Abstract. Let G be an additive abelian group. The zero-sum problem for G asks for the least positive integer k such that for any $a_1, \ldots, a_k \in G$ there is an $I \subseteq \{1, \ldots, k\}$ of required cardinality satisfying $\sum_{i \in I} a_i = 0$. In this talk we will introduce the famous theorem of P. Erdős, A. Ginzburg and A. Ziv (for $G = \mathbb{Z}_n$), and recent results of L. Rónya on the Kemnitz conjecture concerning the group $\mathbb{Z}_n \oplus \mathbb{Z}_n$, where $\mathbb{Z}_n = \mathbb{Z}/n\mathbb{Z}$ is the additive cyclic group of residue classes modulo n.

1. The Erdős-Ginzburg-Ziv Theorem

In 1961 P. Erdős, A. Ginzburg and A. Ziv [Bull. Research Council Israel, 10(1961)] established the following celebrated theorem.

EGZ Theorem. Let n be any positive integer, and $S = \{a_i\}_{i=1}^{2n-1}$ be a sequence of integers. Then there is an $I \subseteq \{1, \ldots, 2n - 1\}$ with $|I| = n$ such that $\sum_{i \in I} a_i \equiv 0 \pmod{n}$.

This can be viewed as the first nontrivial result on zero-sum problems.

Let G be a finite additive abelian group. The zero-sum problem for G asks for the least positive integer k such that for any $a_1, \ldots, a_k \in G$ there exists an $I \subseteq \{1, \ldots, k\}$ of required cardinality satisfying $\sum_{i \in I} a_i = 0$. If we simply require $|I| > 0$, then the smallest k is denoted by $D(G)$ and called Davenport’s constant;
If we require $|I| = |G|$, then the smallest k is denoted by $S(G)$. If $a_1, \cdots, a_n \in G$ and $n = |G|$, then by the Pigeon-hole Principle the following elements (of G)

$$s_0 = 0, \quad s_1 = a_1, \quad s_2 = a_1 + a_2, \quad \cdots, \quad s_n = a_1 + \cdots + a_n$$

cannot be pairwise distinct, thus for some $0 \leq i < j \leq k$ we have $0 = s_j - s_i = \sum_{i<r\leq j} a_r$. So $D(G)$ does exist and $|D(G)| \leq |G|$. If $n = |G|$ and $a_1, \cdots, a_{n^2-n+1} \in G$, then for some $a \in G$ the set $J = \{1 \leq i \leq n^2 - n + 1 : a_i = a\}$ has cardinality at least n, therefore for $I \subseteq J$ with $|I| = n$ we have $\sum_{i \in I} a_i = na = 0$. (Recall that $|G| = n$ and so the additive order of a divides n.) This indicates that $S(G)$ also exists.

Let $Z_n = \mathbb{Z}/n\mathbb{Z} = \{\bar{a} = a + n\mathbb{Z} : a \in \mathbb{Z}\}$ be the ring of residue classes modulo n. Any cyclic group of order n is isomorphic to the additive group of Z_n. For $a_1 = \cdots = a_{n-1} = \bar{1}$ and $\emptyset \neq I \subseteq \{1, \cdots, n-1\}$, we clearly have $\sum_{i \in I} a_i = |I|\bar{1} \neq \bar{0}$. So we cannot have $D(Z_n) \leq n - 1$. Therefore $D(Z_n) = n = |Z_n|$. If $a_1 = \cdots = a_{n-1} = \bar{1}$ and $a_n = \cdots = a_{2n-2} = \bar{0}$, then there is no $I \subseteq \{1, \cdots, 2n-2\}$ with $|I| = n$ such that $\sum_{i \in I} a_i = \bar{0}$. This together with the EGZ theorem shows that $S(Z_n) = 2n-1$.

It is easy to reduce the EGZ theorem to the case when n is a prime number p. Note that $\mathbb{Z}_p = \mathbb{Z}/p\mathbb{Z}$ is a finite field. The EGZ theorem can be deduced from the following classical result.

Chevalley-Warning Theorem. Let F be a finite field of order $q = p^\alpha$ where p is a prime. Let $f_1(x_1, \cdots, x_n), \cdots, f_m(x_1, \cdots, x_n)$ be polynomials over F with $\sum_{i=1}^m \deg f_i < n$. Let N denote the number of solutions of the following system

$$\begin{cases} f_1(x_1, \cdots, x_n) = 0, \\
\cdots \\
 f_m(x_1, \cdots, x_n) = 0 \end{cases}$$

of equations over F. Then p divides N, in particular $N \neq 1$.

