Last update: Nov. 6, 2015.

A CONJECTURE ON UNIT FRACTIONS INVOLVING PRIMES

Zhi-Wei Sun
Department of Mathematics, Nanjing University
Nanjing 210093, People's Republic of China
zwsun@nju.edu.cn
http://math.nju.edu.cn/~zwsun

Abstract. We present a conjecture on unit fractions involving primes, and provide numerical data supporting the conjecture.

Unit fractions have the form $1 / n$ with $n \in \mathbb{Z}^{+}=\{1,2,3, \ldots\}$. A sum of finitely many distinct unit fractions is called a Egyptian fraction as it was first studied by the ancient Egyptians around 1650 B.C. As

$$
\frac{1}{n}=\frac{1}{n+1}+\frac{1}{n(n+1)},
$$

any positive rational number $r=m / n$ with $m, n \in \mathbb{Z}^{+}$is an Egyptian fraction. (This easy fact was first proved by Fibonacci in 1202 and it implies that the series $\sum_{n=1}^{\infty} 1 / n$ diverges.) For example,

$$
1=\frac{1}{2}+\frac{1}{2}=\frac{1}{2}+\left(\frac{1}{2+1}+\frac{1}{2 \times 3}\right)=\frac{1}{2}+\frac{1}{3}+\frac{1}{6} .
$$

See also Graham [Gr] and Guy [Gu, pp. 252-262] for known problems and results on Egyptian fractions.

Euclid proved that there are infinitely many primes. In 1737, Euler showed further that $\sum_{p} 1 / p$ diverges, where p runs over all the primes. Equivalently, $\sum_{p} 1 /(p-1)$ and $\sum_{p} 1 /(p+1)$ diverge. By Dirichlet's theorem, for any $d= \pm 1$ and $n \in \mathbb{Z}^{+}$there are infinitely many primes p with $p \equiv d(\bmod n)$. Motivated by this, we formulate the following conjecture.

Conjecture. (i) (Sept. 9, 2015) For any positive rational number r, there is a finite set P_{r}^{-}of primes such that

$$
\begin{equation*}
\sum_{p \in P_{r}^{-}} \frac{1}{p-1}=r . \tag{1}
\end{equation*}
$$

[^0](ii) (Sept. 10, 2015) For any positive rational number r, there is a finite set P_{r}^{+}of primes such that
\[

$$
\begin{equation*}
\sum_{p \in P_{r}^{+}} \frac{1}{p+1}=r \tag{2}
\end{equation*}
$$

\]

The author made the conjecture public by adding comments (cf. [S1]) on the sequence A000040 of primes in OEIS. He also sent a message (cf. [S2]) to Number Theory Mailing List to report part (i) of the conjecture. The author would like to offer 500 US dollars as the first complete solution to the conjecture.

Recall that a positive integer n is called a practical number if each $m=1, \ldots, n$ can be written as the sum of some distinct (positive) divisors of n. 1 is the only odd practical numbers, and all powers of two are practical numbers. The distribution of practical numbers is quite similar to that of prime numbers. For $x>0$ let $P(x)$ denote the number of practical numbers not exceeding x. Similar to the Prime Number Theorem, we have

$$
P(x) \sim c \frac{x}{\log x} \quad \text { for some constant } c>0
$$

which was conjectured by M. Margenstern [M] in 1991 and proved by A. Weingartner [W] in 2014. In view of the above conjecture on unit fractions involving primes, on Sept. 12, 2015 the author conjectured that any positive rational number r can be written as $\sum_{j=1}^{k} 1 / q_{j}$, where q_{1}, \ldots, q_{k} are distinct practical numbers. (See the author's comments (cf. [S3]) added to the sequence A005153 of practical numbers in OEIS.) For example,

$$
\frac{10}{11}=\frac{1}{2}+\frac{1}{4}+\frac{1}{8}+\frac{1}{48}+\frac{1}{132}+\frac{1}{176}
$$

with $2,4,8,48,132,176$ all practical numbers.
We have checked the conjecture for all those rational numbers $r \in(0,1]$ with denominators among $1, \ldots, 30$. Below we provide 12 tables containing related data. Note that Tables 8 and 12 were produced by Prof. Qing-Hu Hou at Tianjin Univ. (Nov. 6, 2015) on the author's request.

