VARIOUS NUMBER-THEORETIC QUOTIENTS
AND RELATED CONGRUENCES

ZHI-WEI SUN

Department of Mathematics
Nanjing University
Nanjing 210093
The People's Republic of China
E-mail: zwsun@nju.edu.cn

1. Lucas Quotients and Related Congruences

Let \(A, B \in \mathbb{Z}^* = \mathbb{Z} \setminus \{0\} \). The Lucas sequences \(u_n = u_n(A, B) \) and \(v_n = v_n(A, B) \) are defined as follows:

\[
\begin{align*}
 u_0 &= 0, \quad u_1 = 1, \quad \text{and} \quad u_{n+1} = Au_n + Bu_{n-1} \quad \text{for} \quad n = 1, 2, 3, \cdots, \\
 v_0 &= 2, \quad v_1 = A, \quad \text{and} \quad v_{n+1} = Av_n + Bv_{n-1} \quad \text{for} \quad n = 1, 2, 3, \cdots.
\end{align*}
\]

The sequence \(F_n = u_n(1, 1) \) is called the Fibonacci sequence, its companion is the sequence \(L_n = v_n(1, 1) \). The sequence \(P_n = u_n(2, 1) \) is called the Pell sequence, its companion is the sequence \(Q_n = v_n(2, 1) \).

Suppose that \((A, B) = 1 \) and \(p \) is a prime with \(p \nmid B \). It is well known that

\[
u_{p - (\frac{A}{p})} \equiv 0 \pmod{p} \quad \text{where} \quad \Delta = A^2 + 4B.
\]

Thus we can define Lucas quotient

\[
u_q(A, B) = \frac{u_{p - (\frac{A}{p})}(A, B)}{p}.
\]

Let \(p \) be a prime different from 2 and 5. What can we say about the Fibonacci quotient \(u_q(1, 1) = F_{p - (\frac{2}{p})} \)? In 1982 H. C. Williams obtained the congruence:

\[
\frac{F_{p - (\frac{2}{p})}}{p} \equiv \frac{2^{\left\lfloor \frac{p}{2} \right\rfloor} (-1)^k}{k} \pmod{p}.
\]
In 1992 Z.-H. Sun and I [Acta Arith.] expressed the sum \(\sum_{k \equiv r \mod 10} \binom{p}{k} \) in terms of Fibonacci numbers and Lucas numbers, as an application we determined \(F_{(p \pm 1)/2} \mod p^2 \). It follows that

\[
\frac{F_{p-\left(\frac{r}{p}\right)}}{p} \equiv -2 \sum_{k=1 \atop 5|k-2p}^{p-1} \frac{1}{k} \equiv 2 \sum_{k=1 \atop 5|p+k}^{p-1} \frac{1}{k} \pmod{p}.
\]

In 1960 D.D. Wall asked whether \(p^2 \mid F_{p-\left(\frac{r}{p}\right)} \) is always impossible. No counterexample has been found. In 1992 we showed that if \(p^2 \nmid F_{p-\left(\frac{r}{p}\right)} \) then the first case of Fermat’s Last Theorem is true for the exponent \(p \). In 1997 R. Crandall, K. Dilcher and C. Pomerance [Math. Comput.] called \(p \) a Wall-Sun-Sun prime if \(p^2 \mid F_{p-\left(\frac{r}{p}\right)} \).

Let \(p \) be an odd prime. Z.-H. Sun determined \(\sum_{k \equiv r \mod 8} \binom{p}{k} \) in terms of the Pell sequence and its companion. He conjectured that

\[
\sum_{k=1}^{p-1} \frac{1}{k^{2^k}} \equiv \sum_{k=1}^{\lfloor 3p/4 \rfloor} \frac{(-1)^{k-1}}{k} \pmod{p}.
\]

This is equivalent to the congruence

\[
\frac{P_{p-\left(\frac{r}{p}\right)}}{p} \equiv \frac{1}{2} \sum_{\frac{r}{p} < k < \frac{r}{p}} \frac{(-1)^k}{k} \pmod{p}.
\]

I have determined the sum \(\sum_{k \equiv r \mod 12} \binom{p}{k} \) in terms of a special Lucas sequence \(S_n = u_n(4,-1) \) and its companion \(T_n = v_n(4,-1) \).