Proof. Clearly \(\sum_{a \in F} a^0 = q1 = 0 \). Let \(g \) be a generator of the multiplicative group \(F^* = F\{0\} \) of order \(q - 1 \). For each \(k = 1, 2, \ldots, q - 2 \), we have

\[
\sum_{a \in F} a^k = \sum_{a \in F^*} a^k = \sum_{i=0}^{q-2} (g^i)^k = \sum_{i=0}^{q-2} (g^k)^i = \frac{g^{k(q-1)} - 1}{g^k - 1} = 0.
\]

So \(\sum_{a \in F} a^k = 0 \) for all \(k = 0, 1, \ldots, q - 2 \).

Write

\[
P(x_1, \ldots, x_n) := \prod_{i=1}^{m} (1 - f_i(x_1, \ldots, x_n)^q - 1) = \sum_{j_1, \ldots, j_n \geq 0 \atop j_1 + \cdots + j_n < n(q-1)} c_{j_1, \ldots, j_n} x_1^{j_1} \cdots x_n^{j_n}.
\]

For \(a_1, \ldots, a_n \in F \), clearly

\[
P(a_1, \ldots, a_n) = \begin{cases} 1 & \text{if } f_i(a_1, \ldots, a_n) = 0 \text{ for all } i = 1, \ldots, m, \\ 0 & \text{otherwise}. \end{cases}
\]

(Note that \(a^{q-1} = 1 \) for \(a \in F^* \)). Thus,

\[
N1 = \sum_{a_1 \in F} \cdots \sum_{a_n \in F} P(a_1, \ldots, a_n) = \sum_{j_1, \ldots, j_n \geq 0 \atop j_1 + \cdots + j_n < n(q-1)} c_{j_1, \ldots, j_n} \prod_{i=1}^{n} \left(\sum_{a_i \in F} a_i^{j_i} \right) = 0
\]

where in the last step we note that there is an \(i \in \{1, \ldots, n\} \) such that \(j_i < q - 1 \) and hence \(\sum_{a_i \in F} a_i^{j_i} = 0 \). It follows that \(p \mid N \). \(\square \)

Now we explain why the EGZ theorem holds when \(n \) is a prime. Let \(p \) be a prime and \(F \) be a field of order \(p \). Let \(a_1, \ldots, a_{2p-1} \in F, f_1(x_1, \ldots, 2p - 1) = \sum_{k=1}^{2p-1} x_k^{p-1} \) and \(f_2(x_1, \ldots, x_{2p-1}) = \sum_{k=1}^{2p-1} a_k x_k^{p-1} \). Note that \(\deg f_1 + \deg f_2 < 2p - 1 \) and \(f_1(0, \ldots, 0) = f_2(0, \ldots, 0) = 0 \). By the Chevalley-Warning theorem, there are \(x_1, \ldots, x_{2p-1} \in F \) such that \(I = \{1 \leq k \leq 2p - 1: x_k \neq 0\} \neq \emptyset \) and \(f_i(x_1, \ldots, x_{2p-1}) = 0 \) for \(i = 1, 2 \). As \(0 = f_1(x_1, \ldots, x_{2p-1}) = \sum_{i \in I} x_i^{p-1} = |I|, \) we must have \(p \mid |I| \) and hence \(|I| = p \) since \(0 < |I| < 2p \). Now that \(f_2(x_1, \ldots, x_{2p-1}) = 0 \), we also have \(\sum_{i \in I} a_i = 0 \).

Observe that \(S(\mathbb{Z}_n) = 2n - 1 = D(\mathbb{Z}_n) + n - 1 \). In 1996 W. D. Gao [J. Number Theory, 58(1996)] proved the following general result.
Gao’s Relation Formula. Let G be a finite abelian group. Then $S(G) = D(G) + |G| - 1$.

2. Rónya’s method and the Kemnitz conjecture

In 1983 A. Kemnitz posed the following conjecture.

Kemnitz’s conjecture. For any $a_1, \cdots, a_{4n-3} \in \mathbb{Z}_n \oplus \mathbb{Z}_n$, there exists an $I \subseteq \{1, \cdots, 4n - 3\}$ with $|I| = n$ such that $\sum_{i \in I} a_i = 0$.