Table 1: P_{r}^{-}and P_{r}^{+}for $r \in(0,1]$ with denominators among $1, \ldots, 8$

r	P_{r}^{-}	P_{r}^{+}
1	$\{2\},\{3,5,7,13\}$	$\{2,3,5,7,11,23\}$
$1 / 2$	$\{3\}$	$\{2,5\}$
$1 / 3$	$\{5,11\}$	$\{2\}$
$2 / 3$	$\{3,7\}$	$\{2,3,11\}$
$1 / 4$	$\{5\}$	$\{3\}$
$3 / 4$	$\{3,5\}$	$\{2,3,5\}$
$1 / 5$	$\{7,31\}$	$\{5,29\}$
$2 / 5$	$\{5,11,29,71\}$	$\{2,17,89\}$
$3 / 5$	$\{3,11\}$	$\{2,3,59\}$
$4 / 5$	$\{3,5,29,71\}$	$\{2,3,5,19\}$
$1 / 6$	$\{7\}$	$\{5\}$
$5 / 6$	$\{3,5,13\}$	$\{2,3,5,11\}$
$1 / 7$	$\{13,29,43\}$	$\{7,71,251\}$
$2 / 7$	$\{5,29\}$	$\{3,31,223\}$
$3 / 7$	$\{5,13,17,43,113\}$	$\{2,11,83\}$
$4 / 7$	$\{3,17,113\}$	$\{2,5,13\}$
$5 / 7$	$\{3,7,31,71\}$	$\{2,3,7,167\}$
$6 / 7$	$\{3,5,13,43\}$	$\{2,3,5,11,41\}$
$1 / 8$	$\{11,41\}$	$\{7\}$
$3 / 8$	$\{5,11,41\}$	$\{2,23\}$
$5 / 8$	$\{3,11,41\}$	$\{2,3,23\}$
$7 / 8$	$\{3,5,11,41\}$	$\{2,3,5,7\}$

Table 2: P_{r}^{-}and P_{r}^{+}for $r \in(0,1)$ with denominators among $9, \ldots, 12$

r	P_{r}^{-}	P_{r}^{+}
$1 / 9$	$\{13,37\}$	$\{11,41,251\}$
$2 / 9$	$\{7,19\}$	$\{5,17\}$
$4 / 9$	$\{5,7,37\}$	$\{2,11,41,251\}$
$5 / 9$	$\{3,19\}$	$\{2,5,17\}$
$7 / 9$	$\{3,5,37\}$	$\{2,3,5,41,251\}$
$1 / 10$	$\{11\}$	$\{11,59\}$
$3 / 10$	$\{5,29,71\}$	$\{3,19\}$
$7 / 10$	$\{3,7,31\}$	$\{2,3,11,29\}$
$9 / 10$	$\{3,5,11,29,71\}$	$\{2,3,5,7,47,239\}$
$1 / 11$	$\{23,67,73,89,199\}$	$\{11,131\}$
$2 / 11$	$\{7,67\}$	$\{7,43,47,109,239\}$
$3 / 11$	$\{7,19,23,199\}$	$\{3,43\}$
$4 / 11$	$\{5,13,73,89,199\}$	$\{2,43,131\}$
$5 / 11$	$\{5,13,19,23,67,199\}$	$\{2,11,47,109,239,263\}$
$6 / 11$	$\{3,23\}$	$\{2,5,23,263\}$
$7 / 11$	$\{3,11,41,89\}$	$\{2,3,23,131,263\}$
$8 / 11$	$\{3,7,19,199\}$	$\{2,3,7,71,197\}$
$9 / 11$	$\{3,5,37,67,73,89\}$	$\{2,3,5,17,131,197\}$
$10 / 11$	$\{3,5,13,19,67,199\}$	$\{2,3,5,7,43,131,263\}$
$1 / 12$	$\{13\}$	$\{5,7\}$
$5 / 12$	$\{3,13\}$	$\{11\}$
$7 / 12$	$\{3,5,7\}$	$\{2,11\}$
$11 / 12$		$\{2,3\}$
	$\{2,3,5,7,23\}$	

