tao theorem as special cases.

Erdős-Turán Conjecture. Let a1 < a2 < · · · be a sequence of posi-

tive integers with
∑∞

n=1 1/an divergent. Then, for any k = 3, 4, . . . the

sequence has a subsequence which is an AP of length k.

In my opinion this conjecture might be too strong to hold. I’d like to

modify this conjecture as follows: If a1 < a2 < · · · is a sequence of positive

integers with
∑∞

n=1 1/an = ∞ and
∑

i∈I 1/ai 6∈ Z+ for any finite subset I

of Z+, then the sequence contains arbitrarily long APs.

2. Ruzsa’s approach to Freiman’s theorem on sumsets

Let A1, . . . , An be subsets of an abelian group. We define the sumset

A1 + · · ·+An = {a1 + · · ·+ an : a1 ∈ A1, . . . , an ∈ An}

and denote it by nA if A1 = · · · = An = A. It can be easily showed that

|A1 + · · ·+An| >
n∑

i=1

|Ai| − n+ 1,
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and equality holds if and only if A1, . . . , An are arithmetic progressions

with the same common difference.

The following deep result of G. Freiman on sumsets first appeared in a

paper of Freiman in 1964 and then in his 1966 monograph.

Freiman’s Theorem. Let A be a finite nonempty subset of Z with |2A| 6

c|A|. Then A is contained in an n-dimensional AP

Q = Q(a; q1, . . . , qn; l1, . . . , ln) = {a+ x1q1 + · · ·+ xnqn : 0 6 xi < li}}

with |Q| 6 c′|A|, where c′ and n only depend on c.

The n-dimensional AP Q mentioned above is said to have length l(Q) =

l1 · · · ln, and it is called proper if |Q| = l(Q).

Since Freiman’s theorem plays a crucial role in Gowers’ quantitative

proof of Szemerédi’s theorem, in this section we will present a sketch of

Rusza’s modern approach to Freiman’s theorem.

Given a finite sequence (Ai)n
i=1 of sets, if a1 ∈ A1, . . . , an ∈ An and

ai 6= aj for all 1 6 i < j 6 n, then we call the sequence (ai)n
i=1 an SDR

(system of distinct representatives) of (Ai)n
i=1.

Hall’s Theorem (P. Hall, 1935). Let A1, . . . , An be sets. Then (Ai)n
i=1

has an SDR if and only if |
⋃

i∈I Ai| > |I| for all I ⊆ [1, n].

A natural induction proof of Hall’s theorem was given by Z. W. Sun in

2001. Hall’s theorem is very important in discrete mathematics, it reveals

the fundamental combinatorial min-max relation.
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Defect Form of Hall’s Theorem. Let A1, . . . , An be sets. Then

max{|J | : J ⊆ [1, n] and (Aj)j∈J has an SDR}

= min
I⊆[1,n]

(∣∣∣∣ ⋃
i∈I

Ai

∣∣∣∣ + n− |I|
∣∣∣∣).

An undirected graph G consists of the vertex set V (G) and the edge set

E(G) (with V (G)∩E(G) = ∅), and each edge in E(G) is an unordered pair

{u, v} with u, v ∈ V (G). To make the structure intuitive we use points

in the plane to represent vertices in V (G) and join u and v if {u, v} is an

edge.

For an undirected graph G = (V,E), if there are disjoint subsets X and

Y of V = V (G) such that X ∪ Y = V and each edge e ∈ E = E(G) has

one endpoint in X and another endpoint in Y , then we call G a bipartite

graph with vertex classes X and Y . A matching from X to Y in such a

bipartite is a set of |X| disjoint edges.

Let A1, . . . , An be finite sets and write
⋃n

i=1Ai = {a1, . . . , am}. We

make a bipartite graph G with vertex classes V1 = {A1, . . . , An} and V2 =

{a1, . . . , am} by joining Ai and aj if aj ∈ Ai. Thus we can reformulate

Hall’s theorem as follows.

Hall’s Matching Theorem. Let G be any bipartite graph with vertex

classes X and Y . Then G has a matching from X to Y if and only

if |Γ(S)| > |S| for all S ⊆ X, where Γ(S) = {y ∈ Y : (x, y) ∈

E(G) for some x ∈ S}.

In a directed graph, each edge has a direction. For two distinct vertices

u, v in a directed graph G, a path from u to v is a sequence of distinct
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vertices v0 = u, v1, . . . , vl = v with (v0, v1), . . . , (vl−1, vl) ∈ E(G), and l

is called the length of the path. Two paths from u to v are independent if

no vertex other than u and v occurs in both paths.

In 1927 Menger discovered the following fundamental result in graph

theory.

Menger’s Theorem. Let G be a directed graph, and let a, b ∈ V (G) be

distinct vertices with (a, b) 6∈ E(G). Then the maximal number of inde-

pendent paths from a to b is the smallest positive integer l such that there

is a set S ⊆ V \ {a, b} with |S| = l which separates a and b (i.e., every

path from a to b contains at least one vertex in S).

Menger’s theorem is actually equivalent to Hall’s theorem.

Proof of Hall’s Matching Theorem from Menger’s Theorem. Join

a new vertex a to all elements of X and a new vertex b to all elements

of Y to form a new graph G′. Suppose that S ⊆ V (G′) \ {a, b} = X ∪ Y

separates a and b, and |Γ(T )| > |T | for all T ⊆ X. Then

|S ∩ Y | > |Γ(X \ S)| > |X \ S|

and hence

|S| = |S ∩X|+ |S ∩ Y | > |S ∩X|+ |X \ S| = |X|.

