Communications in Algebra

On a Generalization of Injective Rings

Jianlong Chen \(^{a, b}\), Nanqing Ding \(^{c, d}\), Mohamed F. Yousif \(^{e, f}\)

\(^a\) Department of Mathematics, Southeast University, Nanjing, P. R. China
\(^b\) Department of Mathematics, Southeast University, Nanjing, 210096, P. R. China
\(^c\) Department of Mathematics, Nanjing University, Nanjing, P. R. China
\(^d\) Department of Mathematics, Nanjing University, Nanjing, 210093, P. R. China
\(^e\) Department of Mathematics, Ohio State University, Lima, Ohio, USA
\(^f\) Department of Mathematics, Ohio State University, Lima, OH, 45804, USA

First Published on: 09 February 2003
To link to this article: DOI: 10.1081/AGB-120023150
URL: http://dx.doi.org/10.1081/AGB-120023150

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf
This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.
The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.
© Taylor and Francis 2007
On a Generalization of Injective Rings

Jianlong Chen,1,* Nanqing Ding,2,* and Mohamed F. Yousif3,*

1Department of Mathematics, Southeast University, Nanjing, P. R. China
2Department of Mathematics, Nanjing University, Nanjing, P. R. China
3Department of Mathematics, Ohio State University, Lima, Ohio, USA

ABSTRACT

A ring R is called left IP-injective if every homomorphism from a left ideal of R into R with principal image is given by right multiplication by an element of R. It is shown that R is left IP-injective if and only if R is left P-injective and left GIN (i.e., $r(I \cap K) = r(I) + r(K)$ for each pair of left ideals I and K of R with I principal). We prove that R is QF if and only if R is right noetherian and left IP-injective if and only if R is left perfect, left GIN and right simple-injective. We

*Correspondence: Jianlong Chen, Department of Mathematics, Southeast University, Nanjing 210096, P. R. China; E-mail: jlchen@seu.edu.cn. Nanqing Ding, Department of Mathematics, Nanjing University, Nanjing 210093, P. R. China; E-mail: nqding@nju.edu.cn. Mohamed F. Yousif, Department of Mathematics, Ohio State University, Lima, OH 45804, USA; E-mail: yousif.1@osu.edu.
also show that, for a right CF left GIN-ring R, R is QF if and only if $\text{Soc}(R_R) \subseteq \text{Soc}(r_R)$. Two examples are given to show that an IP-injective ring need not be self-injective and a right IP-injective ring is not necessarily left IP-injective respectively.

Key Words: IP-injective ring; GIN ring; QF ring.

2000 Mathematics Subject Classification: 16D50; 16P40.

1. INTRODUCTION

All rings are associative with identity and all modules are unitary. As usual, J, $Z(R_R)$, $\text{Soc}(R_R)$ and $\text{Soc}(r_R)$ denote the Jacobson radical, the right singular ideal, the left and right socle of the ring R, respectively. The left and right annihilators of a subset X of R are denoted by $l(X)$ and $r(X)$, respectively. We use $K \subseteq N$ to indicate that K is an essential submodule of N. General background material can be found in Anderson and Fuller (1974).

Generalizations of injective rings have been studied in many papers such as Björk (1970), Camillo et al. (2000), Chen (1992), Chen et al. (2001), Hajarnavis and Norton (1985), Jain (1973), Nicholson and Yousif (1995, 1997a, 1998, 2001a, b) and Rutter (1975). Recall that a ring R is called left FP-injective (Jain (1973)) in case, for every finitely generated submodule K of a free left R-module F, every homomorphism from K to r_R extends to one from F to r_R. Faith and Menal (1994) asked whether every right noetherian left FP-injective ring is QF. This question remains open, and some partial positive results have been obtained in Faith and Menal (1994), Nicholson and Yousif (1998, 2001a, 2001b). In this regard, we approach this question from another point of view. We say that a ring R is left IP-injective (images are principal) if every homomorphism from a left ideal of R into R with principal image is given by right multiplication by an element of R. The class of left IP-injective rings lies strictly between that of left self-injective rings and that of left P-injective rings. It is proven that a ring R is a left IP-injective ring if and only if R is left P-injective and left GIN (i.e., $r(I \cap K) = r(I) + r(K)$ for each pair of left ideals I and K with I principal). We show that if R is a right noetherian and left IP-injective ring, then R is QF. As a corollary, we prove that a right Johns left GIN-ring is QF. We also show that, for a right CF left GIN-ring R, R is QF if and only if $\text{Soc}(R_R) \subseteq \text{Soc}(r_R)$. Two examples are given to show that an IP-injective ring need not be self-injective and a right IP-injective ring is not necessarily left IP-injective.
respectively. Finally, we prove that if R is left perfect, left GIN and right simple-injective then R is QF, which is a generalization of Osofsky’s assertion that a left perfect, left and right self-injective ring is a QF ring (Osofsky, 1966).

