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1. Lucas Quotients and Related Congruences

Let A,B ∈ Z∗ = Z\{0}. The Lucas sequences un = un(A,B) and vn = vn(A,B)
are defined as follows:

u0 = 0, u1 = 1, and un+1 = Aun + Bun−1 for n = 1, 2, 3, · · · ,

v0 = 2, v1 = A, and vn+1 = Avn + Bvn−1 for n = 1, 2, 3, · · · .

The sequence Fn = un(1, 1) is called the Fibonacci sequence, its companion is the
sequence Ln = vn(1, 1). The sequence Pn = un(2, 1) is called the Pell sequence, its
companion is the sequence Qn = vn(2, 1).

Suppose that (A,B) = 1 and p is a prime with p - B. It is well known that

up−(∆
p ) ≡ 0 (mod p) where ∆ = A2 + 4B.

Thus we can define Lucas quotient

uqp(A,B) =
up−(∆

p )(A,B)

p
.

Let p be a prime different from 2 and 5. What can we say about the Fibonacci
quotient uqp(1, 1) = Fp−( 5

p )/p? In 1982 H. C. Williams obtained the congruence:

Fp−( 5
p )

p
≡ 2

5

[ 45 p]∑
k=1

(−1)k

k
(mod p).
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In 1992 Z.-H. Sun and I [Acta Arith.] expressed the sum
∑

k≡r(mod 10)

(
p
k

)
in

terms of Fibonacci numbers and Lucas numbers, as an application we determined
F(p±1)/2 mod p2. It follows that

Fp−( 5
p )

p
≡ −2

p−1∑
k=1

5|k−2p

1
k
≡ 2

p−1∑
k=1

5|p+k

1
k

(mod p).

In 1960 D.D. Wall asked whether p2 | Fp−( 5
p ) is always impossible. No counterex-

ample has been found. In 1992 we showed that if p2 - Fp−( 5
p ) then the first case of

Fermat’s Last Theorem is true for the exponent p. In 1997 R. Crandall, K. Dilcher
and C. Pomerance [Math. Comput.] called p a Wall-Sun-Sun prime if p2 | Fp−( 5

p ).

Let p be an odd prime. Z.-H. Sun determined
∑

k≡r(mod 8)

(
p
k

)
in terms of the

Pell sequence and its companion. He conjectured that

p−1
2∑

k=1

1
k2k

≡
[3p/4]∑
k=1

(−1)k−1

k
(mod p).

This is equivalent to the congruence

Pp−( 2
p )

p
≡ 1

2

∑
p
4 <k< p

2

(−1)k

k
(mod p).

I confirmed the conjecture in 1995 [Proc. Amer. Math. Soc.]. Later, in 1999 Z.
Shan and Edward T.H. Wang [Proc. Amer. Math. Soc.] gave a new proof which
avoids the sum

∑
k≡r(mod 8)

(
p
k

)
. W. Kohnen [Monatsh. Math., 127(1999)] made a

generalization by working with 2nth roots of unity.
I have determined the sum

∑
k≡r(mod 12)

(
p
k

)
in terms of a special Lucas sequence

Sn = un(4,−1) and its companion Tn = vn(4,−1).

Theorem 1.1 [Israel J. Math., 128(2002), 135–156]. Let p ∈ Z+, 2 - p and r ∈ Z.
Then

12
∑

06k6p
12|k−r

(
p

k

)
− 2p − 1

=


3

p+1
2 + (−1)

r(p−r)
2 ( 2

p )(2
p+1
2 + T p+1

2
) if r ≡ p±1

2 (mod 6),

−3 + (−1)
r(p−r)

2 ( 2
p )(2

p+1
2 − T p+1

2
+ T p−1

2
) if r ≡ p±3

2 (mod 6),

−3
p+1
2 + (−1)

r(p−r)
2 ( 2

p )(2
p+1
2 − T p−1

2
) if r ≡ p±5

2 (mod 6).
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Corollary 1.1. Let p > 3 be a prime. Let r ∈ Z,

Kp(r, 12) =
∑

0<k<p
12|k−rp

1
k

and εr =


1 if r ≡ 0, 1 (mod 6),
−1 if 3 | r + 1,

0 otherwise.

Then

(−1)r−1Kp(r, 12) ≡2 + (−1)[r/2]

12
qp(2) + [3 - r + 1](−1)[r/3] qp(3)

8

+ εr(−1)[r/2]

(
2
p

) S(p−( 3
p ))/2

2p
(mod p)

where [3 - r + 1] is 1 if 3 - r + 1, and 0 otherwise; for a 6≡ 0 (mod p) we use qp(a)
to denote the Fermat quotient (ap−1 − 1)/p.

Corollary 1.2. If p is a prime greater than 3, then

qp(2) ≡ 2(−1)
p−1
2

[ p+1
6 ]∑

k=1

(−1)k

2k − 1
(mod p)

and
p−1
2∑

k=1

3k

k
≡

∑
0<k<p/6

(−1)k

k
≡ −6

(
2
p

) S(p−( 3
p ))/2

p
− qp(2) (mod p).

The first congruence provides a quick way to compute qp(2) mod p. The second
one was announced by the author [Proc. Amer. Math. Soc.] in 1995.

2. Binomial Quotients and Bernoulli polynomials

Let p be a prime and k ∈ {1, · · · , p − 1}. It is easy to see that
(
p−1

k

)
≡

(−1)k (mod p). Define the binomial quotient

bqp(k) =
(−1)k

(
p−1

k

)
− 1

p
.

