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1. LucAs QUOTIENTS AND RELATED CONGRUENCES

Let A, B € Z* = 7\ {0}. The Lucas sequences u,, = u, (A, B) and v,, = v, (A, B)
are defined as follows:

ug =0, uy =1, and upy1 = Auy + Buy—q forn=1,2,3,---,
vo =2, vy = A, and v,41 = Av, + Bv,—q forn=1,2,3,---.

The sequence F,, = u,(1,1) is called the Fibonacci sequence, its companion is the
sequence L, = v,(1,1). The sequence P,, = u,(2,1) is called the Pell sequence, its
companion is the sequence @, = v,(2,1).

Suppose that (A, B) = 1 and p is a prime with p{ B. It is well known that

u,_ay =0 (mod p) where A = A% +4B.

p—(
Thus we can define Lucas quotient

u,_a\(A, B)
qu(A7B> = %'

Let p be a prime different from 2 and 5. What can we say about the Fibonacci
quotient ug,(1,1) = Fp_(g)/p? In 1982 H. C. Williams obtained the congruence:

4
Fp_(2) e

3 |

(mod p).
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In 1992 Z.-H. Sun and I [Acta Arith.] expressed the sum >, _ .4 10) (¥) in
terms of Fibonacci numbers and Lucas numbers, as an application we determined
Fp+1)/2 mod p?. It follows that

—1

3
ki
R

F,

- % _ 1 1
5|k 1 2p 5|p+k
In 1960 D.D. Wall asked whether p* | F —(8) is always impossible. No counterex-

ample has been found. In 1992 we showed that if p? 1F, ~(2) then the first case of
Fermat’s Last Theorem is true for the exponent p. In 1997 R Crandall, K Dilcher
and C. Pomerance [Math. Comput.] called p a Wall-Sun-Sun prime if p? | F. E

Let p be an odd prime. Z.-H. Sun determined Zka(mod 8) (k) in terms of the
Pell sequence and its companion. He conjectured that

., B (—1)4-1
o = Z (mod p).
k=1 k=1

This is equivalent to the congruence

w
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I confirmed the conjecture in 1995 [Proc. Amer. Math. Soc.]. Later, in 1999 Z.
Shan and Edward T.H. Wang [Proc. Amer. Math. Soc.] gave a new proof which
avoids the sum Y ) — .04 8) (). W. Kohnen [Monatsh. Math., 127(1999)] made a
generalization by working with 2th roots of unity.

I have determined the sum ) k=r(mod 12) (i) in terms of a special Lucas sequence
Sp = up(4,—1) and its companion T,, = v, (4, —1).

Theorem 1.1 [Israel J. Math., 128(2002), 135-156]. Letp € Z*, 2t p and r € Z.
Then

1
2
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4

m\@

0<k<p
12|k—r
355 4 (—1) "5 (2)(25F 4 Tpen) if r =2 (mod 6),
p = - 2
={ =34 (DT ()@ - Topr +Toa) if v =252 (mod 6),
p+1 r(p—7) p+1
-3 (—=1D)77 (2)(2"% —Toa) if r = 222 (mod 6).
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Corollary 1.1. Let p > 3 be a prime. Let r € Z,

1 ifr=0,1(mod 6),

1
Ky(r,12) = ) -oand g =9 =1 if3|r+1,
102715_?; 0 otherwise.
Then
: 2+ ()i /3 G (3)
(=1)"rK,(r, 12) E%Qp(2)+[3+r+l](_l)[ /3]1’T
S
(r=(3))/2
+ &, 1[r/2]< )— mod p
(-2 (2) 2 (mod p)

where 311+ 1] is 1 if 317+ 1, and 0 otherwise; for a # 0 (mod p) we use q(a)
to denote the Fermat quotient (a?~! —1)/p.

Corollary 1.2. Ifp is a prime greater than 3, then

and

2\ Sp—(2))/2
— — P 2 mOd .
(p) U gy2) (mod p)
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The first congruence provides a quick way to compute ¢,(2) mod p. The second
one was announced by the author [Proc. Amer. Math. Soc.] in 1995.