Table 3: P_{r}^{-}and P_{r}^{+}for $r \in(0,1)$ with denominators among $13,14,15$

r	P_{r}^{-}	P_{r}^{+}
1/13	$\{29,53,71,131\}$	$\{23,71,83,181,251\}$
2/13	$\{11,31,79,131\}$	$\{11,23,79,103,239,389\}$
3/13	$\{7,29,71,131,157\}$	$\{7,13,59,103,181,389\}$
4/13	$\{5,29,71,131\}$	$\{3,29,79,179,239,467\}$
5/13	$\{5,11,41,157,313\}$	$\{2,31,103,223,251,503\}$
6/13	$\{5,7,37,73,313\}$	$\{2,11,29,151,311,569\}$
7/13	$\{3,53,79,157\}$	$\{2,5,41,167,181,311\}$
8/13	$\{3,13,53,79\}$	$\{2,3,53,179,233,269\}$
9/13	$\{3,7,53,157\}$	$\{2,3,11,71,103,467\}$
10/13	$\{3,5,53\}$	$\{2,3,5,71,311,467\}$
11/13	$\{3,5,13,79\}$	$\{2,3,5,11,103,311\}$
12/13	$\{3,5,7,157\}$	$\{2,3,5,7,23,233,467\}$
1/14	$\{17,113\}$	\{13\}
3/14	$\{7,31,71\}$	$\{5,31,83,223\}$
5/14	$\{5,13,43\}$	$\{2,41\}$
9/14	$\{3,13,29,43\}$	$\{2,3,19,179,251\}$
11/14	$\{3,5,29\}$	$\{2,3,5,31,223\}$
13/14	$\{3,5,7,109,379\}$	$\{2,3,5,7,23,83\}$
1/15	$\{17,241\}$	$\{19,59\}$
2/15	$\{11,31\}$	$\{11,19\}$
4/15	$\{5,61\}$	$\{3,59\}$
7/15	$\{5,7,29,71\}$	$\{2,11,19\}$
8/15	\{3, 31\}	$\{2,5,29\}$
11/15	$\{3,7,17,241\}$	$\{2,3,7,47,239\}$
13/15	$\{3,5,11,61\}$	$\{2,3,5,11,29\}$
14/15	$\{3,5,7,61\}$	$\{2,3,5,7,17,359\}$

Table 4: P_{r}^{-}and P_{r}^{+}for $r \in(0,1)$ with denominators among 16 and 17

r	P_{r}^{-}	P_{r}^{+}
$1 / 16$	$\{17\}$	$\{23,47\}$
$3 / 16$	$\{7,61,241\}$	$\{5,47\}$
$5 / 16$	$\{5,17\}$	$\{3,19,79\}$
$7 / 16$	$\{5,7,61,241\}$	$\{2,11,47\}$
$9 / 16$	$\{3,17\}$	$\{2,5,19,79\}$
$11 / 16$	$\{3,7,61,241\}$	$\{2,3,11,47\}$
$13 / 16$	$\{3,5,17\}$	$\{2,3,5,19,79\}$
$15 / 16$	$\{3,5,7,61,241\}$	$\{2,3,5,7,19,79\}$
$1 / 17$	$\{19,307\}$	$\{17,467,883\}(\mathrm{Qing}-\mathrm{Hu}$ Hou)
$2 / 17$	$\{13,73,103,137,307\}$	$\{11,101,107,179,269,271,431\}$
$3 / 17$	$\{7,19,103,307\}$	$\{7,31,167,223,239,271,509\}$
$4 / 17$	$\{5,37,73,409\}$	$\{5,23,79,179,239,359,509\}$
$5 / 17$	$\{5,13,73,307,409\}$	$\{3,67,101,109,239,271,373\}$
$6 / 17$	$\{3$,	$\{3,13,83,101,239,271,509\}$
$7 / 17$	$\{5,13,19,103,137,307,409\}$	$\{2,17,103,197,263,373,571\}$
$8 / 17$	$\{5,7,31,103,211,281,409\}$	$\{3,7,19,31,107,431,647,1699,2591,4049\}(\mathrm{Qing}-\mathrm{Hu} \mathrm{Hou})$
$9 / 17$	$\{3,113,137,211,239,241\}$	$\{2,5,101,109,239,271,373\}$
$10 / 17$	$\{3,17,127,137,239,307,337\}$	$\{2,5,17,89,101,109,373\}$
$11 / 17$	$\{3,13,29,43,239\}$	$\{2,3,29,59,109,373,509\}$
$12 / 17$	$\{3,7,43,127,239,307\}$	$\{2,3,11,53,67,271,431\}$
$13 / 17$	$\{3,7,13,239,241,337,421,1021\}$	$\{2,3,7,29,67,151,569\}$
$14 / 17$	$\{3,5,29,43,103,239\}$	P_{2}^{+}