Theorem 1.1 [Israel J. Math., 128(2002), 135–156]. Let \(p \in \mathbb{Z}^+ \), \(2 \nmid p \) and \(r \in \mathbb{Z} \). Then

\[
12 \sum_{0 \leq k \leq p \atop 12|k-r} \binom{p}{k} - 2^p - 1 =
\begin{cases}
3 \frac{p+1}{2} + (-1)^{r(p-r)} \frac{2}{p}(2^{\frac{p+1}{2}} + T_{\frac{p+1}{2}}) & \text{if } r \equiv \frac{p+1}{2} \pmod{6}, \\
-3 + (-1)^{r(p-r)} \frac{2}{p}(2^{\frac{p+1}{2}} - T_{\frac{p+1}{2}} + T_{\frac{p-1}{2}}) & \text{if } r \equiv \frac{p+3}{2} \pmod{6}, \\
-3 \frac{p+1}{2} + (-1)^{r(p-r)} \frac{2}{p}(2^{\frac{p+1}{2}} - T_{\frac{p-1}{2}}) & \text{if } r \equiv \frac{p+5}{2} \pmod{6}.
\end{cases}
\]
Corollary 1.1. Let \(p > 3 \) be a prime. Let \(r \in \mathbb{Z} \),

\[
K_p(r, 12) = \sum_{0 < k < p, 12 \mid k - rp} \frac{1}{k} \quad \text{and} \quad \varepsilon_r = \begin{cases} 1 & \text{if } r \equiv 0, 1 \pmod{6}, \\ -1 & \text{if } 3 \mid r + 1, \\ 0 & \text{otherwise.} \end{cases}
\]

Then

\[
(-1)^{r-1} K_p(r, 12) \equiv \frac{2 + (-1)^{[r/2]}}{12} q_p(2) + [3 \nmid r + 1](-1)^{[r/3]} q_p(3) \quad (\text{mod } p)
\]

\[
+ \varepsilon_r(-1)^{[r/2]} \left(\frac{2}{p} \right) S_{(p-(\frac{3}{2}))/2} \quad (\text{mod } p)
\]

where \([3 \nmid r + 1]\) is 1 if \(3 \nmid r + 1\), and 0 otherwise; for \(a \not\equiv 0 \pmod{p}\) we use \(q_p(a)\) to denote the Fermat quotient \((a^{p-1} - 1)/p\).

Corollary 1.2. If \(p \) is a prime greater than 3, then

\[
q_p(2) \equiv 2(-1)^{p-1} \sum_{k=1}^{\left\lfloor \frac{p+1}{2} \right\rfloor} (-1)^k \frac{k}{2k-1} \quad (\text{mod } p)
\]

and

\[
\sum_{k=1}^{p-1} \frac{3^k}{k} \equiv \sum_{0 < k < p/6} (-1)^k \frac{k}{k} \equiv -6 \left(\frac{2}{p} \right) S_{(p-(\frac{3}{2}))/2} - q_p(2) \quad (\text{mod } p).
\]

The first congruence provides a quick way to compute \(q_p(2) \pmod{p}\). The second one was announced by the author [Proc. Amer. Math. Soc.] in 1995.