2. BINOMIAL QUOTIENTS AND BERNOULLI POLYNOMIALS
Let p be a prime and k& € {1,---,p — 1}. It is easy to see that (p;l) =

(—=1)* (mod p). Define the binomial quotient

(D) 1

pr(k) =

Clearly

by (k) = (mod p).
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In general, it is difficult to determine Z?Zl% mod p and hence bg,(k) mod p.
However, if we choose the largest k such that k/p < n/m, then the problem becomes
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more interesting. It is easy to check the symmetry bg,([2*]) = bqp([W]).

Moreover, Granville and I [Pacific J. Math. 1996] observed the following result: If
p is an odd prime, 0 < n < m and p { m, then

b (|22]) = s ({22}) = Bys (0 ),

It is well-known that Bi(Z) (1 < n < m) has simple closed form for m =
1,2,3,4,6. where k is an even integer. (For example, Bi(1/6) = By(5/6) =
(61=F — 31=F — 217k 1 1)B;/2.) In 1938 E. Lemma [Ann. Math.] deduced the
following congruences from those close forms.

B, (1) By 1 = 24,(2) (mod p):

(

1 (2) —By1= §qzo(3) (mod p);

Thus, we have

bap ([g]) = 2qp(2) (mod p), bgy ( ED = by, ( [%D = 3¢p(2) (mod p),
o ([2]) =10 [ 2]) =302t .

p op 3
by ( 1= ) =bap | | = | | =2¢p(2) + 4p(3) (mod p).
6 6 2
In 1895 Morley found that if p > 3 then

(—1)"= ( (pp__l)l /2> =471 (mod p?), i.c. by, ( {%?D = ¢,(4) (mod p?).

Note the following two important things:
(i): We've evaluated B,_1(%) — B,—1 (mod p) where ¢(m) =1 or 2;
(ii): Each of the terms of the right hand side, like 2P, 3P, are numbers taken from
a first-order linear recurrence sequence (uy+1 = 2u,, and u,+1 = 3u, respectively).

In 1996 A. Granville and I [Pacific J. Math.] showed, for m > 2, that B, 1(:%) —
B,_1 (mod p) is congruent to a sum of multiples of terms, each of which are num-
bers taken from a kth-order linear recurrence sequence with

k< @(m)/2.
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Thus the next class of examples are those m for which ¢(m) = 4, namely m =
5,8,10,12. We showed that, for 1 < a < m with (a,m) = 1 (there being four such
integers a), we have, when odd prime p does not divide m,

B,_1 (%) — By Z <—> le e+ quo(5) (mod p);

a

By <§> — Bp1 ( p) o (p)+4Qp( ) (mod p);
a 15

Byp-1 (10) By-1=1

a 3\ 3 3
By (12) Bp-1 = (g) gsp—@) +34p(2) + 545(3). (mod p)

) p—(2 >+5qp(5)+2qp(2) (mod p);

In general we showed that B,_;(a/m)—B,_1 = m(U,—1)/(2p) (mod p), where
U, is a certain linear recurrence of order [m/2] which depends only on a,m and
the least positive residue of p (mod m). This can be re-written as a sum of linear
recurrence sequences of order < ¢(m)/2, and so we can recover the classical results
where ¢(m) < 2 (for instance, B,_1(1/6) — B,_1 = 2¢,(3) + 2¢,(2) (mod p)). Our
results provided the first advance on the question of evaluating these polynomials
when ¢(m) > 2, a problem posed by Emma Lehmer in 1938.

A. Granville found that if an odd prime p does not divide a positive integer n

then .
I (5n)

0<k<n

(—l)pT_l("_l)(np —n+ 1) (mod p?).

I strengthened this result as follows.

Theorem 2.1 [Acta Arith. 97(2001)]. Let p be an odd prime, and n a positive
integer not divisible by p. Then, for 6 € {0,1} we have

e ] ( —1>
0<k<[(n—6)/2] [pk/n]

{ (%) + pneq,(n) (mod p?) if 21 n,
(22) + p((=1)°(2)2eq,,(2) + (2)neq,(n)) (mod p*) if 2| n,

where eq,(a) = (alP~1)/2 _ (2))/p fora € Z.
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