**已发表和已接受论文:**

[15] F. Yang, Cantor Julia sets with Hausdorff dimension two, arXiv: 1802.01063, to appear in * Int. Math. Res. Not.*, 2019.

[14] W. Qiu, F. Yang and J. Zeng, Quasisymmetric geometry of Sierpiński carpet Julia sets, *Fund. Math.* **244** (2019), no. 1, 73-107.

[13] W. Qiu, F. Yang and Y. Yin, Quasisymmetric geometry of the Julia sets of McMullen maps, *Sci. China. Math.* **61**, (2018), no. 12, 2283-2298.

[12] S. Zhang and F. Yang, Area of the complement of the fast escaping sets of a family of entire functions, *Kodai Math. J.* **41**, (2018), no. 3, 531-553.

[11] F. Yang, A criterion to generate carpet Julia sets, *Proc. Amer. Math. Soc.* **146** (2018), no. 5, 2129-2141.

[10] Y. Xiao and F. Yang, Singular perturbations with multiple poles of the simple polynomials, *Qual. Theory Dyn. Syst.***16** (2017), no. 3, 731-747.

[9] Y. Xiao and F. Yang, Singular perturbations of unicritical polynomials with two parameters, *Ergod. Th. Dynam. Sys.* **37** (2017), no. 6, 1997-2016.

[8] F. Yang, Rational maps without Herman rings, *Proc. Amer. Math. Soc.* **145** (2017), no. 4, 1649-1659.

[7] W. Qiu, F. Yang and Y. Yin, Quasisymmetric geometry of the Cantor circles as the Julia sets of rational maps, *Discrete Contin. Dynam. Sys.* **36** (2016), no. 6, 3375-3416.

[6] W. Qiu, F. Yang and Y. Yin, Rational maps whose Julia sets are Cantor circles, *Ergod. Th. Dynam. Sys.* **35** (2015), no. 2, 499-529.

[5] J. Fu and F. Yang, On the dynamics of a family of singularly perturbed rational maps, *J. Math. Anal. Appl*.** 424 **(2015), no. 1, 104-121.

[4] X. Wang and F. Yang, Hausdorff dimension of the boundary of the immediate basin of infinity of McMullen maps, *Proc. Indian Acad. Sci. (Math. Sci.)* **124** (2014), no. 4, 551-562.

[3] F. Yang and J. Zeng, On the dynamics of a family of generated renormalization transformations, *J. Math. Anal. Appl*.** 413 **(2014), no. 1, 361-377.

[2] F. Yang, On the dynamics of a family of entire functions, *Acta Math. Sin. (Engl. Ser.)*** 29 **(2013), no. 11, 2047-2072.

[1] F. Yang and Y. Yin, A new proof of the realization of cubic tableaux, *Bull. Aust. Math. Soc.*** 87** (2013), no. 2, 207-215.

**论文预印本:**

◎ Y. Fu and F. Yang, Area and Hausdorff dimension of Sierpiński carpet Julia sets, arXiv: 1812.03016, (2018), 14 pages.

◎ W. Qiu and F. Yang, Hausdorff dimension and quasi-symmetric uniformization of Cantor circle Julia sets, arXiv: 1811.10042, (2018), 22 pages.

◎ Y. Wang, F. Yang, S. Zhang and L. Liao, Escape Quartered theorem and the connectivity of the Julia sets of a family of rational maps, preprint, (2018), 20 pages, submitted.

◎ F. Yang and Y. Yin, Non-renormalizable quadratic Julia sets with Hausdorff dimension two, preprint, (2018), 4 pages.

◎ Y. Wang and F. Yang, Julia sets as buried Julia components, arXiv: 1707.04852v2, (2017), 29 pages, submitted.

◎ M. Shishikura and F. Yang, The high type quadratic Siegel disks are Jordan domains, arXiv: 1608.04106v3, (2018), 56 pages, submitted.

◎ F. Yang, Parabolic and near-parabolic renormalization for local degree three, arXiv: 1510.00043v2, (2016), 55 pages.

◎ A. Chéritat and F. Yang, Self-similarity of the boundary of high type Siegel disks in the quadratic family, preprint, (2016), 45 pages.

◎ H. H. Rugh, L. Tan and F. Yang, Schwarzian versus a family of moving parabolic points, preprint, (2016), 22 pages.

**将完成的论文:**

◎ D. Cheraghi, A. DeZotti and F. Yang, Dimension paradox of irrational indifferent attractors, manuscript, (2018), 31 pages.

◎ F. Yang, G. Zhang and Y. Zhang, Local connectivity of the Julia sets of some entire functions containing a Siegel disk, manuscript, (2016), 32 pages.

**合作者:**

Davoud Cheraghi, Arnaud Chéritat, Alexandre DeZotti, Jianxun Fu (付建勋), Yuming Fu (付宇铭), Liangwen Liao (廖良文), Weiyuan Qiu (邱维元), Hans Henrik Rugh, Mitsuhiro Shishikura, Lei Tan (谭蕾), Xiaoguang Wang (王晓光), Youming Wang (王有明), Yingqing Xiao (肖映青), Yongcheng Yin (尹永成), Jinsong Zeng (曾劲松), Gaofei Zhang (张高飞), Song Zhang (张松), Yanhua Zhang (张艳华)