SUMSETS WITH POLYNOMIAL RESTRICTIONS

ZHI-WEI SUN

Department of Mathematics
Nanjing University
Nanjing 210093
The People’s Republic of China
E-mail: zwsun@nju.edu.cn
Homepage: http://pweb.nju.edu.cn/zwsun

Cyclic groups are the simplest groups in algebra. However, in combinatorial number theory there are many difficult open problems concerning cyclic groups.

Suppose that \(\{a_1, \ldots, a_n\}, \{b_1, \ldots, b_n\} \) and \(\{a_1+b_1, \ldots, a_n+b_n\} \) are complete systems of residues modulo \(n \). Let \(\sigma = 0 + 1 + \ldots + (n-1) = n(n-1)/2 \). As \(\sum_{i=1}^{n}(a_i + b_i) = \sum_{i=1}^{n} a_i + \sum_{i=1}^{n} b_i \), we have \(\sigma \equiv \sigma + \sigma \pmod{n} \) and hence \(2 \nmid n \).

In 1999 Snevily [Amer. Math. Monthly] made the following conjecture.

Snevily’s Conjecture. Let \(G \) be an additive abelian group with \(|G| \) odd. Let \(A \) and \(B \) be subsets of \(G \) with cardinality \(n > 0 \). Then there are a numbering \(\{a_i\}_{i=1}^{n} \) of the elements of \(A \) and a numbering \(\{b_i\}_{i=1}^{n} \) of the elements of \(B \) such that \(a_1 + b_1, \ldots, a_n + b_n \) are pairwise distinct.

This conjecture is nontrivial even for the additive cyclic group \(\mathbb{Z}/n\mathbb{Z} \) of residues modulo an odd integer \(n > 0 \).

In 1964 Erdős and Heilbronn [Acta Arith.] conjectured that if \(\emptyset \neq A \subseteq \mathbb{Z}/p\mathbb{Z} \) (where \(p \) is a prime) then there are at least \(\min\{p, 2|A| - 3\} \) residues modulo \(p \) that can be written as the sum of two distinct residues \(\mod p \) in \(A \). This had been open for thirty years until Dias da Silva and Hamidoune [Bull. London Math.

Using the polynomial method (already introduced in the talk of Prof. Alon), Alon [Israel J. Math. 2000] proved that Snevily’s conjecture holds when G is the additive group of the field $\mathbb{Z}/p\mathbb{Z}$ where p is an odd prime.

Let F be a field. We use p_F to denote the additive order of the multiplicative identity of F, and call it the characteristic of F. Recently there are several interesting results concerning various restricted sumsets of $A_1, \ldots, A_n \subseteq F$. (See [Sun, Acta Arith. 2001], [Hou & Sun, Acta Arith. 2002], [Liu & Sun, J. Number Theory, 2002], [Pan & Sun, J. Combin. Theory Ser. A, 2002].)

Corollary 1 of Hou and Sun [Acta Arith. 2002] in the case $m = 1$ can be stated as follows:

Let $k \geq n \geq 1$ be integers, and F be a field with p_F greater than n and $(k-n)n$. Let A_1, \ldots, A_n be subsets of F with cardinality k, and b_1, \ldots, b_n be elements of F. Then the sumset

$$\{a_1 + \ldots + a_n: a_i \in A_i, a_i \not= a_j \text{ and } a_i + b_i \not= a_j + b_j \text{ if } i \not= j\}$$

has more than $(k-n)n$ elements.

In 2001 Dasgupta, Károlyi, Serra and Szegedy [Israel J. Math.] confirmed Snevily’s conjecture for any cyclic group with odd order.

Below we introduce four new theorems on restricted sumsets, which are contained in my recent paper [On Snevily’s conjecture and restricted sumsets, to appear]. They are stronger than the existential result of Dasgupta et al.

Theorem 1 ([Sun, J. Combin. Theory Ser. A 103(2003)]). Let F be a field with $p_F = 2$. Let A_1, \ldots, A_n be subsets of F with cardinality $n+1$, and b_1, \ldots, b_n be
distinct elements of F. Let $c_{ij}, d_{ij} \in F$ for $1 \leq i < j \leq n$. Then the restricted sumset

$$\{a_1 + \ldots + a_n: a_i \in A_i, a_i - a_j \neq c_{ij} \text{ and } a_ib_i - a_jb_j \neq d_{ij} \text{ if } i < j\}$$

(2)

has more than n elements.

Corollary 1 ([Dasgupta et al., 2001]). Let F be a field of characteristic 2, and A and $B = \{b_1, \ldots, b_n\}$ be subsets of F with cardinality n. Then there is a numbering \(\{a_i\}_{i=1}^n\) of the elements of A such that a_1b_1, \ldots, a_nb_n are pairwise distinct.