2. **Binomial Quotients and Bernoulli Polynomials**

Let \(p \) be a prime and \(k \in \{1, \cdots, p - 1\} \). It is easy to see that \(\binom{p-1}{k} \equiv (-1)^k \pmod{p}\). Define the binomial quotient

\[
bq_p(k) = \frac{(-1)^k \binom{p-1}{k} - 1}{p}.
\]

Clearly

\[
bq_p(k) = \prod_{j=1}^{k-1} \left(1 - \frac{p}{j} \right) - 1 \equiv - \sum_{j=1}^{k} \frac{1}{j} \quad (\text{mod } p).
\]

In general, it is difficult to determine \(\sum_{j=1}^{k} \frac{1}{j} \pmod{p}\) and hence \(bq_p(k) \pmod{p}\). However, if we choose the largest \(k\) such that \(k/p \leq n/m\), then the problem becomes
more interesting. It is easy to check the symmetry $bq_p(\lceil \frac{pm}{n} \rceil) = bq_p(\lfloor \frac{p(m-n)}{m} \rfloor)$. Moreover, Granville and I [Pacific J. Math. 1996] observed the following result: If p is an odd prime, $0 \leq n < m$ and $p \nmid m$, then

$$bq_p \left(\left\lfloor \frac{pn}{m} \right\rfloor \right) \equiv B_{p-1} \left(\left\{ \frac{pn}{m} \right\} \right) - B_{p-1} \pmod{p}.$$

It is well-known that $B_k(\frac{n}{m})$ ($1 \leq n < m$) has simple closed form for $m = 1, 2, 3, 4, 6$, where k is an even integer. (For example, $B_k(1/6) = B_k(5/6) = (6^{1-k} - 3^{1-k} - 2^{1-k} + 1)B_k/2$.) In 1938 E. Lemma [Ann. Math.] deduced the following congruences from those close forms.

$$B_{p-1} \left(\frac{1}{2} \right) - B_{p-1} \equiv 2q_p(2) \pmod{p};$$

$$B_{p-1} \left(\frac{1}{3} \right) - B_{p-1} \equiv B_{p-1} \left(\frac{2}{3} \right) - B_{p-1} \equiv \frac{3}{2}q_p(3) \pmod{p};$$

$$B_{p-1} \left(\frac{1}{4} \right) - B_{p-1} \equiv B_{p-1} \left(\frac{3}{4} \right) - B_{p-1} \equiv 3q_p(2) \pmod{p};$$

$$B_{p-1} \left(\frac{1}{6} \right) - B_{p-1} \equiv B_{p-1} \left(\frac{5}{6} \right) - B_{p-1} \equiv \frac{3}{2}q_p(3) + 2q_p(2) \pmod{p}.$$

Thus, we have

$$bq_p \left(\left\lfloor \frac{p}{2} \right\rfloor \right) \equiv 2q_p(2) \pmod{p},
\quad bq_p \left(\left\lfloor \frac{p}{4} \right\rfloor \right) = bq_p \left(\left\lfloor \frac{3p}{4} \right\rfloor \right) \equiv 3q_p(2) \pmod{p},$$

$$bq_p \left(\left\lfloor \frac{p}{3} \right\rfloor \right) = bq_p \left(\left\lfloor \frac{2p}{3} \right\rfloor \right) \equiv 3q_p(2) \pmod{p},$$

$$bq_p \left(\left\lfloor \frac{p}{6} \right\rfloor \right) = bq_p \left(\left\lfloor \frac{5p}{6} \right\rfloor \right) \equiv 2q_p(2) + \frac{3}{2}q_p(3) \pmod{p}.$$

In 1895 Morley found that if $p > 3$ then

$$(-1)^{\frac{p-1}{2}} \left(\frac{p-1}{p-1/2} \right) \equiv 4^{p-1} \pmod{p^2}, \text{ i.e. } bq_p \left(\left\lfloor \frac{p}{2} \right\rfloor \right) \equiv q_p(4) \pmod{p^2}.$$

Note the following two important things:

(i): We’ve evaluated $B_{p-1}(\frac{a}{m}) - B_{p-1} \pmod{p}$ where $\varphi(m) = 1$ or 2;

(ii): Each of the terms of the right hand side, like 2^p, 3^p, are numbers taken from a first-order linear recurrence sequence ($u_{n+1} = 2u_n$ and $u_{n+1} = 3u_n$ respectively).