Thus, by Menger’s theorem, there are |X| independent paths from a to b.

This yields a matching in G. �

Let G = (V,E) be a directed graph. Suppose that there is a partition

V = V0 ∪ V1 ∪ · · · ∪ Vh so that E ⊆
⋃h

i=1(Vi−1 × Vi). Then we call G a
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directed graph of level h. Such a graph G is called a Plünnecke graph of

level h if it has the following properties:

(a) Suppose that 1 6 i < h, u ∈ Vi−1, v ∈ Vi, w1, . . . , wk ∈ Vi+1

are distinct, and (u, v), (v, w1), . . . , (v, wk) ∈ E. Then there are distinct

v1, . . . , vk ∈ Vi such that (u, vi), (vi, wi) ∈ E for all i = 1, . . . , k.

(b) Suppose that 1 6 i < h, u1, . . . , uk ∈ Vi−1 are distinct, v ∈ Vi,

w ∈ Vi+1, and (u1, v), (u2, v), . . . , (uk, v), (v, w) ∈ E. Then there are

distinct v1, . . . , vk ∈ Vi such that (ui, vi), (vi, w) ∈ E for all i = 1, . . . , k.

In 1969 Plünnecke obtained the following important result.

Plünnecke’s Inequality. Let G be a Plünnecke graph of level h > 1.

Then we have

D1 > D
1/2
2 > · · · > D

1/h
h ,

where Di is the ith magnification ratio

Di(G) = inf
∅6=X⊆V0

|imi(X)|
|X|

with

imi(X) = {v ∈ Vi : G contains a path from some x ∈ X to v}.

The proof of Plünnecke’s inequality involves Menger’s theorem and the

following technical lemma.

A Lemma for Plünnecke’s Inequality. (i) If G and H are directed

graphs of level h, then Di(G×H) = Di(G)Di(H) for i = 1, . . . , h, where

the product graph G×H is defined in a natural way.
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(ii) Let G be a Plünnecke graph of level h with the partition V = V0 ∪

V1 ∪ · · · ∪ Vh. If (u, v) ∈ E(G), then d+(u) > d+(v) and d−(u) 6 d−(v),

where

d+(v) = |{w ∈ V (G) : (v, w) ∈ E(G)}|

and

d−(v) = |{w ∈ V (G) : (w, v) ∈ E(G)}|.

If Dh > 1 then there are |V0| disjoint paths from vertices in V0 to vertices

in Vh.

Plünnecke-Ruzsa Theorem. Let A and B be finite nonempty subsets of

an abelian group with |A+B| 6 c|A|. Then for any k, l ∈ N = {0, 1, 2, . . . }

we have

|kB − lB| 6 ck+l|A|,

where we regard 0B as {0}.

Proof. As 0B−0B = {0}, the desired result is trivial in the case k = l = 0.

Without loss of generality, below we assume that k 6 l and l > 1.

Define a directed graph G = GA,B of level l as follows: V (G) =
⋃l

i=0 Vi

with Vi = A+ iB (actually we should let Vi = {i} × (A+ iB) since those

{i} × (A+ iB) (i = 0, . . . , l) are pairwise disjoint), and

E(G) = {(vi, vi+1) : 0 6 i < h, vi ∈ Vi, vi+1 ∈ Vi+1 and vi+1 − vi ∈ B}.

If u ∈ Vi−1, v ∈ Vi, w1, . . . , wm ∈ Vi+1, and (u, v), (v, w1), . . . , (v, wm) ∈

E(G), then, for any 1 6 j 6 m, we have

vj := u+ (wj − v) ∈ Vi−1 +B = Vi and (u, vj), (vj , wj) ∈ E(G)
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since vj − u = wj − v ∈ B and wj − vj = v − u ∈ B. Similarly, if

u1, . . . , um ∈ Vi−1, v ∈ Vi, w ∈ Vi+1, and (u1, v), . . . , (um, v), (v, w) ∈

E(G), then, for any 1 6 j 6 m, we have

vj := uj + (w − v) ∈ Vi−1 +B = Vi and (uj , vj), (vj , w) ∈ E(G)

since vj−uj = w−v ∈ B and w−vj = v−uj ∈ B. Thus G is a Plünnecke

graph of level l.

If k > 1, then by Plünnecke’s inequality, there is ∅ 6= A′ ⊆ V0 = A such

that

|imk(A′)|
|A′|

= Dk(G) 6 D1(G)k 6

(
|im1(A)|
|A|

)k

=
|A+B|k

|A|k
6 ck

and thus |A′ + kB| 6 ck|A′|. If k = 0, then we take A′ = A, and there

is ∅ 6= A′′ ⊆ A′ = A with |A′′ + lB| 6 cl|A′′| by the same argument.

Similarly, when 1 6 k 6 l there is ∅ 6= A′′ ⊆ A′ such that

|A′′ + lB|
|A′′|

= Dl(GA′,B) 6 Dk(GA′,B)l/k 6

(
|A′ + kB|
|A′|

)l/k

6 (ck)l/k.

Let R,S, T be finite nonempty subsets of an abelian group. Each d ∈

S − T can be written as s(d) − t(d) with s(d) ∈ S and t(d) ∈ T . If

(r, d), (r′, d′) ∈ R× (S−T ) and (r+ s(d), r+ t(d)) = (r′+ s(d′), r′+ t(d′)),

then d = r + s(d) − (r + t(d)) = r′ + s(d′) − (r′ + t(d′)) = d′ and r =

r′ + s(d′)− s(d) = r′. Therefore

|R|·|S−T | 6 |{(r+s(d), r+t(d)) : r ∈ R and d ∈ S−T}| 6 |R+S|·|R+T |.