We mention that $4n - 3$ is the above conjecture cannot be replaced by a smaller number. In fact, let

$$a_1 = \cdots = a_{n-1} = (0, 0), \quad a_n = \cdots = a_{2n-2} = (0, 1),$$

$$a_{2n-1} = \cdots = a_{3n-3} = (1, 0), \quad a_{3n-2} = \cdots = a_{4n-4} = (1, 1),$$

then there is no $I \subseteq \{1, \cdots, 4n - 4\}$ with $|I| = n$ such that $\sum_{i \in I} a_i = (0, 0)$.

In 2000 L. Rónya [Combinatorica, 20(2000)] made an important breakthrough.

Rónya’s Theorem. The Kemnitz conjecture holds if $4n - 3$ is replaced by $\left\lceil \frac{41}{10} n \right\rceil$, or $4n - 2$ with n being a prime.

The mail tool of Rónya is the following lemma.

Rónya’s Lemma. Let F be a field, and V be the linear space $\{f : \{0, 1\}^n \to F\}$ over F. Then those functions $\chi_I \in V$ ($I \subseteq \{1, \cdots, n\}$) given by $\chi_I(x_1, \cdots, x_n) = \prod_{i \in I} x_i$ form a basis of the space V.

Proof. For $\vec{u} = (u_1, \cdots, u_n) \in \{0, 1\}^n$, define $\delta_{\vec{u}} : \{0, 1\}^n \to F$ as follows:

$$\delta_{\vec{u}}(\vec{v}) = \begin{cases} 1 & \text{if } \vec{u} = \vec{v}, \\ 0 & \text{otherwise (} \vec{v} \in \{0, 1\}^m) \end{cases}.$$
Clearly any \(f \in V \) can be expressed as \(\sum_{\vec{u} \in \{0,1\}^n} f(\vec{u}) \delta_{\vec{u}} \). Let \(U = \{1 \leq i \leq n: u_i = 1\} \) and \(\bar{U} = \{1 \leq i \leq n: u_i = 0\} \). For any \(\vec{x} = (x_1, \cdots, x_n) \in \{0,1\}^n \), we have

\[
\delta_{\vec{u}}(\vec{x}) = \prod_{i \in U} x_i \times \prod_{j \in \bar{U}} (1 - x_j)
= \sum_{J \subseteq U} (-1)^{|J|} \prod_{i \in J \cup U} x_i = \sum_{U \subseteq I \subseteq \{1, \cdots, n\}} (-1)^{|I \cap \bar{U}|} \prod_{i \in I} x_i.
\]

So those \(\chi_I \) with \(I \subseteq \{1, \cdots, n\} \) form a generating system of \(V \).

Now we show that those \(\chi_I \) with \(I \subseteq \{1, \cdots, n\} \) are linear independent over \(F \). Suppose on the contrary that \(\sum_{j=1}^{k} c_j \chi_{I_j} = 0 \) where \(c_j \in F^* = F \setminus \{0\} \) and \(I_1, \cdots, I_n \) are distinct subsets of \(\{1, \cdots, n\} \) with \(|I_1| \leq |I_2| \leq \cdots \leq |I_k| \). Let \(u_i = 1 \) for \(i \in I_1 \), and \(u_i = 0 \) for \(i \not\in I_1 \). Then

\[
\chi_{I_j}(\vec{u}) = \prod_{i \in I_j} u_i = \delta_{j1}
\]

because for \(j > 1 \) there is an \(i \in I_j \) such that \(i \not\in I_1 \) and hence \(u_i = 0 \). Therefore

\[
0 = \sum_{j=1}^{k} c_j \chi_{I_j}(\vec{u}) = c_1 \neq 0.
\]

This contradiction ends our proof. \(\square \)

Now we give an application of the above lemma.

Theorem [W. D. Gao, 1996; J. X. Liu and Z. W. Sun, 2001]. Let \(F \) be a field of prime characteristic \(p \), and \(G \) be a subgroup of the additive group of \(F \) with \(|G| = n \).