Table 5: P_{r}^{-}and P_{r}^{+}for $r \in(0,1)$ with denominators among 18 and 19

r	P_{r}^{-}	P_{r}^{+}
$1 / 18$	$\{19\}$	$\{17\}$
$5 / 18$	$\{5,37\}$	$\{3,53,107\}$
$7 / 18$	$\{5,13,19\}$	$\{2,17\}$
$11 / 18$	$\{3,13,37\}$	$\{2,3,43,197\}$
$13 / 18$	$\{3,7,19\}$	$\{2,3,7,71\}$
$17 / 18$	$\{3,5,7,37\}$	$\{2,3,5,7,17,71\}$
$1 / 19$	$\{37,137,191,229,331,397,761,1021\}$	$\{37,107,227,239,311,359,701,911\}$
$2 / 19$	$\{13,101,151,191\}$	$\{13,59,223,251,269,359,863,911\}$
$3 / 19$	$\{11,29,127,229,271,379,457,761\}$	$\{7,71,151,239,311,379,683,1039\}$
$4 / 19$	$\{7,53,131 ‘, 157,211,281,457\}$	$\{5,41,139,223,311,379,607,1039\}$
$5 / 19$	$\{7,17,61,191,229,241,457,761\}$	$\{5,13,79,239,311,389,727,797\}$
$6 / 19$	$\{5,29,71,191,211,281,457\}$	$\{3,23,83,239,311,379,797,1039\}$
$7 / 19$	$\{5,13,61,101,241,401,571\}$	$\{2,53,227,269,307,359,659,1063\}$
$8 / 19$	$\{5,11,17,229,241\}$	$\{2,13,227,263,307,379,769,1063\}$
$9 / 19$	$\{5,7,31,67,229,419,571\}$	$\{2,11,23,167,251,359,683,839\}$
$10 / 19$	$\{3,101,151,191,229\}$	$\{2,5,71,239,311,379,683,1039\}$
$11 / 19$	$\{3,29,37,127,281,457,571\}$	$\{2,5,17,71,227,379,719,911\}$
$12 / 19$	$\{3,11,61,211,229,281,457\}$	$\{2,3,29,151,307,379,659,1063\}$
$13 / 19$	$\{3,11,23,37,181,331,419\}$	$\{2,3,11,127,227,383,607,911\}$
$14 / 19$	$\{3,7,31,41,191,229,457\}$	$\{2,3,7,59,151,359,719,911\}$
$15 / 19$	$\{3,5,67,101,151,191,419\}$	$\{2,3,5,37,127,383,607,911\}$
$16 / 19$	$\{3,5,17,61,191,241,457,761\}$	$\{2,3,5,13,71,227,683,1063\}$
$17 / 19$	$\{3,5,11,31,211,281,571,761\}$	$\{2,3,5,7,71,379,569,683\}$
$18 / 19$	$\{3,5,7,61,151,229,601,761\}$	$\{2,3,5,7,17,71,503,1063\}$

Table 6: P_{r}^{-}and P_{r}^{+}for $r \in(0,1)$ with denominators among 20 and 21