In view of the above, we have

|A′′| · |kB− lB| 6 |A′′+kB| · |A′′+ lB| 6 |A′+kB| · |A′′+ lB| 6 ck|A′|cl|A′′|

and hence |kB − lB| 6 ck+l|A′| 6 ck+l|A|. �
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Ruzsa’s Analogue of Freiman’s Theorem for Torsion Groups. Let

G be a torsion abelian group every element of which has order not exceed-

ing r. Let A and B be finite nonempty subsets of G with |A+ B| 6 c|A|.

Then B is contained in a subgroup of G whose order does not exceed

c2rc4|A|/|B||A|.

Proof. By the Plünnecke-Ruzsa theorem, we have |B − B| 6 c2|A| and

|2B − 2B| 6 c4|A|.

Let W = {w1, . . . , wk} be a maximal subset of 2B −B such that w1 −

B, . . . , wk −B are pairwise disjoint. Then

k|B| =
k∑

i=1

|wi −B| =
∣∣∣∣ k⋃

i=1

(wi −B)
∣∣∣∣ 6 |(2B −B)−B| 6 c4|A|

and hence k 6 c4|A|/|B|.

For any w ∈ 2B−B, there is 1 6 i 6 k such that (w−B)∩(wi−B) 6= ∅

and hence w ∈ wi − B + B ⊆ W + B − B. So 2B − B ⊆ W + B − B. It

follows that

3B−B ⊆W+2B−B ⊆ 2W+B−B, 4B−B ⊆ 2W+2B−B ⊆ 3W+B−B

and so on. Thus, for any l ∈ Z+, we have lB −B ⊆ (l − 1)W +B −B ⊆

H(W ) +B −B, where

H(W ) ={x1w1 + · · ·+ xkwk : x1, . . . , xk ∈ Z}

={x1w1 + · · ·+ xkwk : 0 6 xi < ri 6 r for i = 1, . . . , k}

is the subgroup of G generated by W (and ri is the order of wi). Therefore

H(B) =
⋃∞

l=1(lB −B) ⊆ H(W ) + (B −B) and hence

|H(B)| 6 |H(W )| · |B −B| 6 rkc2|A| 6 rc4|A|/|B|c2|A|.
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We are done. �

For any real number x, we define

‖x‖ = min
a∈Z

|x− a| =
{ {x} if {x} 6 1/2,

1− {x} otherwise,

where {x} is the fractional part of x. For m ∈ Z+, r1, . . . , rk ∈ [0,m− 1]

and ε > 0, we call

Bm(r1, . . . , rn; ε) =
{
a+mZ :

∥∥∥ari
m

∥∥∥ 6 ε for all i = 1, . . . , n
}

a Bohr set.

In 1939 N. N. Bogolyubov established the following result via roots of

unity.

Bogolyubov’s Theorem. Let m > 2 be an integer and ∅ 6= A ⊆ Zm =

Z/mZ. Then there are distinct r1, . . . , rn ∈ [0,m − 1] with r1 = 0 and

n 6 (m/|A|)2 such that

Bm

(
r1, . . . , rn;

1
4

)
⊆ 2A− 2A.

Proof. Write A = {a1 +mZ, . . . , ak +mZ} where a1, . . . , ak ∈ [0,m − 1]

are distinct. For r ∈ Z set

SA(r) =
k∑

s=1

e2πiasr/m.

For any g ∈ Z, we assert that

g +mZ ∈ 2A− 2A ⇐⇒
m−1∑
r=0

|SA(r)|4χr(g) 6= 0,
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where χr(g) = e2πigr/m. In fact, if we set A0 = {a1, . . . , ak} then

m−1∑
r=0

SA(r)2 SA(r)
2
χr(g)

=
m−1∑
r=0

∑
a,b,c,d∈A0

e2πi(g−a−b+c+d)r/m

=
∑

a,b,c,d∈A0

m−1∑
r=0

e2πi(g−a−b+c+d)r/m

=m|{(a, b, c, d) ∈ A4
0 : g ≡ a+ b− c− d (mod m)}|.

Let λ = |A|/m ∈ (0, 1], and set

R = {r ∈ [0,m− 1] : |SA(r)| >
√
λ|A|}

and

R′ = {r ∈ [0,m− 1] : |SA(r)| <
√
λ|A|}.

As SA(0) = |A| >
√
λ|A|, we have 0 ∈ R and |R′| < m. Observe that∣∣∣∣ ∑

r∈R′

|SA(r)|4χr(g)
∣∣∣∣ 6

∑
r∈R′

(
√
λ|A|)2|SA(r)|2

<λ|A|2
m−1∑
r=0

|SA(r)|2 = λ|A|2
m−1∑
r=0

∑
a,a′∈A0

e2πi(a−a′)r/m

=λ|A|2
∑

a∈A0

m = |A|4.

Thus |A|4+<(
∑

r∈R′ |SA(r)|4χr(g)) > 0 since <(z) > −|z| for any complex

number z.

For x ∈ R, clearly

‖x‖ 6
1
4
⇐⇒ cos(2πx) > 0 ⇐⇒ <(2πix) > 0.
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If r ∈ R and g ∈ Z then ‖gr/m‖ 6 1/4 ⇐⇒ <(χr(g)) > 0. Let

r1, . . . , rn be all the elements of R with r1 = 0, and let g be an integer with

g + mZ ∈ Bm(r1, . . . , rn; 1/4). Then <(χrj
(g)) > 0 for all j = 1, . . . , n.