Let \(S = \{a_i\}_{i=1}^{2n-1} \) be a sequence of \(2n - 1 \) elements of \(G \). Then

\[(*) \quad r(S, a) \equiv \begin{cases} 0 \pmod{p} & \text{if } a \neq 0, \\ 1 \pmod{p} & \text{otherwise} \end{cases}
\]

where

\[
r(S, a) = \left| \left\{ I \subseteq \{1, 2, \cdots, 2n - 1\} : |I| = n & \sum_{i \in I} a_i = a \right\} \right|.
\]
Proof of Theorem in the case $|F| = p$. (H. Pan) Let

$$I = \left\{ I \subseteq \{1, \ldots, 2p-1\} : p \mid |I| \land \sum_{i \in I} a_i = a \right\}$$

$$= \left\{ I \subseteq \{1, \ldots, 2p-1\} : |I| = p \land \sum_{i \in I} a_i = a \right\} \cup \left\{ \emptyset \right\}$$

if $a = 0$,

$$\{\emptyset\}$$

if $a \neq 0$.

We also set

$$P(x_1, \ldots, x_{2p-1}) = \left(\left(\sum_{i=1}^{2p-1} x_i \right)^{p-1} - 1 \right) \left(\left(\sum_{i=1}^{2p-1} a_i x_i - a \right)^{p-1} - 1 \right)$$

$$= \sum_{j_1, \ldots, j_{2p-1} \geq 0} c_{j_1, \ldots, j_n} x_1^{j_1} \cdots x_{2p-1}^{j_{2p-1}}.$$

Fix $\vec{x} = (x_1, \ldots, x_{2p-1}) \in \{0,1\}^{2p-1}$. Then

$$P(x_1, \ldots, x_{2p-1}) = \sum_{I \subseteq \{1, \ldots, 2p-1\}} c(I) \prod_{i \in I} x_i$$

where

$$c(I) = \sum_{\sum_{i \in I} j_i = 0} \quad \sum_{\sum_{i \in I} j_i < 2p-1} c_{j_1, \ldots, j_n}.$$

Observe that

$$P(x_1, \ldots, x_{2p-1}) = \begin{cases} 1 & \text{if } \{1 \leq i \leq 2p-1 : x_i = 1\} \in I, \\ 0 & \text{otherwise}. \end{cases}$$

So

$$P(x_1, \ldots, x_{2p-1}) = \sum_{I \subseteq \mathcal{I}} \prod_{i \in I} x_i \times \prod_{j \not\in I} (1 - x_j)$$

$$= \sum_{I \subseteq \mathcal{I}} \sum_{J \subseteq I} \left(-1 \right)^{|I|} \prod_{i \in I \cup J} x_i + \sum_{I \subseteq \mathcal{I}} \left(-1 \right)^{|I|} \prod_{i=1}^{2p-1} x_i.$$

In view of the above and Rónya’s Lemma, we must have

$$0 = \sum_{I \subseteq \mathcal{I}} \left(-1 \right)^{|I|} = \delta_{a,0}(-1)^{2p-1} + r(S, a)(-1)^{p-1}$$

and hence (*) holds. □
Lemma (Alon, Dubiner). Let \(p \) be a prime, \(v_1, \ldots, v_{3p} \in \mathbb{Z}_p \oplus \mathbb{Z}_p \) and \(v_1 + \cdots + v_{3p} = (0, 0) \). Then there exists an \(I \subseteq \{1, \ldots, 3p\} \) with \(|I| = p \) such that \(\sum_{i \in I} v_i = (0, 0) \).

Proof. Write \(v_i = (a_i, b_i) \) for \(i = 1, \ldots, 3p \) where \(a_i, b_i \in \mathbb{Z}_p \). The polynomial

\[
P(x_1, \ldots, x_{3p}) = \left(\left(\sum_{i=1}^{3p} x_i \right)^{p-1} - 1 \right) \left(\left(\sum_{i=1}^{3p} a_i x_i \right)^{p-1} - 1 \right) \left(\left(\sum_{i=1}^{3p} b_i x_i \right)^{p-1} - 1 \right)
\]

can be written in the form

\[
\sum_{I \subseteq \{1, \ldots, 3p\}} c_I \prod_{i \in I} x_i^{n_i(I)}
\]

where \(c_I \in \mathbb{Z}_p \) and \(n_i(I) \in \mathbb{Z}^+ \).