2. IP-INJECTIVE RINGS

Definition 2.1. A ring R is called left IP-injective (images are principal) if every R-homomorphism from a left ideal of R into R with principal image is given by right multiplication by an element of R.

Recall that a ring R is called left f-injective (P-injective) if every left R-homomorphism from a finitely generated (principal) left ideal into R extends to an endomorphism of R. Clearly, left self-injective rings are left IP-injective, and left IP-injective rings are left P-injective, but no two of these rings are equivalent as shown below.

It is well known that a ring R is left f-injective if and only if R is left P-injective and $r(I\cap K) = r(I) + r(K)$ for each pair of finitely generated left ideals I and K of R (see Chen et al., 2001, Corollary 2.10). We will characterize left IP-injective rings in a similar way. Following Camillo et al. (2000), a ring R is said to be a left IN-ring if $r(I\cap K) = r(I) + r(K)$ for each pair of left ideals I and K of R. For convenience, we shall call a ring R a left GIN-ring if $r(I\cap K) = r(I) + r(K)$ for each pair of left ideals I and K of R with I principal. Now we have the following.

Theorem 2.2. Let R be a ring. Then the following are equivalent:

1. R is left IP-injective.
2. R is left P-injective and left GIN.

Proof. $(2) \Rightarrow (1)$. The proof was motivated by that of Hajarnavis and Norton (1985, Proposition 5.2). First we suppose that $f: I_1 + I_2 \rightarrow R$ is an R-homomorphism such that both $f|_{I_1}: I_1 \rightarrow R$ and $f|_{I_2}: I_2 \rightarrow R$ are given by right multiplication by elements z_1 and z_2 of R, respectively, where I_1 and I_2 are left ideals with I_1 principal. Now let $x \in I_1 \cap I_2$. Then $xz_1 = xz_2$, and so $z_1 - z_2 \in r(I_1 \cap I_2) = r(I_1) + r(I_2)$. Hence $z_1 - z_2 = y_1 + y_2$ for some $y_i \in r(I_i)$, $i = 1, 2$. Let $a_i \in I_i$, $i = 1, 2$. Then $a_iy_i = 0$, and so $f(a_1 + a_2) = a_1z_1 + a_2z_2 = a_1(z_1 - y_1) + a_2(z_2 + y_2)$. But $z_1 - y_1 = z_2 + y_2$. Therefore $f(a_1 + a_2) = (a_1 + a_2)(z_1 - y_1)$. Hence $f: I_1 + I_2 \rightarrow R$ is also given by right multiplication.
Now suppose that I is a left ideal of R and $f: I \to R$ is an R-homomorphism with principal image. Let $\text{Im}(f) = Rf(a)$ for some $a \in I$. Then $I = Ra + \ker(f)$. Since R is left P-injective, $f|_{R_a}$ is a right multiplication. Clearly $f|_{\ker(f)}$ is given by right multiplication by 0. Hence by earlier part of the proof it follows that f is given by right multiplication.

(1) \Rightarrow (2). Let $I = Rb$ for some $b \in R$, then every homomorphism from I to R is given by right multiplication by (1). So R is left P-injective.