Therefore

<
( m−1∑

r=0

|SA(r)|4χr(g)
)

=
∑

1<j6n

|SA(r)|4<(χrj (g)) + |SA(0)|4 + <
( ∑

r∈R′

|SA(r)|4χr(g)
)

>|A|4 + <
( ∑

r∈R′

|SA(r)|4χr(g)
)
> 0.

So
∑m−1

r=0 |SA(r)|4χr(g) 6= 0 and hence g +mZ ∈ 2A− 2A.

Finally we observe that

n(
√
λ|A|)2 6

∑
r∈R

|SA(r)|2 6
m−1∑
r=0

|SA(r)|2 =
|A|2

λ

and so n 6 λ−2 = m2/|A|2. This concludes the proof. �

A Lemma obtained by Minkowski’s Second Theorem. Let m > 2

be an integer, and let r1, . . . , rn ∈ [0,m − 1] with gcd(r1, . . . , rn,m) = 1.

Then there is a proper n-dimensional AP Q ⊆ Zm such that

Q ⊆ Bm

(
r1, . . . , rn;

1
4

)
and |Q| > m

(4n)n
.

Let G and H be abelian groups, and let h > 2 be an integer. Let A ⊆ G

and B ⊆ H. A map φ : A → B is called a Freiman h-homomorphism if

we have

φ(a1) + · · ·+ φ(ah) = φ(a′1) + · · ·+ φ(a′h)
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whenever a1, a
′
1, . . . , ah, a

′
h ∈ A and a1 + · · · + ah = a′1 + · · · + a′h. If

φ : A→ B is surjective and for any a1, a
′
1, . . . , ah, a

′
h ∈ A we have

a1 + · · ·+ah = a′1 + · · ·+a′h ⇐⇒ φ(a1)+ · · ·+φ(ah) = φ(a′1)+ · · ·+φ(a′h),

then we say that A is Freiman h-isomorphic to B via the Freiman h-

isomorphism φ. Note that in this case φ is also injective since

φ(a) = φ(a′) ⇒ φ(a) + (h− 1)φ(a) = φ(a′) + (h− 1)φ(a)

⇒ a+ (h− 1)a = a′ + (h− 1)a⇒ a = a′.

When φ : A → B is a Freiman h-isomorphism, it can be shown that A

is a proper n-dimensional AP if and only if B is a proper n-dimensional

AP. This is the reason why Freiman introduced the concept of Freiman

h-isomorphism.

Ruzsa’s Reduction Lemma. Let A be a finite nonempty subset of Z,

and let h > 2 be an integer. Then, for any m > |hA−hA|, there is A′ ⊆ A

with |A′| > |A|/h such that A′ is Freiman h-isomorphic to a subset of Zm.

Proof. Let p be a prime greater than maxhA − minhA. For each d ∈

(hA− hA) \ {0}, we have p - d and hence

|{q ∈ [1, p− 1] : m|{dq}p}| = |{r ∈ [1, p− 1] : m | r}| 6 p− 1
m

,

where {a}p refers to the least nonnegative integer of a mod p. Thus

|{q ∈ [1, p− 1] : m|{dq}p for some d ∈ (hA− hA) \ {0}}|

< |hA− hA|p− 1
m

6 p− 1
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and hence there exists q ∈ [1, p − 1] such that m - {dq}p for every d ∈

(hA− hA) \ {0}.

Define φ : Z → Zm by φ(x) = {qx}p +mZ. For j = 1, . . . , h let

Sj =
{
x ∈ A :

j − 1
h

p 6 {qx}p <
j

h
p

}
.

Clearly
∑h

j=1 |Sj | = |
⋃h

j=1 Sj | = |A|, so for some 1 6 j 6 h we have

|Sj | > |A|/h. We denote this Sj by A′.

Let a1, . . . , ah ∈ A′. Since

j − 1
h

p 6 {qa1}p, . . . , {qah}p <
j

h
p,

we have

{qa1}p + · · ·+ {qah}p = (j − 1)p+ {q(a1 + · · ·+ ah)}p

and hence

φ(a1) + · · ·+ φ(ah) = (j − 1)p+ {q(a1 + · · ·+ ah)}p +mZ.

If a′1, . . . , a
′
h ∈ A′ and {q(a1 + · · ·+ ah)}p > {q(a′1 + · · ·+ a′h)}p, then

φ(a1) + · · ·+ φ(ah) = φ(a′1) + · · ·+ φ(a′h)

⇐⇒ {q(a1 + · · ·+ ah − a′1 − · · · − a′h)}p

= {q(a1 + · · ·+ ah)}p − {q(a′1 + · · ·+ a′h)}p ∈ mZ

⇐⇒ a1 + · · ·+ ah − a′1 − · · · − a′h = 0.

Therefore the restriction of φ on A′ is Freiman h-isomorphic to φ(A′) ⊆

Zm. �

Now we are ready to establish Ruzsa’s extension of Freiman’s theorem.
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Freiman-Ruzsa Theorem. Let A and B be finite nonempty subsets of

Z with |A + B| 6 c|A| and |A|2/|B|2 = λ. Then B is contained in an

n-dimensional AP Q with

n 6 28c32λ+ c−11(210c32λ)2
8c32λ and l(Q) 6 2nc4|A|.