Clearly

bqp(k) =

∏l
j=1(1−

p
j )− 1

p
≡ −

k∑
j=1

1
j

(mod p).

In general, it is difficult to determine
∑k

j=1
1
j mod p and hence bqp(k) mod p.

However, if we choose the largest k such that k/p 6 n/m, then the problem becomes
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more interesting. It is easy to check the symmetry bqp([pn
m ]) = bqp([

p(m−n)
m ]).

Moreover, Granville and I [Pacific J. Math. 1996] observed the following result: If
p is an odd prime, 0 6 n < m and p - m, then

bqp

([
pn

m

])
≡ Bp−1

({pn

m

})
−Bp−1 (mod p).

It is well-known that Bk( n
m ) (1 6 n < m) has simple closed form for m =

1, 2, 3, 4, 6. where k is an even integer. (For example, Bk(1/6) = Bk(5/6) =
(61−k − 31−k − 21−k + 1)Bk/2.) In 1938 E. Lemma [Ann. Math.] deduced the
following congruences from those close forms.

Bp−1

(
1
2

)
−Bp−1 ≡ 2qp(2) (mod p);

Bp−1

(
1
3

)
−Bp−1 ≡ Bp−1

(
2
3

)
−Bp−1 ≡

3
2
qp(3) (mod p);

Bp−1

(
1
4

)
−Bp−1 ≡ Bp−1

(
3
4

)
−Bp−1 ≡ 3qp(2) (mod p);

Bp−1

(
1
6

)
−Bp−1 ≡ Bp−1

(
5
6

)
−Bp−1 ≡

3
2
qp(3) + 2qp(2) (mod p).

Thus, we have

bqp

([
p

2

])
≡ 2qp(2) (mod p), bqp

([
p

4

])
= bqp

([
3p

4

])
≡ 3qp(2) (mod p),

bqp

([
p

3

])
= bqp

([
2p

3

])
≡ 3qp(2) (mod p),

bqp

([
p

6

])
= bqp

([
5p

6

])
≡ 2qp(2) +

3
2
qp(3) (mod p).

In 1895 Morley found that if p > 3 then

(−1)
p−1
2

(
p− 1

(p− 1)/2

)
≡ 4p−1 (mod p2), i.e. bqp

([
p

2

])
≡ qp(4) (mod p2).

Note the following two important things:
(i): We’ve evaluated Bp−1( a

m )−Bp−1 (mod p) where ϕ(m) = 1 or 2;
(ii): Each of the terms of the right hand side, like 2p, 3p, are numbers taken from
a first-order linear recurrence sequence (un+1 = 2un and un+1 = 3un respectively).

In 1996 A. Granville and I [Pacific J. Math.] showed, for m > 2, that Bp−1( a
m ) −

Bp−1 (mod p) is congruent to a sum of multiples of terms, each of which are num-
bers taken from a kth-order linear recurrence sequence with

k ≤ ϕ(m)/2.
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Thus the next class of examples are those m for which ϕ(m) = 4, namely m =
5, 8, 10, 12. We showed that, for 1 ≤ a < m with (a,m) = 1 (there being four such
integers a), we have, when odd prime p does not divide m,

Bp−1

(a

5

)
−Bp−1 ≡

5
4

(ap

5

) 1
p
Fp−( 5

p ) +
5
4
qp(5) (mod p);

Bp−1

(a

8

)
−Bp−1 ≡

(
2
ap

)
2
p
Pp−( 2

p ) + 4qp(2) (mod p);

Bp−1

( a

10

)
−Bp−1 ≡

15
4

(ap

5

) 1
p
Fp−( 5

p ) +
5
4
qp(5) + 2qp(2) (mod p);

Bp−1

( a

12

)
−Bp−1 ≡

(
3
a

)
3
p
Sp−( 3

p ) + 3qp(2) +
3
2
qp(3). (mod p)

In general we showed that Bp−1(a/m)−Bp−1 ≡ m(Up−1)/(2p) (mod p), where
Un is a certain linear recurrence of order [m/2] which depends only on a,m and
the least positive residue of p (mod m). This can be re-written as a sum of linear
recurrence sequences of order ≤ ϕ(m)/2, and so we can recover the classical results
where ϕ(m) ≤ 2 (for instance, Bp−1(1/6)−Bp−1 ≡ 3

2qp(3) + 2qp(2) (mod p)). Our
results provided the first advance on the question of evaluating these polynomials
when ϕ(m) > 2, a problem posed by Emma Lehmer in 1938.

A. Granville found that if an odd prime p does not divide a positive integer n
then ∏

0<k<n

(
p− 1
[pk/n]

)
≡ (−1)

p−1
2 (n−1)(np − n + 1) (mod p2).

I strengthened this result as follows.

Theorem 2.1 [Acta Arith. 97(2001)]. Let p be an odd prime, and n a positive
integer not divisible by p. Then, for δ ∈ {0, 1} we have

(−1)
p−1
2 [ n−δ

2 ]
∏

0<k6[(n−δ)/2]

(
p− 1
[pk/n]

)

≡

{
(n

p ) + pneqp(n) (mod p2) if 2 - n,

( 2n
p ) + p((−1)δ(n

p )2eqp(2) + ( 2
p )neqp(n)) (mod p2) if 2 | n,

where eqp(a) = (a(p−1)/2 − (a
p ))/p for a ∈ Z.