Now let $A = Ra$ for some $a \in R$ and B be a left ideal of R. Let $x \in r(A \cap B)$ and define $f: A + B \to R$ by $f(a + b) = ax$ for all $a \in A$ and $b \in B$. It is easy to see that f is an R-homomorphism and $\text{Im}(f) = Rax$. By (2), there exists $y \in R$ such that $ax = f(a + b) = (a + b)y$ for all $a \in A$ and $b \in B$. Let $b = 0$, then $x - y \in r(A)$, and let $a = 0$, then $y \in r(B)$. Thus $x = x - y + y \in r(A) + r(B)$, which implies $r(A \cap B) \subseteq r(A) + r(B)$. The reverse inclusion is clear. So $r(A \cap B) = r(A) + r(B)$. □

Recall that a ring R is called a left HN-ring (simple-injective ring) if every homomorphism from a left ideal of R to R with finitely generated (simple) image is given by right multiplication by an element of R. It is obvious that a left HN-ring is left IP-injective, and a left IP-injective ring is left simple-injective. Note that a simple-injective ring need not be IP-injective. For instance, the ring \mathbb{Z} of integers is simple-injective, but it is not IP-injective.

The following results can be proven in a similar way as in Theorem 2.2 above.

Theorem 2.3. Let R be a ring. Then the following are equivalent:

1. R is left HN-injective.
2. R is left P-injective and $r(I \cap K) = r(I) + r(K)$ for any finitely generated left ideal I and left ideal K.

Theorem 2.4. Let R be a ring. Then the following are equivalent:

1. R is left simple-injective.
2. (a) $r(I_1 \cap I_2) = r(I_1) + r(I_2)$, where I_1 and I_2 are left ideals of R with I_1 minimal.

 (b) Every homomorphism from a principal left ideal of R to R with simple image is given by right multiplication by an element of R.

The following is an example of a commutative IP-injective ring which is not self-injective.
Example 1 (cf. Chen, 1992). Let $F = \mathbb{F}_2 = \{0, 1\}$ be the field of two elements, \mathbb{N} the set of positive integers, $F_i = F$, $i \in \mathbb{N}$, $T = \prod_{i \in \mathbb{N}} F_i$ and $S = \bigoplus_{i \in \mathbb{N}} F_i$. Let R be the subring of T consisting of elements of the form

$$(a_1, a_2, \ldots, a_n, a, a, a, \ldots),$$

i.e., R is obtained by adjoining the identity of T to its ideal S. Then R is a commutative von Neumann regular ring, but it is not a self-injective ring by Goodearl (1976, Example 3.11 and Theorem 3.12).

Since R is von Neumann regular, it is P-injective. Next we'll show that R is $\mathbb{G}IN$. In fact, we'll show that R is $\mathbb{I}N$. Now let $p_i : T \rightarrow F_i$ be the i-th projection, and $e_i = (0, \ldots, 0, 1, 0, \ldots) \in T$ (with 1 in the ith position and 0's in all other positions), $i = 1, 2, \ldots$.

First we claim that if K is an ideal of R, then either $K = \bigoplus_{i \in I} R e_i \subseteq S$ for some $I \subseteq \mathbb{N}$ or K is finitely generated.

If $K = 0$, we are done.

Suppose $0 \neq K \subseteq S$. Put $I = \{i \mid \exists a \in K$ such that $p_i(a) = 1\}$. Then it follows that $K \subseteq \bigoplus_{i \in I} R e_i$. Conversely, if $i \in I$, then there exists $a \in K$ such that $p_i(a) = 1$, and so $e_i = e a \in K$. Hence $K = \bigoplus_{i \in I} R e_i$.

Suppose $K \nsubseteq S$. Then there exist $a \in K$ and a least positive integer n such that $p_m(a) = 1$ for $m > n$. Note that $k - ka \in K \cap \bigoplus_{i = 1}^n F_i$ for any $k \in K$. Thus $K = Ra + \sum_{u \in U} Ru$, where $W = K \cap \bigoplus_{i = 1}^n F_i$. Since W is a finite set, K is finitely generated.

Next we show that R is $\mathbb{I}N$, i.e.,

$$r(K_1 \cap K_2) = r(K_1) + r(K_2)$$

for any two ideals K_1 and K_2 of R.