Proof. Note that c > 1 since |A + B| > |A|. By the Plünnecke-Ruzsa

theorem, we have |B − B| 6 c2|A| and |8B − 8B| 6 c16|A|. Choose

a prime p ∈ (c16|A|, 2c16|A|]. As p > c16|A| > |8B − 8B|, by Ruzsa’s

reduction lemma, there is B′ ⊆ B with |B′| > |B|/8 which is Freiman

8-isomorphic to a subset S of Zp. By Bogolyubov’s theorem, there are

distinct r1, . . . , rn1 ∈ [0, p− 1] with r1 = 0 such that

n1 6

(
p

|S|

)2

=
(

p

|B′|

)2

6

(
2c16|A|
|B|/8

)2

= 28c32λ

and Bp(r1, . . . , rn1 ; 1/4) ⊆ 2S − 2S. In view of the lemma obtained

by Minkowski’s second theorem, if n1 > 1 then there is a proper n1-

dimensional AP Q′ ⊆ Zp such that

Q′ ⊆ Bp

(
r1, . . . , rn1 ;

1
4

)
⊆ 2S − 2S and |Q′| > p

(4n1)n1
>

c16|A|
(4n1)n1

.

Note that this is also valid when n1 = 1.

Let φ : B′ → S be a Freiman 8-isomorphism. For a, b, c, d, a′, b′, c′, d′ ∈
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B′, clearly

φ(a) + φ(b)− φ(c)− φ(d) = φ(a′) + φ(b′)− φ(c′)− φ(d′)

⇐⇒ φ(a) + φ(b) + φ(c′) + φ(d′) + 4φ(a)

= φ(a′) + φ(b′) + φ(c) + φ(d) + 4φ(a)

⇐⇒ a+ b+ c′ + d′ + 4a = a′ + b′ + c+ d+ 4a

⇐⇒ a+ b− c− d = a′ + b′ − c′ − d′.

Thus we can introduce a well defined surjective map ψ : 2B′ − 2B′ →

2S − 2S by letting ψ(a + b − c − d) = φ(a) + φ(b) − φ(c) − φ(d) for

a, b, c, d ∈ B′. For a1, b1, . . . , a4, b4, a
′
1, b

′
1, . . . , a

′
4, b

′
4 ∈ S,

ψ(a1 + a2 − a3 − a4) + ψ(b1 + b2 − b3 − b4)

= ψ(a′1 + a′2 − a′3 − a′4) + ψ(b′1 + b′2 − b′3 − b′4)

⇐⇒ φ(a1) + φ(a2)− φ(a3)− φ(a4) + φ(b1) + φ(b2)− φ(b3)− φ(b4)

= φ(a′1) + φ(a′2)− φ(a′3)− φ(a′4) + φ(b′1) + φ(b′2)− φ(b′3)− φ(b′4)

⇐⇒ φ(a1) + φ(a2) + φ(b1) + φ(b2) + φ(a′3) + φ(a′4) + φ(b′3) + φ(b′4)

= φ(a′1) + φ(a′2) + φ(b′1) + φ(b′2) + φ(a3) + φ(a4) + φ(b3) + φ(b4)

⇐⇒ a1 + a2 + b1 + b2 + a′3 + a′4 + b′3 + b′4

= a′1 + a′2 + b′1 + b′2 + a3 + a4 + b3 + b4

⇐⇒ (a1 + a2 − a3 − a4) + (b1 + b2 − b3 − b4)

= (a′1 + a′2 − a′3 − a′4) + (b′1 + b′2 − b′3 − b′4).

Therefore ψ is a Freiman 2-isomorphism from 2B′ − 2B′ to 2S − 2S,
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and hence Q1 = ψ−1(Q′) ⊆ 2B′ − 2B′ ⊆ 2B − 2B is also a proper n1-

dimensional AP with

l(Q1) = |Q1| = |Q′| > c16|A|
(4n1)n1

>
c16|A|

(210c32λ)28c32λ
.

.

Let B∗ = {b1, . . . , bn2} be a maximal subset of B with b1+Q1, . . . , bn2+

Q1 pairwise disjoint. Then

n2|Q1| =
n2∑
i=1

|bi +Q1| = |B∗+Q1| 6 |B+(2B−2B)| = |3B−2B| 6 c5|A|

and hence

n2 6
c5|A|
|Q1|

< c−11(210c32λ)2
8c32λ.

For each b ∈ B, there is 1 6 i 6 n2 such that (b+Q1)∩ (bi +Q1) 6= ∅ and

hence b ∈ bi +Q1 −Q1 ⊆ B∗ +Q1 −Q1 ⊆ Q2 +Q1 −Q1, where

Q2 = {δ1b1 + · · ·+ δn2bn2 : δ1, . . . , δn2 ∈ {0, 1}}

is an n2-dimensional AP with l(Q2) = 2n2 . Note that Q1 − Q1 is an

n1-dimensional AP with

l(Q1 −Q1) < 2n1 l(Q1) = 2n1 |Q1| 6 2n1 |2B − 2B| 6 2n1c4|A|.

Thus B is contained in an n-dimensional AP Q = Q2 + (Q1 −Q1) with

n = n1 + n2 6 28c32λ+ c−11(210c32λ)2
8c32λ

and

|Q| 6 l(Q) = l(Q1 −Q1)l(Q2) 6 2n1c4|A|2n2 = 2nc4|A|.

This concludes the proof. �
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3. Triangle Removal Lemma and the

Balog-Szemerédi-Gowers theorem

The most important technique used by Szemerédi in his combinatorial

proof of Szemerédi’s theorem is his powerful regularity lemma in graph-

theoretic language.