Proof. If $A = F$ then we may simply take $a_i = b_i$ because b_1^2, \ldots, b_n^2 are pairwise distinct. If $a \in F \setminus A$, then we may apply Theorem 1.4 with $A_1 = \ldots = A_n = A \cup \{a\}$. \square

For an odd integer $n > 1$, the multiplicative group of the finite field F with $|F| = 2^{\varphi(n)}$ has a cyclic subgroup of order n (where φ is Euler’s totient function). This observation of Dasgupta et al. indicates that Corollary 1 implies the truth of Snevily’s conjecture for cyclic groups.

Theorem 2 ([Sun, J. Combin. Theory Ser. A 103(2003)]). Let G be an additive abelian group whose finite subgroups are all cyclic. Let A_1, \ldots, A_n $(n > 1)$ be finite subsets of G with cardinality $k \geq n$, and let b_1, \ldots, b_n be pairwise distinct elements of G. Let m be any positive integer not exceeding $(k - 1)/(n - 1)$.

(i) There are at least $(k - 1)n - m\binom{n}{2} + 1$ multisets $\{a_1, \ldots, a_n\}$ such that $a_i \in A_i$ for $i = 1, \ldots, n$ and all the $ma_i + b_i$ are pairwise distinct.

(ii) If b_1, \ldots, b_n are of odd orders, then

$$|\{\{a_1, \ldots, a_n\}: a_i \in A_i, a_i \neq a_j \text{ and } ma_i + b_i \neq ma_j + b_j \text{ if } i \neq j\}|$$

$$\geq (k - 1)n - (m + 1)\binom{n}{2} + 1 > (m - 1)\binom{n}{2}.\quad (3)$$

Theorem 2(ii) in the case $k = n$ and $m = 1$, also yields the main result of Dasgupta et al.
Actually Theorem 2 follows from our stronger results on sumsets with polynomial restrictions.

Theorem 3 ([Sun, J. Combin. Theory Ser. A 103(2003)]). Let \(k, m, n \) be positive integers with \(k > m(n-1) \), and let \(A_1, \ldots, A_n \) be subsets of a field \(F \) with cardinality \(k \). Let \(P_1(x), \ldots, P_n(x) \in F[x] \) have degree \(m \), and \(b_1, \ldots, b_n \) be their leading coefficients respectively.

(i) If \(K = (k-1)n - m\binom{n}{2} < p_F \) and \(b_1, \ldots, b_n \) are pairwise distinct, then
\[
|S| \geq K + 1
\]
where
\[
S = \left\{ \sum_{i=1}^{n} a_i; a_1 \in A_1, \ldots, a_n \in A_n, \text{ and } P_i(a_i) \neq P_j(a_j) \text{ if } i \neq j \right\}. \tag{4}
\]

(ii) Suppose that \(F \) is the complex field \(\mathbb{C} \) and \(b_1, \ldots, b_n \) are \(q \)th roots of unity. Provided that \(2 \nmid q \) and \(b_1, \ldots, b_n \) are distinct, or \(n! \) cannot be written as the sum of some (not necessarily distinct) prime divisors of \(q \), we have
\[
|T| \geq K - \binom{n}{2} + 1
\]
where
\[
T = \left\{ \sum_{i=1}^{n} a_i; a_i \in A_i, \text{ } a_i \neq a_j \text{ and } P_i(a_i) \neq P_j(a_j) \text{ if } i \neq j \right\}. \tag{5}
\]

Theorem 4 ([Sun, J. Combin. Theory Ser. A 103(2003)]). Let \(A_1, \ldots, A_n \) be finite subsets of a field \(F \) with \(0 < k_1 = |A_1| \leq \ldots \leq k_n = |A_n| \), and let \(P_1(x), \ldots, P_n(x) \in F[x] \) be monic and of degree \(m \) where
\[
m > k_n - k_1 \text{ and } k_n > m(n-1). \tag{6}
\]

(i) We have \(L = \sum_{i=1}^{n} (k_i - 1) - (m + 1) \binom{n}{2} \geq 0 \). If \(p_F > L!n! \), then \(|T| \geq L + 1 \) where \(T \) is as in (5).

(ii) When \(k_1 = \ldots = k_n = k \) and \(p_F > L \), we have \(|T| \geq L \geq (m-1)\binom{n}{2} \), and \(|T| = L \) only if \(k = n \geq p_F > m = 1 \) or \(p_F = m = n = 2 < k = 3 \).

We remark that \(|T| = L \) may happen in the exceptional cases. Also, the condition \(k_n > m(n-1) \) cannot be replaced by \(k_n \geq m(n-1) \).
Our tools used to obtain the above four theorems include Combinatorial Nullstellensatz posed by N. Alon, Linear Algebra and Algebraic Number Theory.