(i) $K_i \subseteq S$, $i = 1, 2$. In this case, by the preceding proof, we may assume that $K_1 = \bigoplus_{i \in I} R e_i$, $K_2 = \bigoplus_{u \in U} R e_u$. It is easy to see that $K_1 \cap K_2 = \bigoplus_{i \in I \cap U} Re_i$, $r(K_1 \cap K_2) = \bigoplus_{i \in I \cap U} (1 - e_i) R$, $r(K_1) = \bigoplus_{i \in I} (1 - e_i) R$, $r(K_2) = \bigoplus_{u \in U} (1 - e_u) R$. Let $x \in R$. It is straightforward to check that $x \in \bigoplus_{i \in I} (1 - e_i) R \iff p_i(x) = 0$ for all $i \in I$. Now let $x \in \bigoplus_{i \in I \cap U} (1 - e_i) R$. Choose $y \in r(K_1) = \bigoplus_{i \in I} (1 - e_i) R$ such that $p_u(y) = p_u(x)$ for all $u \in U$. In fact, if $u \in I \cap U$, then $p_u(y) = 0 = p_u(x)$ for all $y \in r(K_1)$. If $u \in U$ but $u \notin I$, take $y \in R$ such that $p_y(y) = 0$ for all $i \in I$ and $p_u(y) = p_u(x)$. Then $y \in r(K_1)$ and $p_u(y) = p_u(x)$. Put $z = x - y$. Then $p_u(z) = 0$ for all $u \in U$, and so $z \in r(K_2)$. Thus $x = y + z$ with $y \in r(K_1)$ and $z \in r(K_2)$. So (\ast) follows.
(ii) \(K_1 \subseteq S \) and \(K_2 \) is finitely generated. In this case, we may assume \(K_1 = \bigoplus_{i \in I} R e_i \) and \(K_2 = R e \) with \(e^2 = e \in R \) (for \(R \) is von Neumann regular).

(a) If \(e \in S \), then \(e = e_{i_1} + e_{i_2} + \cdots + e_{i_m} \) for some positive integer \(m \).

It is easy to see that \(K_2 = \bigoplus_{i \in V} R e_i \) where \(V = \{i_1, i_2, \ldots, i_m\} \). Hence \((\ast) \) follows from the proof of (i).

(b) If \(e \notin S \), then \(e = e_{i_1} + e_{i_2} + \cdots + e_{i_n} + e \) where \(n \) is a positive integer, \(i_1 < i_2 < \cdots < i_n \) and \(e = 1 - f \) with \(f = e_1 + e_2 + \cdots + e_k \) for some \(k > i_n \). Let \(L = \{i_1, i_2, \ldots, i_k\} \) and \(X = L \cup \{k + 1, k + 2, \ldots\} \). Then it is easily seen that \(K_2 = (\bigoplus_{i \in L} R e_i) \oplus R e \) and \(K_1 \cap K_2 = (\bigoplus_{i \in X \setminus L} R e_i) \). Thus, by the proof of (i), \(\rho(K_1 \cap K_2) = \bigoplus_{i \in F \setminus X} R e_i \). Consequently, \(\rho(K_2) = (\bigoplus_{i \in L} (1 - e_i) R) \cap R e \), and it is easy to see that \(x \in R \Leftrightarrow p(x) = 0 \) for all \(t \in \{k + 1, k + 2, \ldots\} \). Thus \(x \in \rho(K_2) \Leftrightarrow p(x) = 0 \) for all \(i \in X \Leftrightarrow x \in (\bigoplus_{i \in X} (1 - e_i) R \). Therefore \(\rho(K_1 \cap K_2) = \rho(K_1) + \rho(K_2) \).

(iii) If \(K_1 \) and \(K_2 \) are finitely generated, then \((\ast) \) holds (for every von Neumann regular ring is \(f \)-injective).

Consequently, \(R \) is \(P \)-injective and \(IN \), and so it is an \(IP \)-injective ring.

It is well known that a right noetherian left self-injective ring is \(QF \).

However, in general, a right noetherian left \(P \)-injective ring need not be \(QF \) (see Rutter, 1975). In the next theorem we show that a right noetherian left \(IP \)-injective ring is \(QF \).

Lemma 2.5. Let \(R \) be left \(P \)-injective and the ascending chain \(\rho(s_1) \subseteq \rho(s_2) \subseteq \cdots \) terminates for any sequence \(\{s_1, s_2, \ldots\} \subseteq R \). Then \(Soc(R_R) \) and \(\mathfrak{m}(J) \) are essential left ideals of \(R \).