Let G = (V,E) be an undirected graph (without multiple edges). For

A,B ⊆ V we define

e(A,B) = |E ∩ (A×B)| and d(A,B) =
e(A,B)
|A×B|

,

and call d(A,B) the density of edges between A and B. For ε > 0 the

pair (A,B) is said to be ε-regular if |d(X,Y ) − d(A,B)| < ε for all those

X ⊆ A and Y ⊆ B with |X| > ε|A| and |Y | > ε|B|.

Szemerédi’s Regularity Lemma. Let 0 < ε < 1 and m0 ∈ Z+. Then

there are positive integers M = M(ε,m0) and N = N(ε,m0) such that

whenever G = (V,E) is an undirected graph with |V | > N there is a

partition V0 ∪ V1 ∪ · · · ∪ Vm of V with

|V0| 6 ε|V |, |V1| = · · · = |Vm|, m0 6 m 6 M (?)

and at most εm2 pairs (Vi, Vj) (1 6 i < j 6 m) not ε-regular.

Triangle Removal Lemma (Ruzsa and Szemerédi, 1978). For each 0 <

δ 6 1, there exists 0 < c(δ) < 1 with the following property: If G = (V,E)

is an undirected graph with |V | sufficiently large, and G contains fewer

than c(δ)|V |3 triangles and then it is possible to remove fewer than δ|V |2

edges from G to create a graph containing no triangles.
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Proof. Let ε = δ/12 and set m0 = b12/δc + 1 > 1/ε. By Szemerédi’s

regularity lemma, there are positive integers M = M(ε,m0) and N =

N(ε,m0) such that when n = |V | > N there is a partition V0∪V1∪· · ·∪Vm

for which (?) holds and there are at most εm2 not ε-regular pairs (Vi, Vj)

with 1 6 i < j 6 m.

Suppose that |V | > N and let V0 ∪ V1 ∪ · · · ∪ Vm be a partition of V as

described above. Now we delete certain edges by the following rules:

(i) Delete those edges in E with one endpoint in V0. Since the degree

of each vertex is at most |V |, the number of edges we delete in this step is

at most |V0| · |V | 6 ε|V |2.

(ii) Delete those edges with two endpoints in the same Vi with 1 6 i 6

m. The number of edges we delete in this step is at most
m∑

i=1

|Vi|2 6 m

(
|V |
m

)2

6
|V |2

m0
< ε|V |2.

(iii) Delete those edges with one endpoint in Vi and another endpoint

in Vj , where 1 6 i < j 6 m and (Vi, Vj) is not ε-regular. As e(Vi, Vj) 6

|Vi| · |Vj | 6 (|V |/m)2 and there are at most εm2 not ε-regular pairs, the

number of edges we delete in this step is at most εm2(|V |/m)2 = ε|V |2.

(iv) If (Vi, Vj) is ε-regular with 1 6 i < j 6 m but d(Vi, Vj) 6 3ε/2,

then delete those edges with one endpoint in Vi and another endpoint in

Vj . The number of edges we delete in this step is at most(
m

2

)
3
2
ε
|V |
m

· |V |
m

<
3
4
ε|V |2.

Let E′ denote the set of those edges left after the above four steps.

Then |E \ E′| < (3 + 3/4)ε|V |2 < 4ε|V |2.
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Now assume that any graph formulated by removing fewer than δ|V |2

edges from G contains triangles. Let l be the maximal number of pair-

wise edge-disjoint triangles contained in G, and let T1, . . . , Tl be pairwise

disjoint triangles in G. If we remove all edges of T1, . . . , Tl from G, then

the induced graph contains no triangles since each triangle in G shares an

edge with some Ti with 1 6 i 6 l. Therefore 3l > δ|V |2. As

|E \ E′| < 4ε|V |2 =
δ

3
|V |2 6 l,

the graph G′ = (V,E′) must contain a triangle T .

Suppose that the three vertices of the triangle T lie in Vi, Vj and Vk

respectively, where 1 6 i < j < k 6 m. By the formulation of E′, the pairs

(Vi, Vj), (Vi, Vk), (Vj , Vk) are ε-regular and d(Vi, Vj), d(Vi, Vk), d(Vj , Vk) are

all greater than 3ε/2.

Let

V
(j)
i = {v ∈ Vi : d({v}, Vj) 6 d(Vi, Vj)− ε}.

If |V (j)
i | > ε|Vi|, then |d(V (j)

i , Vj)−d(Vi, Vj)| < ε since (Vi, Vj) is ε-regular,

hence

d(Vi, Vj)− ε < d(V (j)
i , Vj) =

1

|V (j)
i |

∑
v∈V

(j)
i

d({v}, Vj) 6 d(Vi, Vj)− ε

which leads a contradiction. Thus |V (j)
i | < ε|Vi|. Similarly, |V (k)

i | < ε|Vi|,

where

V
(k)
i = {v ∈ Vi : d({v}, Vk) 6 d(Vi, Vk)− ε}.

For U = Vi \ (V (j)
i ∪ V (k)

i ), we have

|U | > |Vi| − |V (j)
i | − |V (k)

i | > |Vi| − ε|Vi| − ε|Vi| = (1− 2ε)|Vi|.
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Let u ∈ U . Then d({u}, Vj) > d(Vi, Vj) − ε > 3ε/2 − ε = ε/2 and

d({u}, Vk) > d(Vi, Vk)−ε > ε/2. Thus |Γj(u)| > ε|Vj | and |Γk(u)| > ε|Vk|,

where

Γj(u) = {v ∈ Vj : (u, v) ∈ E′} and Γk(u) = {v ∈ Vk : (u, v) ∈ E′}.