r	P_{r}^{-}	P_{r}^{+}
$1 / 20$	$\{29,71\}$	$\{19\}$
$3 / 20$	$\{11,29,71\}$	$\{7,71,89\}$
$7 / 20$	$\{5,11\}$	$\{2,59\}$
$9 / 20$	$\{5,7,31\}$	$\{2,11,29\}$
$11 / 20$	$\{3,29,71\}$	$\{2,5,19\}$
$13 / 20$	$\{3,11,29,71\}$	$\{2,3,17,89\}$
$17 / 20$	$\{3,5,11\}$	$\{2,3,5,11,59\}$
$19 / 20$	$\{3,5,7,31\}$	$\{2,3,5,7,23,29\}$
$1 / 21$	$\{31,71\}$	$\{47,107,167,179,269,431\}$
$2 / 21$	$\{17,43,113\}$	$\{17,43,167,197,251,503\}$
$4 / 21$	$\{7,43\}$	$\{7,23,83,167,251,503\}$
$5 / 21$	$\{7,17,113\}$	$\{5,19,103,179,233,503\}$
$8 / 21$	$\{5,11,61,71\}$	$\{2,31,167,223,251,503\}$
$10 / 21$	$\{5,7,29,43\}$	$\{2,7,131,197,307,503\}$
$11 / 21$	$\{3,43\}$	$\{2,5,83,167,251,503\}$
$13 / 21$	$\{3,13,29\}$	$\{2,3,41,167,251,503\}$
$16 / 21$	$\{3,7,17,43,113\}$	$\{2,3,5,167,251,503\}$
$17 / 21$	$\{3,5,29,43\}$	$\{2,3,5,19,139,419\}$
$19 / 21$	$\{3,5,13,17,113\}$	$\{2,3,5,7,41,167\}$
$20 / 21$	$\{3,5,7,29\}$	$\{2,3,5,7,13,167\}$

Table 7: P_{r}^{-}and P_{r}^{+}for $r \in(0,1)$ with denominators among 22 and 24

r	P_{r}^{-}	P_{r}^{+}
$1 / 22$	$\{23\}$	$\{53,107,149,199,263,449\}$
$3 / 22$	$\{11,41,89\}$	$\{11,29,109,179,197\}$
$5 / 22$	$\{7,23,67\}$	$\{5,23,71,197\}$
$7 / 22$	$\{5,37,67,73,89\}$	$\{3,23,71,131,197\}$
$9 / 22$	$\{5,13,19,67,199\}$	$\{2,17,89,109\}$
$13 / 22$	$\{3,17,61,199,241,397\}$	$\{2,5,11,131\}$
$15 / 22$	$\{3,7,67\}$	$\{2,3,13,59,139,307\}$
$17 / 22$	$\{3,7,19,23,199\}$	$\{2,3,5,43\}$
$19 / 22$	$\{3,5,11,181,199,331\}$	$\{2,3,5,11,43,131\}$
$21 / 22$	$\{3,5,7,37,127,463\}$	$\{2,3,5,7,13,167,461\}$
$1 / 24$	$\{37,73\}$	$\{23\}$
$5 / 24$	$\{7,37,73\}$	$\{5,41,139,223,239,479\}$
$7 / 24$	$\{5,37,73\}$	$\{3,41,139,223,239,479\}$
$11 / 24$	$\{5,7,37,73\}$	$\{2,11,31,223,263,461\}$
$13 / 24$	$\{3,37,73\}$	$\{2,5,31,223,263,461\}$
$17 / 24$	$\{3,7,37,73\}$	$\{2,3,11,29,167,419\}$
$19 / 24$	$\{3,5,37,73\}$	$\{2,3,5,29,167,419\}$
$23 / 24$	$\{3,5,7,37,73\}$	$\{2,3,5,7,13,83\}$

Table 8 (Qing-Hu Hou): P_{r}^{-}and P_{r}^{+}for $r \in(0,1)$ with denominator 23

r	P_{r}^{-}	P_{r}^{+}
$1 / 23$	$\{29,139,1933\}$	$\{23,643,3863\}$
$2 / 23$	$\{13,277\}$	$\{11,367,1103\}$
$3 / 23$	$\{11,47,139,691\}$	$\{7,229,919\}$
$4 / 23$	$\{7,139\}$	$\{5,137\}$
$5 / 23$	$\{11,13,31,1381\}$	$\{5,19,2069,4139\}$
$6 / 23$	$\{5,139,277\}$	$\{3,137,367,1103\}$
$7 / 23$	$\{5,31,61,277,1381\}$	$\{3,19,229\}$
$8 / 23$	$\{5,13,79,599\}$	$\{2,139,229,410,1609\}$
$9 / 23$	$\{5,11,47,61,461,1381\}$	$\{2,17,643,1609,4139\}$
$10 / 23$	$\{5,11,13,691\}$	$\{2,19,29,59,827,4139\}$
$11 / 23$	$\{5,11,13,31,139,277,1381\}$	$\{2,11,19,137,229\}$
$12 / 23$	$\{3,47\}$	$\{2,5,47,1103\}$
$13 / 23$	$\{3,29,47,139,1933\}$	$\{2,5,17,181,467,1091,1103,4783\}$
$14 / 23$	$\{3,11,139,691\}$	$\{2,5,17,29,89,139,643\}$
$15 / 23$	$\{3,11,31,61,461\}$	$\{2,5,19,29,41,59,83,137,139,643,1931\}$
$16 / 23$	$\{3,7,47,139\}$	$\{2,3,11,47,137,1103\}$
$17 / 23$	$\{3,7,23,67,139,277,1013\}$	$\{3,5,47,139,277\}$