Proof. First, we claim that, for any \(0 \neq x_1 \in R \), there exists \(y \notin \mathfrak{l}(x_1) \) such that \(yx_1 R \) is a minimal right ideal. If not, for any \(y \notin \mathfrak{l}(x_1) \), \(yx_1 R \) is not a minimal right ideal. In particular, \(x_1 R \) is not minimal. Thus there exists \(t \in R \) such that \(0 \neq x_1 t R \subsetneq x_1 R \), and so \(\mathfrak{l}(x_1) \subsetneq \mathfrak{l}(x_1 t) \) (if \(\mathfrak{l}(x_1) = \mathfrak{l}(x_1 t) \), then \(x_1 R = \rho(\mathfrak{l}(x_1)) = \rho(\mathfrak{l}(x_1 t)) = x_1 t R \) by the \(P \)-injectivity of \(R \), a contradiction). Hence there is \(x_2 \in \mathfrak{l}(x_1 t) \) but \(x_2 \notin \mathfrak{l}(x_1) \), i.e., \(x_2 x_1 t = 0, x_2 x_1 \neq 0 \). Therefore \(t \in \rho(x_2 x_1) \), but \(t \notin \rho(x_1) \), i.e., \(\rho(x_1) \subsetneq \rho(x_2 x_1) \). Since \(x_2 \notin \mathfrak{l}(x_1) \), \(x_2 x_1 R \) is not minimal by assumption. Hence there exists \(x_3 \in R \) such that \(R(x_3 x_1) \subsetneq R(x_2 x_1) \) by the preceding proof. Repeating the above-mentioned process, we get a strictly ascending chain \(\rho(x_1) \subsetneq \rho(x_2 x_1) \subsetneq \rho(x_3 x_2 x_1) \cdots \). This is a contradiction. So our claim follows.
On a Generalization of Injective Rings

Now let \(0 \neq x \in R \), then there exists \(y \in R \) such that \(yxR \) is minimal by the above claim. So \(0 \neq yx \in \text{Soc}(R) \cap Rx \), which shows that \(\text{Soc}(R) \leq eR \). Note that \(\text{Soc}(R) \subseteq I(J) \) is always true, and hence \(I(J) \leq eR \).

Lemma 2.6. If \(R \) is right noetherian and left \(P \)-injective. Then

1. \(J \) is nilpotent.
2. \(I(J) \leq eR \).
3. \(I(J) \leq eR \).
4. \(\text{Soc}(R) \leq eR \).

Proof. (1)–(3) follows from Gómez Pardo and Guil Asensio (1998, Theorem 2.7).

(4). By Lemma 2.5.

Theorem 2.7. Let \(R \) be a right noetherian and left \(IP \)-injective ring, then \(R \) is \(QF \).

Proof. First, we claim that \(R \) is left finite dimensional. In fact, let \(\bigoplus_{i=1}^{\infty} R_{a_i} \leq R \), where each \(a_i \in R \), \(i = 1, 2, \ldots \), and \(I_n = \text{r}(a_n, a_{n+1}, \ldots) \) for \(n \geq 1 \). Then we have an ascending chain \(I_1 \subseteq I_2 \subseteq I_3 \subseteq \cdots \), and so there exists an integer \(m \geq 1 \) such that \(I_k = I_m \) for all \(k \geq m \) (for \(R \) is right noetherian). Now let \(k \geq m \), then \(\text{r}(a_{k+1}, a_{k+2}, \ldots) = I_{k+1} = I_k \subseteq \text{r}(a_k) \).

Since \(R_{a_k} \cap \bigoplus_{i=k}^{\infty} R_{a_i} = 0, R = \text{r}(R_{a_k} \cap \bigoplus_{i=k}^{\infty} R_{a_i}) = \text{r}(R_{a_k}) + \text{r}(\bigoplus_{i=k}^{\infty} R_{a_i}) = \text{r}(a_k) + \text{r}(a_{k+1}, a_{k+2}, \ldots) = \text{r}(a_k) \). Thus \(a_k = 0 \) for \(k \geq m \), and so \(R \) is left finite dimensional. Hence \(R \) is semilocal by Nicholson and Yousif (1995, Theorem 3.3). Since \(J \) is nilpotent by Lemma 2.6, \(R \) is semiprimary. Thus \(R \) is right artinian and so \(R \) has ascending chain condition on left annihilators. By hypothesis, we have \(\text{r}(I(a)) = aR \) and \(\text{r}(Ra \cap Rb) = r(a) + r(b) \). Hence \(R \) is left 2-injective by Chen et al. (2001, Corollary 2.10). Therefore \(R \) is \(QF \) by Rutter (1975, Corollary 3).