As (Vj , Vk) is ε-regular, we have

|d(Γj(u),Γk(u))− d(Vj , Vk)| < ε

and hence

e(Γj(u),Γk(u)) > (d(Vj , Vk)− ε)|Γj(u)| · |Γk(u)| > ε

2
ε|Vj |ε|Vk|.

Note that e(Γj(u),Γk(u)) is the number of triangles in G with u as a vertex

and the other two vertices in Vj and Vk respectively.

By the above, the number of triangles with vertices in Vi, Vj , Vk respec-

tively is at least

∑
u∈U

e(Γj(u),Γk(u)) > |U |ε
2
ε|Vj |ε|Vk| >

ε3

2
(1− 2ε)|Vi||Vj ||Vk|.

Recall that |Vi| = |Vj | = |Vk| = (|V | − |V0|)/m > (1 − ε)|V |/M . So G

contains at least c(δ)|V |3 triangles, where

c(δ) =
ε3(1− ε)3(1− 2ε)

2M3
> 0

only depends on δ. This concludes the proof. �
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Roth’s Theorem. Let 0 < δ < 1. If n ∈ Z+ is sufficiently large, then

any subset A of [1, n] with |A| > δn contains an AP of length three.

Proof. For each a ∈ [1, n], call {(a, 1), . . . , (a, n)} a vertical line, and

{(1, a), . . . , (n, a) a horizontal line. For m ∈ [2, 2n] call {(a, b) ∈ [1, n]2 :

a+ b = m} a skew line. Construct a graph G = (V,E) whose vertices are

these 4n − 1 lines and whose edges are just those (L1, L2) with L1 6= L2

and L1 ∩ L2 ⊆ X, where

X = {(a, b) ∈ [1, n]2 : a+ 2b ∈ A}.

Clearly L1 ∩ L2 = ∅ if L1 and L2 are lines of the same kind. If L1 and

L2 are lines of different kinds, then there is a unique intersection point of

L1 and L2. Thus a triangle in G is formed by three lines of three different

kinds, and so the intersection points of these three lines can be written as

(a, b), (a+ d, b), (a, b+ d) ∈ X.

For each v = (a, b) ∈ X, we let Tv denote the triangle in G whose

vertices are three different lines passing v. Clearly those Tv with v ∈ X

are pairwise edge-disjoint. Observe that

|X| =
∑
c∈A

|{(a, b) ∈ [1, n]2 : a = c− 2b}|

>
∑
c∈A

c>δn/2

(⌊ c
2

⌋
− 1

)
>

(
δn

4
− 2

) ∣∣∣∣ {
c ∈ A : c >

δn

2

} ∣∣∣∣
>

(
δn

4
− 2

)
δn

2
.

If n > 10/δ, then 2 6 δn/5 and hence

|X| >
(
δn

4
− δn

5

)
δn

2
>
δ2

40

(
n− 1

4

)2

= δ′|V |2
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where δ′ = δ2/640. If we remove fewer than δ′|V |2 < |X| edges from G,

then there is a triangle Tv with v ∈ X left in the resulting graph. By the

Triangle Removal Lemma, if |V | = 4n − 1 is sufficiently large then the

graph G contains at least c|V |3 > n2 > |X| triangles, where c > 0 only

depends on δ.

Assume that |V | is sufficiently large. By the above, G must contain a

triangle T different from those Tv with v ∈ X. Let (a, b), (a+ d, b), (a, b+

d) ∈ X be the three intersection points of the three lines used as the

vertices of T . Then d 6= 0, and also

a+ 2b ∈ A, a+ d+ 2b ∈ A, a+ 2(b+ d) = a+ 2b+ 2d ∈ A.

So A contains an AP of length three with common difference d. �

To obtain the general case of Szemerédi’s theorem in the above spirit,

one should extend Szemerédi’s Regularity Lemma and the Triangle Re-

moval Lemma to hypergraphs. We mention that there are several different

versions of them for hypergraphs. Contributors in this direction include

Erdős, Rödl, Skokan, Gowers, Chung, Graham, Tao, and Ishigami. We

will discuss this in future lectures.

The initial form of the following result was first obtained by Balog and

Szemerédi in 1994 via Szemerédi’s regularity lemma.

Balog-Szemerédi-Gowers Theorem. Let A and B be finite nonempty

subsets of an abelian group. Let E ⊆ A×B with

|E| > |A||B|
K

and |A
E
+B| 6 K ′

√
|A||B|,
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where K > 1, K ′ > 0 and A
E
+ B = {a + b : (a, b) ∈ E}. Then there are

A′ ⊆ A and B′ ⊆ B such that

|A′| > |A|
4
√

2K
, |B′| > |B|

4K
, and |A′ +B′| 6 212K5(K ′)3

√
|A||B|.

For convenience, if X is a finite set and f(x) ∈ C for all x ∈ X, then

we define

Ex∈Xf(x) :=
1
|X|

∑
x∈X

f(x).

For a predicate P we let

[[P ]] =
{

1 if P holds,
0 otherwise.

A Lemma on Paths of Length Two. Let G = (V,E) be a bipartite

graph with vertex classes A and B. Suppose that |E| > |A| |B|/K with

K > 1. Then for each 0 < ε < 1 there is A′ ⊆ A with |A′| > |A|/(
√

2K)

such that

∣∣∣{(a, a′) ∈ A′ ×A′ : |{b ∈ B : (a, b), (a′, b) ∈ E}| < ε

2K2
|B|

}∣∣∣ < ε|A′|2.

