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1. The Original Hilbert’s Tenth Problem

In 1900 D. Hilbert asked for an effective algorithm to test whether an arbitrary
polynomial equation

P (x1, · · · , xn) = 0

(with integer coefficients) has solutions over the ring Z of the integers. At that time
the exact meaning of algorithm was not known.

The theory of computability was born in the 1930’s. The problem whether n
belongs to a given subset A of N = {0, 1, 2, · · · } is decidable, if and only if the
characteristic function of A is Turing computable (or recursive). [In this case A is
called a recursive set.] An r.e. (recursively enumerable) set is the empty-set ∅ or the
range of a recursive function, it is also the domain of a partial recursive function.
It is well-known that there are nonrecursive r.e. sets. A relation R(a1, · · · , an) is
said to be r.e. if the set

{⟨a1, · · · , an⟩ : R(a1, · · · , an) holds}

is r.e. A relation R(a1, · · · , am) is said to be Diophantine if there is a polynomial
P (y1, · · · , ym, x1, · · · , xn) with integer coefficients such that

R(a1, · · · , am) ⇐⇒ ∃x1 · · · ∃xn[P (a1, · · · , am, x1, · · · , xn) = 0]

where variables range over N. A set A ⊆ N is Diophantine if and only if the
predicate a ∈ A is Diophantine. It is easy to show that a Diophantine set is an r.e.
set.

In 1961 Davis, Putnam and J. Robinson [Ann. Math.] successfully showed
that any r.e. set is exponential Diophantine, that is, any r.e. set W has the
representation

a ∈ W ⇐⇒ ∃x1, · · · , xn[P (a, x1, · · · , xn, 2
x1 , · · · , 2xn) = 0]
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where P is a polynomial with integer coefficients. Observe that the Fibonacci
sequence {Fn} defined by

F0 = 0, F1 = 1, and Fn+1 = Fn + Fn−1 (n = 1, 2, 3, · · · )
increases exponentially. In 1970 Matijasevič took the last step to show that the
relation y = F2x is Diophantine. It follows that the exponential relation a =
bc is Diophantine, i.e. there exists polynomial P (a, b, c, x1, · · · , xn) with integer
coefficients such that

a = bc ⇐⇒ ∃x1, · · · , xn[P (a, b, c, x1, · · · , xn) = 0].

This surprising result together with the work of Davis, Putnam and Robinson leads
the following important result.

Theorem 1. Any r.e. set is Diophantine.

As some r.e. sets are not recursive, HTP over N is unsolvable, we also say
that ∃n over N (with n arbitrary) is undecidable. Lagrange’s theorem in number
theory states that any n ∈ N can be written as the sum of four squares. Thus
P (x1, · · · , xn) = 0 has solutions over N if and only if

P (u2
1 + v21 + y21 + z21 , · · · , u2

n + v2n + y2n + z2n) = 0

has solutions over Z. If ∃n over Z is decidable, then so is ∃n over N. Now that ∃n
over N is undecidable, so is ∃n over Z, i.e. HTP is unsolvable!

It should be mentioned that a whole proof the unsolvability of HTP is very
long and full of ingenious techniques. A modern proof given by J. P. Jones and
Matijasevič [Amer. Math. Monthly, 1991] involves clever arithmetization of register
machines.

Theorem 1 implies the following interesting result.

Corollary 1. Let f be a recursive function of one variable. Then for some poly-
nomial Q(x, x0, · · · , xn) with integer coefficients we have

f(x) = y ⇐⇒ ∃x0, · · · , xn[Q(x, x0, · · · , xn) = y].

Proof. As the relation f(x) = y is an r.e. relation, there exists a polynomial
P (x, y, x1, · · · , xn) with integer coefficients such that

f(x) = y ⇐⇒ ∃x1, · · · , xn[P (x, y, x1, · · · , xn) = 0].

Thus

f(x) = y ⇐⇒ ∃x0, x1, · · · , xn[1− P 2(x, x0, x1, · · · , xn) > 0 ∧ x0 = y]

⇐⇒ ∃x0, x1, · · · , xn[(x0 + 1)(1− P 2(x, x0, x1, · · · , xn)) = y + 1]

⇐⇒ ∃x0, x1, · · · , xn[Q(x, x0, x1, · · · , xn) = y]

where

Q(x, x0, x1, · · · , xn) = (x0 + 1)(1− P 2(x, x0, x1, · · · , xn))− 1.

It is well-known that a nonconstant polynomial P (x1, · · · , xn) ∈ Z[x1, · · · , xn]
cannot always take prime values. However, we have the following surprising result.
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Corollary 2. There exists a polynomial Q(x1, · · · , xn) with integer coefficients
such that the positive integers in the range of Q (variables run over N) are just the
primes.

Proof. Let px denote the xth prime. Clearly the function px is recursive. Applying
Corollary 1 we then obtain the desired result.

2. Reduction of unknowns in Diophantine Representations

For a fixed nonrecursive r.e. set W , there exists a polynomial P with integer
coefficients such that

a ∈ W ⇐⇒ ∃x1, · · · , xν [P (a, x1, · · · , xν) = 0].