As a consequence of the preceding result, we obtain a very short proof of Faith and Menal (1992, Theorem 3.4) or Gómez Pardo and Guil Asensio (1998, Corollary 2.12).

Corollary 2.8. Let \(R \) be a ring with \(\text{ACC} \) on right annihilators. If \(R \) is left \(P \)-injective and left \(IN \), then \(R \) is \(QF \).

Proof. By Johns (1977, Lemma 5), every finitely generated right ideal is a right annihilator. Thus \(R \) is right noetherian by hypothesis, and so \(R \) is \(QF \) by Theorem 2.7.
We say that a ring R is strongly right Johns if $M_n(R)$ is right Johns for every $n \geq 1$. Strongly right Johns rings have been characterized by Faith and Menal (1994) as the right noetherian left FP-injective rings, and Faith and Menal asked whether these rings are QF. The following corollary is a partial positive answer to this question.

Corollary 2.9. If R is right Johns and left GIN, then R is QF.

Remark 1. A right Johns ring need not be left GIN as shown by Example 1 in Rutter (1975).

The following example shows that a left FP-injective ring need not be a left IP-injective ring. However we do not know whether a left IP-injective ring is left FP-injective.

Example 2. Let V be an infinite-dimensional right vector space over a division ring D and $R = \text{End}_DV$, then R is a von Neumann regular right self-injective ring, but R is not left self-injective (see Goodearl, 1976, Proposition 2.23). Since R is von Neumann regular, it is left FP-injective. We shall show that R is not left GIN, whence it is not left IP-injective.

The following argument is similar to that in the proof of Goodearl (1976, Proposition 2.23). Since V is an infinite-dimensional right vector space over D, we can find an infinite linearly independent sequence $\{v_1, v_2, \ldots \}$ in V. Write $V = V_0 \oplus (\oplus v_i D)$ for some V_0, and define idempotents e_0, e_1, \ldots in R as follows: e_0 is the projection on V_0, while for $i > 0$, e_i is the projection on $v_i D$. It follows that $\{e_i\}_{i=0}^\infty$ is a set of orthogonal idempotents and $V = \bigoplus_{i=0}^\infty e_i V$. Put $K = \bigoplus_{i=0}^\infty Re_i$, then it is easily seen that $r(K) = 0$.

Now define $p \in R$ by setting $pv_0 = 0$ and $pv_i = v_1$ for all $i > 0$. We claim that $Rp \cap K = 0$. Given any $f \in R$ such that $fp \in K$, we must have $fp = r_0 e_0 + r_1 e_1 + \cdots + r_n e_n$ for some $n \geq 0$ and some $r_i \in R$, $i = 1, 2, \ldots, n$. For $i = 1, 2, \ldots, n$, we observe that $r_i e_i = f p v_i = f e_1 = f p v_{i+1} = 0$, whence $r_i e_i = 0$. Then $fp = r_0 e_0$, and as a result, $fp = f p e_0 = 0$. Thus $Rp \cap K = 0$.

If R is left GIN, then $R = r(Rp \cap K) = r(p)$, which implies $p = 0$. This is a contradiction.

Remark 2. (i) We note that Example 2 above also shows that a right IP-injective ring (GIN-ring) need not be a left IP-injective ring (GIN-ring).
(ii) Every left IP-injective ring is a left f-injective ring by Chen et al. (2001, Corollary 2.10. 1(c)), but the converse is not true in general as shown by Example 2 above again.

Lemma 2.10. If R is a left GIN ring, then every closed left ideal is a left annihilator.

Proof. First we claim that $L \subseteq _e I(r(L))$ for any left ideal L of R. In fact, if $L \cap Rx = 0$ with $x \in I(r(L))$, then $r(x) \supseteq r(I(r(L))) = r(L)$, and so $R = r(L \cap Rx) = r(x) + r(L) = r(x)$. Thus $x = 0$, it follows that $L \subseteq _e I(r(L))$. If L is a closed ideal, then $L = I(r(L))$, as required.