Proof. For b ∈ B, the neighborhood of b is N(b) = {a ∈ A : (a, b) ∈ E}.

Observe that

Eb∈B |N(b)| = |E|
|B|

>
|A|
K

and hence by the Cauchy-Schwarz inequality we have

Eb∈B(|N(b)|2) > (Eb∈B |N(b)|)2 >
|A|2

K2
.
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Let

Ω =
{

(a, a′) ∈ A×A : |N(a) ∩N(a′)| < ε

2K2
|B|

}
.

Clearly,

∑
b∈B

∑
a,a′∈N(b)

[[(a, a′) ∈ Ω]] =
∑

(a,a′)∈Ω

|N(a)∩N(a′)| < |Ω| ε

2K2
|B| 6 ε|A|2B

2K2

and so

Eb∈B

∑
a,a′∈N(b)

(
1− 1

ε
[[(a, a′) ∈ Ω]]

)
=Eb∈B |N(b)|2 − 1

ε
Eb∈B

∑
a,a′∈N(b)

[[(a, a′) ∈ Ω]]

>
|A|2

K2
− 1
ε
· ε|A|

2

2K2
=
|A|2

2K2
.

Thus, for some b ∈ B we have

|A|2

2K2
6

∑
a,a′∈N(b)

(
1− [[(a, a′) ∈ Ω]]

ε

)
=|N(b)|2 − 1

ε
|{(a, a′) ∈ Ω : a, a′ ∈ N(b)}|.

Set A′ = N(b) ⊆ A. Then |A′| > |A|/(
√

2K) and

|{(a, a′) ∈ Ω : a, a′ ∈ A′}| < ε|A′|2.

This concludes the proof. �

Proof of the Balog-Szemerédi-Gowers Theorem. Let G be a bi-

partite graph with vertex classes A and B, and with the edge set E. Let
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A∗ = {a ∈ A : |N(a)| > |B|/(2K)} and G∗ be the induced bipartite graph

with classes A∗ and B. Clearly e(A \A∗, B) 6 |A||B|/(2K) and thus

|E(G∗)| > |E| − |A||B|
2K

>
|A||B|
2K

.

Note that L = |A|/|A∗| > 1 and |E(G∗)| > |A∗||B|/(2K/L).

Applying the above lemma to the graph G∗, we know that there is

A′∗ ⊆ A∗ such that

|A′∗| >
|A∗|√

2(2K/L)
=

|A|
2
√

2K

and

∣∣∣∣ {
(a, a′) ∈ A′∗ ×A′∗ : |N(a) ∩N(a′)| < 1/(16K)

2(2K/L)2
|B|

} ∣∣∣∣ < |A′∗|2

16K
.

Thus there are fewer than |A′∗|2/(16K) pairs (a, a′) ∈ A′∗ × A′∗ which are

bad in the sense that |N(a) ∩N(a′)| < |B|L2/(128K3).

Let

A′ =
{
a ∈ A′∗ : |{a′ ∈ A′∗ : (a, a′) is bad}| < |A′∗|

8K

}
.

If |A′∗ \A′| > |A′∗|/2, then

|A′∗|2

16K
> |{(a, a′) ∈ (A′∗ \A′)×A′∗ : (a, a′) is bad}| > |A′∗|

2
· |A

′
∗|

8K

which leads a contradiction. So |A′| > |A′∗|/2 > |A|/(4
√

2K). Set

B′ =
{
b ∈ B : |{a ∈ A′∗ : (a, b) ∈ E}| > |A′∗|

4K

}
.
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Then

|A′∗||B′| >
∑
b∈B′

|{a ∈ A′∗ : (a, b) ∈ E}|

=
∑
b∈B

|{a ∈ A′∗ : (a, b) ∈ E}| −
∑

b∈B\B′

|{a ∈ A′∗ : (a, b) ∈ E}|

>|A′∗|
|B|
2K

−
∑

b∈B\B′

|A′∗|
4K

>
|A′∗||B|

4K

and hence |B′| > |B|/(4K).

Let a ∈ A′ and b ∈ B′. Then

|{a′ ∈ A′∗ : (a′, b) ∈ E}| > |A′∗|
4K

and |{a′ ∈ A′∗ : (a, a′) is bad}| < |A′∗|
8K

.

Therefore ∣∣∣∣ {
a ∈ A′∗ : (a′, n) ∈ E and |N(a) ∩N(a′)| > L2|B|

128K3

} ∣∣∣∣
=|{a ∈ A′∗ : (a′, n) ∈ E and (a, a′) is not bad}|

>
|A′∗|
4K

− |A′∗|
8K

=
|A′∗|
8K

>
|A|

16
√

2K2

and hence

|{(a′, b′) ∈ A×B : (a, b′), (a′, b′), (a′, b) ∈ E}|

>
|A|

16
√

2K2
· L

2|B|
27K3

>
|A||B|
212K5

.

Note that (a+ b′)− (a′ + b′) + (a′ + b) = a+ b. So

|{(x, y, z) : x, y, z ∈ A
E
+B, x− y + z = a+ b}| > |A||B|

212K5
.

By the above,

|A′ +B′| |A||B|
212K5

6|{(x, y, z) : x, y, z ∈ A
E
+B, x− y + z ∈ A′ +B′}|

6|A
E
+B|3 6 (K ′

√
|A||B|)3

and it follows that |A′ + |B′| 6 212K5(K ′)3
√
|A||B|. We are done. �
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