Table 9: P_{r}^{-}and P_{r}^{+}for $r \in(0,1)$ with denominator 25

r	P_{r}^{-}	P_{r}^{+}
$1 / 25$	$\{31,151\}$	$\{59,149,167,223,239,479\}$
$2 / 25$	$\{29,61,71,151,241,401\}$	$\{17,139,167,199,251,419\}$
$3 / 25$	$\{13,71,151,211,241,337,421,701\}$	$\{11,53,149,179,269,449\}$
$4 / 25$	$\{11,29,101,181,271,379,421\}$	$\{7,53,167,251,269,349\}$
$6 / 25$	$\{7,29,43,211,281,337,401\}$	$\{7,17,149,197,263,439\}$
$7 / 25$	$\{5,109,151,211,241,379,401\}$	$\{3,71,197,199,263,439\}$
$8 / 25$	$\{5,23,113,241,337,401,421,463,701\}$	$\{3,19,139,149,251,449\}$
$9 / 25$	$\{5,13,101,127,271,379,421\}$	$\{2,103,167,233,251,349\}$
$11 / 25$	$\{5,7,109,211,241,379,401\}$	$\{2,11,103,149,233,359\}$
$12 / 25$	$\{5,7,29,71,151,241,401\}$	$\{2,7,103,179,233,449\}$
$13 / 25$	$\{5,7,13,109,379,401,433,541,701\}$	$\{2,7,103,179,233,359\}$
$14 / 25$	$\{3,29,71,101\}$	$\{2,5,23,89,199,449\}$
$16 / 25$	$\{3,11,31,151\}$	$\{2,3,23,139,199,349\}$
$17 / 25$	$\{3,11,17,151,157,401,521\}$	$\{2,3,11,139,251,449\}$
$18 / 25$	$\{3,7,29,131,401,433,541,547,701\}$	$\{2,3,11,23,149,199\}$
$19 / 25$	$\{3,5,101\}$	$\{2,3,7,23,139,349\}$
$21 / 25$	$\{3,5,13,151\}$	$\{2,3,5,13,83,149\}$
$22 / 25$	$\{3,5,11,61,151,241,401\}$	$\{2,3,5,11,23,199\}$
$23 / 25$	$\{3,5,11,19,181,379,401,433,701\}$	$\{2,3,5,7,29,149,199\}$
$24 / 25$	$\{3,5,7,41,101,241,433,541\}$	$\{2,3,5,7,17,41,349,359\}$

Table 10: P_{r}^{-}and P_{r}^{+}for $r \in(0,1)$ with denominators among 26 and 28