Now suppose that the desired result fails. Fix \(x_1, \ldots, x_{3p} \in \{0, 1\} \) and let \(I = \{1 \leq i \leq 3p : x_i = 1\} \). If \(P(x_1, \ldots, x_{3p}) \neq 0 \), then we must have \(p \mid |I| \) and \(\sum_{i \in I} v_i = (\sum_{i \in I} a_i, \sum_{i \in I} b_i) = (0, 0) \), hence \(|I| = 0 \) or \(3p \). (If \(|I| = 2p \) then \(|I| = p \) and \(\sum_{j \in I} v_j = \sum_{i=1}^{3p} v_i - \sum_{i \in I} v_i = (0, 0) \).) However, \(P(0, \ldots, 0) = P(1, \ldots, 1) = -1 \). So,

\[
P(x_1, \ldots, x_{3p}) = -\delta_{(0, \ldots, 0)}(x_1, \ldots, x_{3p}) - \delta_{(1, \ldots, 1)}(x_1, \ldots, x_{3p})
\]

\[
= -\prod_{i=1}^{3p} (1 - x_i) - \prod_{i=1}^{3p} x_i = \sum_{J \subseteq \{1, \ldots, 3p\}} (-1)^{|J|-1} \prod_{j \in J} x_j.
\]

For \(J = \{1, \ldots, 3p - 1\} \) we have \(|J| = 3p - 1 > 3p - 3 \). In view of Rónya’s Lemma we get a contradiction. \(\Box \)

Proof of Rónya’s Theorem in the case when \(n \) is a prime \(p \). Let

\[
v_1 = (a_1, b_1), \ldots, v_{4p-2} = (a_{4p-2}, b_{4p-2}) \in \mathbb{Z}_p \oplus \mathbb{Z}_p.
\]
Suppose that there is no $I \subseteq \{1, \ldots, 4p-2\}$ with $|I| = p$ such that $\sum_{i \in I} v_i = (0,0)$.

Let

$$P(x_1, \cdots, x_{4p-2}) := \left(\left(\sum_{i=1}^{4p-2} x_i \right)^{p-1} - 1 \right) \left(\sum_{i=1}^{4p-2} a_i x_i \right)^{p-1} \times \left(\left(\sum_{i=1}^{4p-2} b_i x_i \right)^{p-1} - 1 \right) \left(\sum_{J \subseteq \{1, \ldots, 4p-2\}, |J| = p} \prod_{j \in J} x_j - 2 \right).$$

We can write $P(x_1, \cdots, x_{4p-2})$ in the form

$$\sum_{I \subseteq \{1, \ldots, 4p-2\}} c_I \prod_{i \in I} x_i^{n_i(I)}$$

where $c_I \in \mathbb{Z}_p$ and $n_i(I) \in \mathbb{Z}^+.$

Let $x_1, \cdots, x_{4p-2} \in \{0,1\}$ and $I = \{1 \leq i \leq 4p-2: x_i = 1\}$. As

$$\binom{2p}{p} = \frac{2p(2p-1) \cdots (2p-(p-1))}{p \times 1 \times \cdots \times (p-1)} \equiv 2 \pmod{p},$$

if $|I| = 2p$ then

$$\sum_{J \subseteq \{1, \cdots, 4p-2\}, |J| = p} \prod_{j \in J} x_j = \sum_{J \subseteq I, |J| = p} 1 = \binom{2p}{p} 1 = 2.$$

When $P(x_1, \cdots, x_{4p-2}) \neq 0$, we must have $p \mid |I|$, $\sum_{i \in I} v_i = 0$ and $|I| \neq 2p$, therefore $I = \emptyset$ since we cannot have $|I| = 3p$ by Lemma 2.

Observe that $P(0, \cdots, 0) = (-1)(-1)(-1)(-2) = 2$. By the above, whenever $x_1, \cdots, x_{4p-2} \in \{0,1\}$ we have

$$P(x_1, \cdots, x_{4p-2}) = 2\delta_{(0, \cdots, 0)}(x_1, \cdots, x_{4p-2}) = 2 \prod_{i=1}^{4p-2} (1 - x_i)$$

$$= \sum_{I \subseteq \{1, \ldots, 4p-2\}} (-1)^{|I|} \prod_{i \in I} x_i.$$

As $(-1)^{|\{1, \ldots, 4p-2\}|} \neq 0$, we get a contradiction in view of Rónya’s Lemma. □