In 1996 A. Granville and I [Pacific J. Math.] showed, for $m > 2$, that $B_{p-1}(\frac{a}{m}) - B_{p-1} \pmod{p}$ is congruent to a sum of multiples of terms, each of which are numbers taken from a kth-order linear recurrence sequence with

$$k \leq \varphi(m)/2.$$
Thus the next class of examples are those m for which $\varphi(m) = 4$, namely $m = 5, 8, 10, 12$. We showed that, for $1 \leq a < m$ with $(a, m) = 1$ (there being four such integers a), we have, when odd prime p does not divide m,

\[
B_{p-1}\left(\frac{a}{5}\right) - B_{p-1} \equiv \frac{5}{4} \left(\frac{ap}{5}\right) \frac{1}{p} F_{p-\left(\frac{a}{5}\right)} + \frac{5}{4} q_p(5) \pmod{p};
\]

\[
B_{p-1}\left(\frac{a}{8}\right) - B_{p-1} \equiv \left(\frac{2}{ap}\right) \frac{2}{p} F_{p-\left(\frac{a}{8}\right)} + 4q_p(2) \pmod{p};
\]

\[
B_{p-1}\left(\frac{a}{10}\right) - B_{p-1} \equiv \frac{15}{4} \left(\frac{ap}{5}\right) \frac{1}{p} F_{p-\left(\frac{a}{10}\right)} + \frac{5}{4} q_p(5) + 2q_p(2) \pmod{p};
\]

\[
B_{p-1}\left(\frac{a}{12}\right) - B_{p-1} \equiv \left(\frac{3}{a}\right) \frac{3}{p} S_{p-\left(\frac{a}{12}\right)} + 3q_p(2) + \frac{3}{2} q_p(3). \pmod{p}
\]

In general we showed that $B_{p-1}(a/m) - B_{p-1} \equiv m(U_p - 1)/(2p) \pmod{p}$, where U_n is a certain linear recurrence of order $\lfloor m/2 \rfloor$ which depends only on a, m and the least positive residue of $p \pmod{m}$. This can be re-written as a sum of linear recurrence sequences of order $\leq \varphi(m)/2$, and so we can recover the classical results where $\varphi(m) \leq 2$ (for instance, $B_{p-1}(1/6) - B_{p-1} \equiv \frac{2}{3} q_p(3) + 2q_p(2) \pmod{p}$). Our results provided the first advance on the question of evaluating these polynomials when $\varphi(m) > 2$, a problem posed by Emma Lehmer in 1938.

A. Granville found that if an odd prime p does not divide a positive integer n then

\[
\prod_{0 < k < n} \left(\frac{p-1}{[pk/n]}\right) \equiv (-1)^{p-1} n^{p-2} (n^p - n + 1) \pmod{p^2}.
\]

I strengthened this result as follows.

Theorem 2.1 [Acta Arith. 97(2001)]. Let p be an odd prime, and n a positive integer not divisible by p. Then, for $\delta \in \{0, 1\}$ we have

\[
(-1)^{\frac{p-1}{2} \left\lfloor \frac{n-\delta}{2} \right\rfloor} \prod_{0 < k \leq \left\lfloor \frac{n-\delta}{2} \right\rfloor} \left(\frac{p-1}{[pk/n]}\right)
\]

\[
\equiv \begin{cases}
(\frac{a}{p}) + p\text{e}_p(n) \pmod{p^2} & \text{if } 2 \nmid n, \\
(\frac{2n}{p}) + p(-1)^{\delta (2n/p)} 2\text{e}_p(2) + (\frac{2}{p}) \text{e}_p(n) \pmod{p^2} & \text{if } 2 \mid n,
\end{cases}
\]

where $\text{e}_p(a) = (a^{(p-1)/2} - (\frac{a}{p})) / p$ for $a \in \mathbb{Z}$.