r	P_{r}^{-}	P_{r}^{+}
1/26	$\{71,127,211,271,313,379,521\}$	$\{67,139,181,263,311,461,509\}$
3/26	$\{13,71,157,241,337,421,547\}$	$\{11,67,197,233,263,439,509\}$
5/26	$\{7,109,181,271,337,433,547\}$	$\{5,109,181,263,307,439,571\}$
7/26	$\{7,13,131,229,313,457,571\}$	$\{5,11,139,251,311,359,467\}$
9/26	$\{5,17,53,137,337,443,547\}$	$\{3,13,83,233,311,359,389\}$
11/26	$\{5,11,19,157,181,271,541\}$	$\{2,13,167,233,263,461,467\}$
15/26	$\{3,19,103,239,307,443,547\}$	$\{2,5,17,79,239,389,467\}$
17/26	$\{3,11,29,113,241,313,547\}$	$\{2,3,17,181,233,311,503\}$
19/26	$\{3,7,23,131,157,421,463\}$	$\{2,3,7,67,311,389,509\}$
21/26	$\{3,5,29,79,281,313,421\}$	$\{2,3,5,23,89,359,467\}$
23/26	$\{3,5,11,61,79,313,521\}$	$\{2,3,5,7,233,311,467\}$
25/26	$\{3,5,7,37,73,313\}$	$\{2,3,5,7,11,311\}$
1/28	\{29\}	$\{41,83\}$
3/28	\{13, 43$\}$	$\{11,41\}$
5/28	$\{13,17,43,113\}$	$\{5,83\}$
9/28	$\{5,17,113\}$	$\{3,13\}$
11/28	$\{5,13,29,43\}$	$\{2,19,179,251\}$
13/28	$\{5,7,31,71\}$	$\{2,7,167\}$
15/28	$\{3,29\}$	\{2, 5, 131, 223\}
17/28	$\{3,13,43\}$	$\{2,3,41\}$
19/28	$\{3,13,17,43,113\}$	$\{2,3,11,83\}$
23/28	$\{3,5,17,113\}$	$\{2,3,5,13\}$
25/28	$\{3,5,13,29,43\}$	$\{2,3,5,7,71,251\}$
27/28	$\{3,5,7,31,71\}$	$\{2,3,5,7,11,167\}$

Table 11: P_{r}^{-}and P_{r}^{+}for $r \in(0,1)$ with denominators among 27 and 30

r	P_{r}^{-}	P_{r}^{+}
1/27	$\{37,109\}$	$\{43,107,197\}$
2/27	$\{29,67,127,211,271,337,433,661\}$	$\{17,53\}$
4/27	$\{11,37,157,211,271,281,521\}$	$\{7,71,107\}$
5/27	$\{11,17,109,211,241,379,541\}$	$\{5,53\}$
7/27	$\{7,17,61,211,241,379,541\}$	$\{3,107\}$
8/27	$\{5,37,181,211,271,379,541\}$	$\{3,41,53,251\}$
10/27	$\{5,11,157,211,271,281,521\}$	$\{2,41,107,251\}$
11/27	$\{5,11,29,101,151,379,421\}$	$\{2,17,53\}$
13/27	$\{5,7,23,127,181,271,463\}$	$\{2,7,71,107\}$
14/27	$\{5,7,13,109,211,379,541\}$	$\{2,5,53\}$
16/27	$\{3,17,61,211,241,379,541\}$	$\{2,3,107\}$
17/27	$\{3,11,61,211,271,379,541\}$	$\{2,3,29,107,269\}$
19/27	$\{3,7,43,241,271,337,421\}$	$\{2,3,11,29,269\}$
20/27	$\{3,7,19,109,211,379,541\}$	$\{2,3,7,53,71\}$
22/27	$\{3,5,23,127,181,271,463\}$	$\{2,3,5,17,107\}$
23/27	$\{3,5,13,109,211,379,541\}$	$\{2,3,5,11,53\}$
25/27	$\{3,5,11,17,113,379,541\}$	$\{2,3,5,7,23,107\}$
26/27	$\{3,5,7,29,181,379,421\}$	$\{2,3,5,7,17,53,71\}$
1/30	\{31\}	\{29\}
7/30	$\{7,29,61,71\}$	$\{5,17,89\}$
11/30	$\{5,11,61\}$	$\{2,29\}$
13/30	$\{5,7,61\}$	$\{2,11,59\}$
17/30	$\{3,29,61,71\}$	$\{2,5,17,89\}$
19/30	$\{3,11,31\}$	$\{2,3,19\}$
23/30	$\{3,5,61\}$	$\{2,3,5,59\}$
29/30	$\{3,5,7,29,71\}$	$\{2,3,5,7,19,23\}$