Thus ∃ν over N is undecidable. Note that here ν is a particular number (not an
arbitrary number). To find the least ν with ∃ν over N undecidable, is a very hard
problem. In the summer of 1970 Matijasevič announced that ν < 200, soon J.
Robinson pointed out that ν 6 35. Then Matijasevič and Robinson cooperated
in this direction, in 1973 they [Acta Arith. 1975] obtained that ν 6 13, actually
they showed that any diophantine equation over N can be reduced to one in 13
unknowns. Among lots of techniques they used, here I mention the following one
which can be used to reduce unknowns greatly.

Theorem 2 (Matijasevič-Robinson Relation-Combining Theorem). Let k ∈ N.
Then there exists a polynomial Mk(x1, · · · , xk+4) with integer coefficients such that
for any given integers A1, · · · , Ak, B(̸= 0), C,D we have

A1, · · · , Ak ∈ � (the set of squares), B | C, D > 0

if and only if

Mk(A1, · · · , Ak, B, C,D, x) = 0 for some x ∈ N.

In 1975 Matijasevič announced further that ∃9 over N is undecidable, a complete
proof of this 9-unknowns theorem was given by Jones [J. Symbolic Logic, 1982].

As the original HTP is considered over Z, what about the smallest µ such that
∃µ over Z is undecidable? By Lagrange’s theorem, one natural variable can be
expressed in terms of 4 integer variables. So, if ∃n over N (n fixed) is undecidable,
then so is ∃4n over Z. This can be made better. Fermat called an integer in the
form

1 + 2 + · · ·+ n =
n(n+ 1)

2

a triangle number. He asserted that every natural number is the sum of three
triangle numbers, i.e. we can write n ∈ N in the following form:

n =
x(x+ 1)

2
+

y(y + 1)

2
+

z(z + 1)

2
,
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that is

8n+ 3 = (2x+ 1)2 + (2y + 1)2 + (2z + 1)2.

The Gauss-Legendre theorem states that n ∈ N is the sum of three integer squares
if and only if n is not of the form 4a(8b+ 7) where a, b ∈ N. It follows that for an
integer n we have

n > 0 ⇐⇒ n = x2 + y2 + z2 + z for some x, y, z ∈ Z.

[If 4n + 1 = a2 + b2 + c2, then exactly one of a, b, c is odd, say 2 - c, thus a = 2x,
b = 2y and c = 2z + 1 for some x, y, z ∈ Z.] Therefore the undecidability of
∃n over N implies the undecidability of ∃3n over Z, thus S.P. Tung obtained the
undecidability of ∃27 over Z from the 9 unknowns theorem. In 1992 I improved this
greatly.

Theorem 3 (Zhi-Wei Sun, 1992). (i) For any n ∈ N, if ∃n over N is undecidable,
then so is ∃2n+2 over Z.

(ii) ∃11 over Z is undecidable.

Part (i) was published in Z. Math. Logik Grundlag. Math. 38(1992). The
result follows from my new relation-combining theorem for integers. Combining
this with the 9 unknowns theorem we immediately get the undecidability of ∃20
over Z. The proof of part (ii) is very hard, though somewhat similar to the proof of
the 9 unknowns theorem. To obtain a proof I use integer unknowns from the very
beginning and study Lucas sequence

u0 = 0, u1 = 1, un+1 + un−1 = Aun (n ∈ Z)

with integer indices.

We remark that up to now no one can find P (x, y, z) ∈ Z[x, y, z] such that

x > 0 ⇐⇒ ∃y∃z[P (x, y, z) = 0].

So, to replace a natural variable we need at least two more integer variables. In
view of this, part (i) is interesting and part (ii) is difficult to be improved since
9 + 2 = 11. To express that x is nonzero we can use two integer unknowns only. S.
P. Tung observed that

x ̸= 0 ⇐⇒ ∃y∃z[x = (2y + 1)(3z + 1)].

Added in April 2017. The detailed proof of the undecidability of ∃11 over Z is
now publicly available from my preprint Further results on Hilbert’s tenth problem
on the website http://arxiv.org/abs/1704.03504
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3. Classification of Quantifier Prefixes over Diophantine Equations

We may also consider decidability of mixed HTP, that is, the quantifier prefixes
over (polynomial) diophantine equation may contain universal quantifiers.

Let’s first consider the problem over N. It is easy to say that ∃ is polynomial
decidable. The decidability of ∃2 is not known, though Baker found that a large
class of diophantine equations with two unknowns is decidable. In 1981 Jones
proved that ∀∃ is decidable, while the followings are undecidable:

∃∀∃2 (Matijasevič), ∃2∀∃ (Matijasevič–Robinson), ∃∀2∃,∀∃3, ∀∃∀∃ (Jones).

The decidability of ∃∀∃ remains open. Recently, Dr. M. Rojas made progress in
this direction. He showed that ∃∀∃ is generically decidable (co-NP), namely he
gave a precise geometric classification of those P ∈ Z[x, y, z] for which the question

∃x∀y∃z[P (x, y, z) = 0]

may be undecidable, and proved that this set of polynomials is quite small in a
rigorous sense. He also showed that, if integral points on curves can be bounded
effectively, then ∃2∀∃ is generically decidable as well.

As for the problem over Z, S.P. Tung [J. Algorithm, 1987] proved that ∀n∃ is
co-NP-complete. I proved the undecidability of ∀10∃2, ∃2∀∃3, ∃∀∃4 and so on.