Lemma 2.11. If R is a right dual ring (i.e., every right ideal of R is a right annihilator), then $I(J) = Z(RR)$.

Proof. Let $I(J) \cap Ra = 0$, where $a \in R$. Then $R = r(I(J) \cap Ra) = J + r(a)$ by Nicholson and Yousif (1998, Lemma 2.1). Thus $R = r(a)$, and so $a = 0$.

Corollary 2.12. If R is left GIN and right dual, then R is semiperfect and $I(J) = Soc(RR)$ is an essential left ideal.

Proof. The result follows from Lemma 2.10, Lemma 2.11 and Gómez Pardo and Guil Asensio (1998, Proposition 2.11).

Recall that a ring R is said to be right CF if every cyclic right R-module embeds in a free right R-module.

Theorem 2.13. If R is right CF and left GIN, then the following are equivalent:

1. R is QF.
2. $J \subseteq Z(R_R)$.
3. $Soc(R_R) \subseteq Soc(RR)$.
4. R is right mininjective.

Proof. (1) \Rightarrow (2) and (1) \Rightarrow (4) are obvious. (4) \Rightarrow (3) by Nicholson and Yousif (1997a, Theorem 1.14(4)).

(3) \Rightarrow (1). Since R is right CF and left GIN, R is semiperfect and $I(J) = Soc(R_R) \subseteq _e R_R$ by Corollary 2.12. But $Soc(R_R) \subseteq Soc(R_R)$ by (3),
and so $\text{Soc}(\mathcal{R}) \leq \mathcal{R}$. Therefore \mathcal{R} is left GPF (i.e., \mathcal{R} is semiperfect, left \mathcal{P}-injective and $\text{Soc}(\mathcal{R}) \leq \mathcal{R}$), and hence \mathcal{R} is finitely cogenerated by Nicholson and Yousif (1995, Theorem 2.3(5)). It follows that \mathcal{R} is right artinian (for \mathcal{R} is right CF). By hypotheses, we have $r(\mathcal{R}a \cap \mathcal{R}b) = r(a) + r(b)$, $r(l(a)) = a\mathcal{R}$, and so \mathcal{R} is left 2-injective by Chen et al. (2001, Corollary 2.10). Since \mathcal{R} has DCC on right annihilators, it has ACC on left annihilators. Consequently, \mathcal{R} is QF by Rutter (1975, Corollary 3).

\[(2) \Rightarrow (3). \] By the proof of $(3) \Rightarrow (1)$, \mathcal{R} is semiperfect. Hence $\text{Soc}(\mathcal{R}) = r(J) \supseteq r(Z(\mathcal{R})) \supseteq \text{Soc}(\mathcal{R})$. □

A well known result of Osofsky (1966) asserts that a left perfect, left and right self-injective ring is a QF ring. This result can be improved as the following.

Theorem 2.14. If \mathcal{R} is left perfect, left GIN and right simple-injective, then \mathcal{R} is QF.

Proof. By hypothesis, \mathcal{R} is right minfull, i.e., \mathcal{R} is semiperfect, right mininjective and $\text{Soc}(e\mathcal{R}) \neq 0$ for each local idempotent $e \in \mathcal{R}$, and so \mathcal{R} is right Kach by Nicholson and Yousif (1997a, Theorem 3.7). Thus $r(l(I)) = I$ for every right ideal I of \mathcal{R} by Nicholson and Yousif (1997a, Lemma 4.2), and hence \mathcal{R} is left \mathcal{P}-injective. Therefore \mathcal{R} is left IP-injective by Theorem 2.2, and then it is left simple-injective. So \mathcal{R} is QF by Nicholson and Yousif (1997b, Proposition 3). □

Remark 3. A left perfect and left GIN-ring need not be right simple-injective in general. For instance, Björk (1970, Example, P. 70) is a left perfect and left $(G)\text{IN}$-ring but it is not right simple-injective.

ACKNOWLEDGMENTS

Part of this work was carried out during a visit by the second author to the Ohio State University at Lima. He is grateful to the members of the Mathematics Department for their kind hospitality. This research was supported in part by NNSF of China (No. 10171011 and 10071035), NSF of Jiangsu Province (No. BK 2001001) and by the Ohio State University.
REFERENCES

Received June 2002