Table 12 (Qing-Hu Hou): P_{r}^{-}and P_{r}^{+}for $r \in(0,1)$ with denominator 29

r	P_{r}^{-}	P_{r}^{+}
1/29	$\{59,61,1741\}$	$\{31,347,4639,6959\}$
2/29	$\{17,241,661,1277\}$	$\{19,59,463,6959\}$
3/29	$\{13,59,349\}$	$\{11,59,347,1913,19139\}$
4/29	$\{11,31,233,4931,11833\}$	$\{11,19,347,811,2029\}$
5/29	$\{7,211,1741,2437\}$	$\{5,173\}$
6/29	$\{7,29,281,2437,2521,7309\}$	$\{5,29,271,509,1217,4079,7307,17747\}$
7/29	$\{7,19,59,523\}$	$\{5,13,521,811,7307\}$
8/29	$\{5,41,1451,5801\}$	$\{5,11,47,347,463\},\{3,43,347,4871,17863\}$
9/29	$\{5,19,233,2089\}$	$\{3,17,347,521\}$
10/29	$\{5,13,97,929\}$	$\{2,139,419,521,18269\},\{3,19,29,89,2609\}$
11/29	$\{5,13,37,59,1277,5743\}$	$\{2,23,347,811,4871\},\{3,7,347,811,4871\}$
12/29	$\{5,13,19,79,131,349,1171,1741,11311\}$	$\{2,13,167,347,463\}$
13/29	$\{5,13,19,37,59,73,2089\}$	$\{2,11,47,173,347,463\}$
14/29	$\{5,11,13,41,61,233,349,1741\}$	$\{2,11,17,173,347,521\}$
15/29	$\{3,59\}$	$\{2,11,19,29,89,173,2609\},\{3,5,19,29,89,173,2609\}$
16/29	$\{3,31,59,929,13921\}$	$\{2,5,19,811,2029\}$
17/29	$\{3,13,349\}$	$\{2,3,347\}$
18/29	$\{3,11,59,349,1741\}$	$\{2,3,43,131,173,811,13397\}$
19/29	$\{3,11,23,199,349,991,1277\}$	$\{2,3,19,59,347,463,6959\}$
20/29	$\{3,7,67,233,419,1103,4409\}$	$\{2,3,11,47,463\}$
21/29	$\{3,7,19,523\}$	$\{2,3,11,17,521\}$
22/29	$\{3,5,181,349,8353,13921\}$	$\{2,3,5,173,347\}$
23/29	$\{3,5,41,59,1451,5801\}$	$\{2,3,5,23,811,4871\}$
24/29	$\{3,5,19,59,233,2089\}$	$\{2,3,5,13,251,811,1217,7307\}$
25/29	$\{3,5,13,43,349,547,7541,11311\}$	$\{2,3,5,11,47,173,463\}$
26/29	$\{3,5,13,19,233,349,2089\}$	$\{2,3,5,11,17,173,521\}$
27/29	$\{3,5,13,19,37,73,2089\}$	$\{2,3,5,11,13,41,463,4871,9743\}$
28/29	$\{3,5,11,13,41,241,349,6961\}$	$\{2,3,5,7,11,173,811,4871\}$

References

[Gr] R. L. Graham, Paul Erdős and Egyptian fractions, in: L. Lovász, I. Z. Ruzsa and V. T. Sós (eds.), Erdős Centennial, Bolyai Soc. Math. Stud. Vol. 25, János Bolyai Math. Soc., Budapest, 2013, pp. 289-309.
[Gu] R. K. Guy, Unsolved Problems in Number Theory, 3rd Edition, Springer, New York, 2004, Section D11.
[M] M. Margenstern, Les nombres pratiques: théorie, observations et conjectures, J. Number Theory 37 (1991), 1-36.
[Sl] Z.-W. Sun, Comments added to the sequence A000040 in OEIS (On-Line Encyclopedia of Integer Sequences), http://oeis.org/A000040.
[S2] Z.-W. Sun, A representation problem involving unit fractions, a message to Number Theory Mailing List, Sept. 9, 2015. Available publicly from the website http://listserv.nodak.edu/cgi-bin/wa.exe?A2=NMBRTHRY;c35a7a46.1509.
[S3] Z.-W. Sun, Comment added to the sequence A005153 in OEIS (On-Line Encyclopedia of Integer Sequences), http://oeis.org/A005153.
[W] A. Weingartner, Practical numbers and the distribution of divisors, Q. J. Math. 66 (2015), 743-758.

[^0]: 2010 Mathematics Subject Classification. Primary 11D68; Secondary 11A41.
 Keywords. Prime numbers, unit fractions, Egyptian fractions, representations of rational numbers.

